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We consider the second-order nonlinear difference equations of the form ∆(rn−1∆xn−1) +
pn f (xn−k) = hn. We show that there exists a solution (xn), which possesses the asymp-
totic behaviour ‖xn − a

∑n−1
j=0 (1/r j) + b‖ = o(1), a,b ∈ R. In this paper, we extend the

results of Agarwal (1992), Dawidowski et al. (2001), Drozdowicz and Popenda (1987),
M. Migda (2001), and M. Migda and J. Migda (1988). We suppose that f has values in
Banach space and satisfies some conditions with respect to the measure of noncompact-
ness and measure of weak noncompactness.

1. Introduction

Let C be the set of complex numbers and let R be the set of real numbers and l1 (C) the
space of complex-valued sequences (cn) such that

∥∥(cn)∥∥1 :=
∞∑
i=1

∣∣cn∣∣ <∞. (1.1)

Let (X ,‖ · ‖) be a complex (real) Banach space and l∞(X) denote the space of bounded
sequences x = (xn) in X with the norm

∥∥x∥∥∞ = ∥∥(xn)∥∥∞ = sup
n

∥∥xn∥∥. (1.2)

With this norm l∞(X) is a Banach space.
In this paper, we are concerned with the difference equation in Banach space:

∆
(
rn−1∆xn−1

)
+ pn f

(
xn−k

)= hn, n∈N, (1.3)

where ∆is the forward difference operator, that is,

∆xn = xn+1− xn,

∆2xn = ∆
(
∆xn

)
,

(1.4)

and f : X → X .
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By a solution of (1.3) we understand a sequence x = (xn) in l∞(X) which satisfies (1.3).
The results obtained here generalize some results of M. Migda and J. Migda [9, 10]. In

[10] the second-order difference equation of the form

∆2xn = anϕ
(
xn+k

)
, n= 1,2, . . . , k = 0,1,2, . . . , (1.5)

was considered. Authors give a condition when this equation has a solution, asymptoti-
cally equal to c, c ∈ R.

2. Main results

We give necessary and sufficient conditions for the existence of solutions.
Let f be the function from X to X , (pn), (rn) sequences of real numbers, and (hn)

a sequence in Banach space.
Let D be a nonempty, closed, convex, and bounded subset of Banach space.
Our result will be proved by the following fixed point theorem.

Theorem 2.1 [5]. Let D be a nonempty, closed, convex, and bounded subset of Banach
space.

Let F : D→D be a continuous mapping, which is condensing with respect to the measure
of noncompactness α:

α
(
F(V)

)≤ Lα(V), L < 1. (2.1)

Then F has fixed point, where α is the Kuratowski’s measure of noncompactness.

Theorem 2.2. Let V ⊂ C(N+,X) be a family of functions. Then

α(V)= α
(
V
(
N+))= sup

{
α(V(i)) : i∈N+}, (2.2)

where α(V) denotes the measure of noncompactness in C(N+,X).

A theorem similar to Theorem 2.1 was proved by Arino et al. [2], see also [8, 11],
when f is weakly-weakly sequentially continuous, that is, if xn

w−→ x0, then f (xn)
w−→ f (x0)

for each sequence (xn), and instead of α we used β-weak measure of noncompactness.

Theorem 2.3. Let f : X → X be the bounded and continuous function.
Let

t =
∞∑
n=1

(n−1∑
j=0

1
r j

)∣∣pn∣∣ <∞,

∞∑
n=1

(n−1∑
j=0

1
r j

)∥∥hn∥∥ <∞.

(2.3)

Moreover,

α
(
f (V)

)≤ kα(V), (2.4)

where kt < 1.
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Then for every a,b ∈ R there exists a solution (xn) of (1.3) which possesses the asymptotic
behaviour

∥∥∥∥∥xn− a
n−1∑
j=0

1
r j

+ b

∥∥∥∥∥= o(1). (2.5)

Proof. Let a,b ∈ X . There exists a constant M > 1 such that ‖ f (t)‖ <M for each t ∈ X .
Assume that

kn =
∣∣pn∣∣+

∥∥hn∥∥ for n∈N ,

ln = 1
rn

∞∑
j=n+1

kj .
(2.6)

From (2.3) we have

∞∑
n=1

(n−1∑
j=0

1
r j

)∣∣pn∣∣+
∞∑
n=1

(n−1∑
j=0

1
r j

)∥∥hn∥∥

=
∞∑
n=1

(n−1∑
j=0

1
r j

)(∣∣pn∣∣+
∥∥hn∥∥)=

∞∑
n=1

(n−1∑
j=0

1
r j

)
kn

= k1 · 1
r0

+ k2 ·
(

1
r0

+
1
r1

)
+ k3 ·

(
1
r0

+
1
r1

+
1
r2

)
+ ···

= 1
r0

(
k1 + k2 + k3 + ···)+

1
r1

(
k2 + k3 + ···)+

1
r2

(
k3 + ···)

=
∞∑
n=1

1
rn−1

∞∑
j=n

kj =
∞∑
n=1

ln−1.

(2.7)

So the series
∑∞

n=1 ln is convergent.
Let zn =

∑∞
j=n l j for n∈N .

Define the operator T : D→ K , where

D = {y = (y1, y2, y3, . . .
)
,
∥∥yn∥∥≤Mzn

}
, n∈N ,

K =
{
y = (y1, y2, y3, . . .

)
,

∥∥∥∥∥yn−
(
a
n−1∑
j=0

1
r j

+ b

)∥∥∥∥∥≤Mzn

}
, n∈N.

(2.8)

For x ∈D and n∈N we have

(Tx)n =




a
n−1∑
j=0

1
r j

+ b, n≤m,

a
n−1∑
j=0

1
r j

+ b−
∞∑
j=n

1
r j

∞∑
i= j+1

(
pi f

(
xi−k

)−hi
)
, n >m.

(2.9)
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For n >m we have

∥∥∥∥∥(Tx)n−
(
a
n−1∑
j=0

1
r j

+ b

)∥∥∥∥∥

=
∥∥∥∥∥a

n−1∑
j=0

1
r j

+ b−
∞∑
j=n

1
r j

∞∑
i= j+1

(
pi f

(
xi−k

)−hi
)− a

n−1∑
j=0

1
r j
− b

∥∥∥∥∥

=
∥∥∥∥∥
∞∑
j=n

1
r j

∞∑
i= j+1

(
pi f

(
xi−k

)−hi
)∥∥∥∥∥

≤
∞∑
j=n

1
r j

∞∑
i= j+1

∥∥pi f (xi−k)−hi
∥∥≤ ∞∑

j=n

1
r j

∞∑
i= j+1

(∥∥pi f (xi−k)∥∥+
∥∥hi∥∥)

≤
∞∑
j=n

1
r j

∞∑
i= j+1

(∥∥hi∥∥+M
∣∣pi∣∣)≤

∞∑
j=n

1
r j

∞∑
i= j+1

Mki ≤M
∞∑
j=n

l j =Mzn.

(2.10)

So the operator T : D→ K and the continuity of f , T is continuous.
Now, we will prove that T satisfies condition (2.1) of Theorem 2.1.
Let V ⊂D, where V = {v : v = (v1,v2, . . .)} and T(V)= {T(v) : v ∈V}.
Let Vk = {vk : v ∈V , v = (v1,v2, . . . ,vk, . . .)}. For n≤m we obtain

α
(
T(V)

)= α

(
a
n−1∑
j=0

1
r j

+ b

)
= 0. (2.11)

For n >m we have

α
(
T(V)

)= sup
n
α


an−1∑

j=0

1
r j

+ b−
∞∑
j=n

1
r j

∞∑
i= j+1

(
pi f

(
Vn
)−hi

)

≤ sup
n


α

an−1∑

j=0

1
r j

+ b


+α


 ∞∑

j=n

1
r j

∞∑
i= j+1

(
pi f

(
Vn
)−hi

)



≤ sup
n
α


an−1∑

j=0

1
r j

+ b


+ sup

n
α


 ∞∑

j=n

1
r j

∞∑
i= j+1

(
pi f

(
Vn
)−hi

)

≤ sup
n
α


 ∞∑

j=n

1
r j

∞∑
i= j+1

pi f
(
Vn
)

+
∞∑
j=n

1
r j

∞∑
i= j+1

hi




≤ sup
n
α


 ∞∑

j=n

1
r j

∞∑
i= j+1

pi f
(
Vn
)+ sup

n
α


 ∞∑

j=n

1
r j

∞∑
i= j+1

hi




≤ sup
n


 ∞∑

j=n

1
r j

∞∑
i= j+1

α
(
pi f

(
Vn
))≤ ∞∑

j=n

1
r j

∞∑
i= j+1

∣∣pi∣∣α( f (V)
)
.

(2.12)
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Using the inequality

α
(
f (V)

)≤ kα(V), (2.13)

we obtain that

α
(
T(V)

)≤ kα(V)
∞∑
j=n

1
r j

∞∑
i= j+1

∣∣pi∣∣≤ kα(V). (2.14)

By Theorem 2.1 T has a fixed point, and by the definition of T the solution x = (xn)
satisfies the condition

∥∥∥∥∥xn− a
n−1∑
j=0

1
r j

+ b

∥∥∥∥∥= o(1). (2.15)

This completes the proof of the theorem. �

Because we can extend Theorem 2.1 as in [2, 8], so similar as Theorem 2.3 we can
prove the following theorem.

Theorem 2.4. Let f : X → X be the bounded and weakly-weakly continuous function.
Let

t =
∞∑
n=1

n−1∑
j=0

1
r j

∣∣pn∣∣ <∞,

∞∑
n=1

n−1∑
j=0

1
r j

∥∥hn∥∥ <∞,

(2.16)

and kt < 1.
Moreover

β
(
f (V)

)≤ kβ(V). (2.17)

Then for every a,b ∈ R there exists a solution (xn) of (1.3) which possesses the asymptotic
behaviour

∥∥∥∥∥xn− a
n−1∑
j=0

1
r j

+ b

∥∥∥∥∥= o(1). (2.18)

Remark 2.5. Observe that the class of continuous functions is different than the class of
weakly-weakly sequentially continuous functions and weakly-weakly continuous func-
tions.

There exist many important examples of mappings which are weakly sequentially con-
tinuous but not weakly continuous.

The relationship between strong weak and weak sequential continuity for mappings is
studied in [3].
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