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BILÂL ALTAY AND FEYZİ BAŞAR
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We determine the fine spectrum of the generalized difference operator B(r,s) defined by
a band matrix over the sequence spaces c0 and c, and derive a Mercerian theorem. This
generalizes our earlier work (2004) for the difference operator ∆, and includes as other
special cases the right shift and the Zweier matrices.

1. Preliminaries, background, and notation

Let X and Y be the Banach spaces and let T : X → Y also be a bounded linear operator.
By R(T), we denote the range of T , that is,

R(T)= {y ∈ Y : y = Tx, x ∈ X
}
. (1.1)

By B(X), we also denote the set of all bounded linear operators on X into itself. If X is
any Banach space and T ∈ B(X), then the adjoint T∗ of T is a bounded linear operator
on the dual X∗ of X defined by (T∗ f )(x)= f (Tx) for all f ∈ X∗ and x ∈ X .

Let X �= {θ} be a nontrivial complex normed space and T : �(T)→ X a linear operator
defined on a subspace �(T)⊆ X . We do not assume that D(T) is dense in X , or that T has
closed graph {(x,Tx) : x ∈ D(T)} ⊆ X ×X . We mean by the expression “T is invertible”
that there exists a bounded linear operator S : R(T)→ X for which ST = I on D(T) and
R(T)= X ; such that S= T−1 is necessarily uniquely determined, and linear; the bound-
edness of S means that T must be bounded below, in the sense that there is k > 0 for which
‖Tx‖ ≥ k‖x‖ for all x ∈D(T). Associated with each complex number, α is the perturbed
operator

Tα = T −αI , (1.2)

defined on the same domain D(T) as T . The spectrum σ(T ,X) consists of those α∈ C for
which Tα is not invertible, and the resolvent is the mapping from the complement σ(T ,X)
of the spectrum into the algebra of bounded linear operators on X defined by α �→ T−1

α .
The name resolvent is appropriate since T−1

α helps to solve the equation Tαx = y. Thus,
x = T−1

α y provided that T−1
α exists. More important, the investigation of properties of T−1

α
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will be basic for an understanding of the operator T itself. Naturally, many properties of
Tα and T−1

α depend on α, and the spectral theory is concerned with those properties. For
instance, we will be interested in the set of all α’s in the complex plane such that T−1

α

exists. Boundedness of T−1
α is another property that will be essential. We will also ask for

what α’s the domain of T−1
α is dense in X , to name just a few aspects. A regular value α of

T is a complex number such that T−1
α exists and is bounded and whose domain is dense

in X . For our investigation of T , Tα, and T−1
α , we need some basic concepts in the spectral

theory which are given as follows (see [8, pages 370–371]).
The resolvent set ρ(T ,X) of T is the set of all regular values α of T . Furthermore, the

spectrum σ(T ,X) is partitioned into the following three disjoint sets.
The point (discrete) spectrum σp(T ,X) is the set such that T−1

α does not exist. A α ∈
σp(T ,X) is called an eigenvalue of T .

The continuous spectrum σc(T ,X) is the set such that T−1
α exists and is unbounded and

the domain of T−1
α is dense in X .

The residual spectrum σr(T ,X) is the set such that T−1
α exists (and may be bounded or

not) but the domain of T−1
α is not dense in X .

To avoid trivial misunderstandings, let us say that some of the sets defined above may
be empty. This is an existence problem which we will have to discuss. Indeed, it is well-
known that σc(T ,X) = σr(T ,X) =∅ and the spectrum σ(T ,X) consists of only the set
σp(T ,X) in the finite-dimensional case.

From Goldberg [6, pages 58–71], if X is a Banach space and T ∈ B(X), then there are
three possibilities for R(T) and for T−1:

(I) R(T)= X ,
(II) R(T) �= R(T)= X ,

(III) R(T) �= X ,
and

(1) T−1 exists and is continuous,
(2) T−1 exists but is discontinuous,
(3) T−1 does not exist.

Applying Golberg’s classification to Tα, we have three possibilities for Tα and for T−1
α :

(I) Tα is surjective,
(II) R(Tα) �= R(Tα)= X ,

(III) R(Tα) �= X ,
and

(1) Tα is injective and T−1
α is continuous,

(2) Tα is injective and T−1
α is discontinuous,

(3) Tα is not injective.
If these possibilities are combined in all possible ways, nine different states are created.
These are labeled by I1, I2, I3, II1, II2, II3, III1, III2, and III3. If α is a complex number
such that Tα ∈ I1 or Tα ∈ II1, then α is in the resolvent set ρ(T ,X) of T . The further
classification gives rise to the fine spectrum of T . If an operator is in state II2 for example,
then R(T) �= R(T)= X and T−1 exists but is discontinuous and we write α∈ II2σ(T ,X).

By a sequence space, we understand a linear subspace of the spacew = CN of all complex
sequences which contain φ, the set of all finitely nonzero sequences, whereN={0,1,2, . . .}.
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We write �∞, c, c0, and bv for the spaces of all bounded, convergent, null, and bounded
variation sequences, respectively. Also by �p, we denote the space of all p-absolutely sum-
mable sequences, where 1≤ p <∞.

Let A= (ank) be an infinite matrix of complex numbers ank, where n,k ∈N, and write

(Ax)n =
∞∑
k=0

ankxk,
(
n∈N, x ∈D00(A)

)
, (1.3)

where D00(A) denotes the subspace of w consisting of x ∈w for which the sum exists as a
finite sum. More generally, if µ is a normed sequence space, we can write Dµ(A) for x ∈w
for which the sum in (1.3) converges in the norm of µ. We will write

(λ : µ)= {A : λ⊆Dµ(A)
}

(1.4)

for the space of those matrices which send the whole of the sequence space λ into µ in this
sense. Our main focus in this note is on the band matrix A= B(r,s), where

B(r,s)=




r 0 0 ···
s r 0 ···
0 s r ···
...

...
...

. . .


 (s �= 0). (1.5)

We begin by determining when a matrix A induces a bounded operator from c to c.

Lemma 1.1 (cf. [14, Theorem 1.3.6, page 6]). The matrix A = (ank) gives rise to a
bounded linear operator T ∈ B(c) from c to itself if and only if

(1) the rows of A in �1 and their �1 norms are bounded,
(2) the columns of A are in c,
(3) the sequence of row sums of A is in c.
The operator norm of T is the supremum of the �1 norms of the rows.

Corollary 1.2. B(r,s) : c→ c is a bounded linear operator and ‖B(r,s)‖(c:c) = |r|+ |s|.
Lemma 1.3 (cf. [14, Example 8.4.5A, page 129]). The matrix A = (ank) gives raise to a
bounded linear operator T ∈ B(c0) from c0 to itself if and only if

(1) the rows of A in �1 and their �1 norms are bounded,
(2) the columns of A are in c0.
The operator norm of T is the supremum of the �1 norms of the rows.

Corollary 1.4. B(r,s) : c0 → c0 is a bounded linear operator and ‖B(r,s)‖(c0:c0) = ‖B(r,
s)‖(c:c).

We summarize the knowledge in the existing literature concerned with the spectrum
of the linear operators defined by some particular limitation matrices over some sequence
spaces. Wenger [13] examined the fine spectrum of the integer power of the Cesàro oper-
ator in c and Rhoades [12] generalized this result to the weighted mean methods. The fine
spectrum of the Cesàro operator on the sequence space �p has been studied by González
[7], where 1 < p <∞. The spectrum of the Cesàro operator on the sequence spaces c0 and
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bv have also been investigated by Reade [11], Akhmedov and Başar [1], and Okutoyi [10],
respectively. The fine spectrum of the Rhaly operators on the sequence spaces c0 and c has
been examined by Yıldırım [15]. Furthermore, Coşkun [4] has studied the spectrum and
fine spectrum for p-Cesàro operator acting on the space c0. More recently, de Malafosse
[5] and Altay and Başar [2] have, respectively, studied the spectrum and the fine spec-
trum of the difference operator on the sequence spaces sr and c0, c; where sr denotes the
Banach space of all sequences x = (xk) normed by

‖x‖sr = sup
k∈N

∣∣xk∣∣
rk

(r > 0). (1.6)

In this work, our purpose is to determine the fine spectrum of the generalized differ-
ence operator B(r,s) on the sequence spaces c0 and c, and to give a Mercerian theorem.
The main results of the present work are more general than those of Altay and Başar [2].

2. The spectrum of the operator B(r,s) on the sequence spaces c0 and c

In this section, we examine the spectrum, the point spectrum, the continuous spectrum,
the residual spectrum, and the fine spectrum of the operator B(r,s) on the sequence
spaces c0 and c. Finally, we also give a Mercerian theorem.

Theorem 2.1. σ(B(r,s),c0)= {α∈ C : |α− r| ≤ |s|}.
Proof. Firstly, we prove that (B(r,s)− αI)−1 exists and is in (c0 : c0) for |α− r| > |s|, and
secondly the operator B(r,s)−αI is not invertible for |α− r| ≤ |s|.

Let α �∈ σ(B(r,s),c0). Since B(r,s)− αI is triangle, (B(r,s)− αI)−1 exists and solving
(B(r,s)−αI)x = y for x in terms of y gives the matrix (B(r,s)−αI)−1. The nth row turns
out to be

(−s)n−k
(r−α)n−k+1

(2.1)

in the kth place for k ≤ n and zero otherwise. Thus, we observe that

∥∥(B(r,s)−αI
)−1∥∥

(c0:c0) = sup
n∈N

n∑
k=0

∣∣∣∣ (−s)n−k
(r−α)n−k+1

∣∣∣∣=
∣∣∣∣ 1
r−α

∣∣∣∣sup
n∈N

n∑
k=0

∣∣∣∣ s

r−α

∣∣∣∣
k

<∞,

(2.2)

that is, (B(r,s)−αI)−1 ∈ (c0 : c0).
Let α∈ σ(B(r,s),c0) and α �= r. Since B(r,s)−αI is triangle, (B(r,s)−αI)−1 exists but

one can see by (2.2) that

∥∥(B(r,s)−αI
)−1∥∥

(c0:c0) =∞ (2.3)

whenever α∈ σ(B(r,s),c0), that is, (B(r,s)−αI)−1 is not in B(c0).
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If α= r, then the operator B(r,s)−αI = B(0,s) is represented by the matrix

B(0,s)=




0 0 0 ···
s 0 0 ···
0 s 0 ···
...

...
...

. . .


 . (2.4)

Since R(B(0,s)) �= c0, B(0,s) is not invertible. This completes the proof. �

Theorem 2.2. σp(B(r,s),c0)=∅.

Proof. Suppose that B(r,s)x = αx for x �= θ = (0,0,0, . . .) in c0. Then, by solving the system
of linear equations

rx0 = αx0,

sx0 + rx1 = αx1,

sx1 + rx2 = αx2,

...

sxk + rxk+1 = αxk+1,

...

(2.5)

we find that if xn0 is the first nonzero entry of the sequence x = (xn), then α= r and

xn0+k = 0 (2.6)

for all k ∈N. This contradicts the fact that xn0 �= 0, which completes the proof. �

If T : c0 → c0 is a bounded linear operator with the matrix A, then it is known that the
adjoint operator T∗ : c∗0 → c∗0 is defined by the transpose At of the matrix A. It should be
noted that the dual space c∗0 of c0 is isometrically isomorphic to the Banach space �1 of
absolutely summable sequences normed by ‖x‖ =∑∞

k=0 |xk|.
Theorem 2.3. σp(B(r,s)∗,c∗0 )= {α∈ C : |α− r| < |s|}.
Proof. Suppose that B(r,s)∗x = αx for x �= θ in c∗0 ∼= �1. Then, by solving the system of
linear equations

rx0 + sx1 = αx0,

rx1 + sx2 = αx1,

rx2 + sx3 = αx2,

...

rxk + sxk+1 = αxk,

...

(2.7)
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we observe that

xn =
(
α− r

s

)n
x0. (2.8)

This shows that x ∈ �1 if and only if |α− r| < |s|, as asserted. �

Now, we may give the following lemma required in the proof of theorems given in the
present section.

Lemma 2.4 [6, page 59]. T has a dense range if and only if T∗ is one to one.

Theorem 2.5. σr(B(r,s),c0)= {α∈ C : |α− r| < |s|}.
Proof. We show that the operator B(r,s)−αI has an inverse and R(B(r,s)−αI) �= c0 for α
satisfying |α− r| < |s|. For α �= r, the operator B(r,s)−αI is triangle, hence has an inverse.
For α= r, the operator B(r,s)−αI is one to one, hence has an inverse. But B(r,s)∗ −αI is
not one to one by Theorem 2.3. Now, Lemma 2.4 yields the fact that R(B(r,s)−αI) �= c0

and this step concludes the proof. �

Theorem 2.6. If α= r, then α∈ III1σ(B(r,s),c0).

Proof. Since the operator B(r,s) − αI = B(0,s) for α = r, B(0,s) ∈ III1 or ∈ III2 by
Theorem 2.5. To verify the fact that B(0,s) has a bounded inverse, it is enough to show
that B(0,s) is bounded below. Indeed, one can easily see for all x ∈ c0 that

∥∥B(0,s)x
∥∥≥ |s|

2
‖x‖, (2.9)

which means that B(0,s) is bounded below. This completes the proof. �

Theorem 2.7. If α �= r and α∈ σr(B(r,s),c0), then α∈ III2σ(B(r,s),c0).

Proof. By Theorem 2.5, B(r,s)− αI ∈ III1 or ∈ III2. Hence, by (2.2), the inverse of the
operator B(r,s)−αI is discontinuous. Therefore, B(r,s)−αI has an unbounded inverse.

�

Theorem 2.8. σc(B(r,s),c0)= {α∈ C : |α− r| = |s|}.
Proof. For this, we prove that the operator B(r,s)−αI has an inverse and

R
(
B(r,s)−αI

)= c0, (2.10)

if α ∈ σc(B(r,s),c0). Since α �= r, B(r,s)− αI is triangle and has an inverse. Therefore,
B(r,s)∗ − αI is one to one by Theorem 2.3 and (2.10) holds from Lemma 2.4. This is
what we wished to prove. �

Theorem 2.9. If α∈ σc(B(r,s),c0), then α∈ II2σ(B(r,s),c0).

Proof. By (2.2), the inverse of the operator B(r,s)− αI is discontinuous. Therefore, B(r,
s)−αI has an unbounded inverse.

By Theorem 2.3, B(r,s)∗ − αI is one to one. By Lemma 2.4, B(r,s)− αI has dense
range.
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To verify that the operator B(r,s)−αI is not surjective, it is sufficient to show that there
is no sequence x = (xn) in c0 such that (B(r,s)−αI)x = y for some y ∈ c0. Let us consider
the sequence y = (1,0,0, . . .)∈ c0. For this sequence, we obtain xn = {s/(α− r)}n/(r −α).
This yields that x /∈ c0, that is, B(r,s)−αI is not onto. This completes the proof. �

Theorem 2.10. σ(B(r,s),c)= {α∈ C : |α− r| ≤ |s|}.
Proof. This is obtained in the similar way that is used in the proof of Theorem 2.1. �

Theorem 2.11. σp(B(r,s),c)=∅.

Proof. The proof may be obtained by proceeding as in proving Theorem 2.2. So, we omit
the details. �

If T : c→ c is a bounded matrix operator with the matrix A, then T∗ : c∗ → c∗ acting
on C⊕ �1 has a matrix representation of the form

[
χ 0
b At

]
, (2.11)

where χ is the limit of the sequence of row sums of A minus the sum of the limit of the
columns of A, and b is the column vector whose kth entry is the limit of the kth column
of A for each k ∈N. For B(r,s) : c→ c, the matrix B(r,s)∗ ∈ B(�1) is of the form

B(r,s)∗ =
[
r + s 0

0 B(r,s)t

]
. (2.12)

Theorem 2.12. σp(B(r,s)∗,c∗)= {α∈ C : |α− r| < |s|}∪{r + s}.
Proof. Suppose that B(r,s)∗x = αx for x �= θ in �1. Then by solving the system of linear
equations

(r + s)x0 = αx0,

rx1 + sx2 = αx1,

rx2 + sx3 = αx2,

...

rxk + sxk+1 = αxk,

...

(2.13)

we obtain that

xn =
(
α− r

s

)n−1

x1 (n≥ 2). (2.14)

If x0 �= 0, then α= r + s. So, α= r + s is an eigenvalue with the corresponding eigenvector
x = (x0,0,0, . . .). If α �= r + s, then x0 = 0 and one can see by (2.14) that x ∈ �1 if and only
if |α− r| < |s|. �
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Theorem 2.13. σr(B(r,s),c)= σp(B(r,s)∗,c∗).

Proof. The proof is obtained by the analogy with the proof of Theorem 2.5. �

Theorem 2.14. σc(B(r,s),c)= {α∈ C : |α− r| = |s|} \ {r + s}.
Proof. This is similar to the proof of Theorem 2.8 with α �= r + s such that |α− r| = |s|.

�

Since the fine spectrum of the operator B(r,s) on c can be derived by analogy to that
space c0, we omit the detail and give it without proof. Therefore, we have

B(r,s)−αI ∈ I1, α �∈ σ
(
B(r,s),c

)
,

α∈ III1σ
(
B(r,s),c

)
, α= r,

α∈ II2σ
(
B(r,s),c

)
, α∈ σc

(
B(r,s),c

)
,

α∈ III2σ
(
B(r,s),c

)
, α∈ σr

(
B(r,s),c

) \ {r}.
(2.15)

Theorem 2.15. σ(B(r,s),�∞)= {α∈ C : |α− r| ≤ |s|}.
Proof. It is known by Cartlidge [3] that if a matrix operator A is bounded on c, then
σ(A,c)= σ(A,�∞). Now, the proof is immediate from Theorem 2.10 with A= B(r,s). �

Subsequent to stating the concept of Mercerian theorem, we conclude this section by
giving a Mercerian theorem. Let A be an infinite matrix and the set cA denotes the con-
vergence field of that matrix A. A theorem which proves that cA = c is called a Mercerian
theorem, after Mercer, who proved a significant theorem of this type [9, page 186]. Now,
we may give our final theorem.

Theorem 2.16. Suppose that α satisfies the inequality |α(1− r) + r| > |s(1−α)|. Then the
convergence field of A= αI + (1−α)B(r,s) is c.

Proof. If α= 1, there is nothing to prove. Let us suppose that α �= 1. Then, one can observe
by Theorem 2.10 and the choice of α that B(r,s)− [α/(α− 1)]I has an inverse in B(c).
That is to say, that

A−1 = 1
1−α

(
B(r,s)− α

α− 1
I
)−1

∈ B(c). (2.16)

Since A is a triangle and is in B(c), A−1 is also conservative which implies that cA = c; see
[14, page 12]. �
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