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We answer the following question: given any n ∈ N, which is the minimum number of
endpoints en of a tree admitting a zero-entropy map f with a periodic orbit of period n?

We prove that en = s1s2 ···sk −
∑k

i=2 sisi+1 ···sk, where n = s1s2 ···sk is the decomposi-
tion of n into a product of primes such that si ≤ si+1 for 1 ≤ i < k. As a corollary, we get
a criterion to decide whether a map f defined on a tree with e endpoints has positive
entropy: if f has a periodic orbit of period m with em > e, then the topological entropy of
f is positive.

1. Introduction

In the last decades, many authors have studied the dynamical behaviour of continuous
self-maps of one-dimensional spaces. There are also some books where most of the results
are collected in (see, e.g., [3, 7]). In particular, the study of the set of periods of continuous
maps f : X → X , where X is a tree (a graph without circles), has been one of the problems
that have centered the attention. The first and most famous result in this direction is
Šarkovs’kiı̆’s theorem [13], which gives a complete characterization of the set of periods
of f when X is a closed interval of the real line. Baldwin [5] extended this result to the
case of an n-star (a tree consisting of n edges attached to a unique central point). Recently,
Alsedà, Juher, and Mumbrú [2] have developed a characterization of the set of periods of
f when X is any generic tree, in terms of the topological structure of X (number and
arrangement of vertices, edges, and endpoints of X).

One way to study the dynamical complexity of a continuous map f : X → X of a com-
pact metric space is computing its topological entropy, a nonnegative constant which
measures how the iterates of the map mix the points of X (see [1]). It is known that an
interval or line map with positive topological entropy is chaotic in the sense of Li and
Yorke (see [11]). If X is a general compact metric space, the same result has been recently
obtained in [6]. It is also well known that the topological entropy of f is closely related
with the sizes of the periodic orbits exhibited by f . Some results give upper or lower
bounds of the set of periods of f depending on whether f has a positive entropy or not.
Of course, these bounds depend strongly on the particular space X under consideration.
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When X is an interval, a map f : X → X has a positive entropy if and only if it has a
periodic orbit of period different from a power of 2 (several authors have contributed to
prove this result, see [3] for a historical survey). The zero-entropy self-maps of a generic
treeX have been characterized by Alsedà and Ye [4] by using the notion of division of a pe-
riodic orbit (see Section 3 for a definition), which is an important tool in the proof of the
main result of this paper. The same authors give a maximal set of periods for zero-entropy
maps in terms of the number of endpoints of X . Blokh, in [8], proves the following result
in the same spirit.

Theorem 1.1 (Blokh). Let X be a tree and let f : X → X be continuous. The topological
entropy of f is zero if and only if the period of each periodic orbit of f has the form k · 2l,
where k is odd and not larger than the number of edges of X and all the prime divisors of k
are not larger than the number of endpoints of X .

Llibre and Misiurewicz, in [12], study the properties of the topological entropy of con-
tinuous self-maps of graphs and its relationship with the set of periods. They introduce
the notions of “god of a number” and “pantheon of a set of natural numbers”. For k ∈N,
god(k) denotes the greatest odd divisor of k. In other words, if k = n · 2l with n odd and
l ≥ 0, then god(k) = n. For S ⊂ N, the set {god(k) : k ∈ S} is called the pantheon of S.
Also, for k ∈N, the following number is defined:

Γ(k)=
∏

3≤p≤4k
pprime

[
log(2k)

log(p/2)

]
+ 1, (1.1)

where [·] denotes the integer part. Llibre and Misiurewicz show that if f is defined on
a graph with s edges and the pantheon of the set of periods of f has more than sΓ(s)
elements, then the entropy of f is positive. As the authors remark, the estimate sΓ(s) is
not the best possible one and they have not tried to optimize it. In the case of the interval
and the circle, it is known that the best estimate of the minimum number of gods which
forces positive entropy is two. But for a generic graph, the problem of determining this
minimum remains open.

In this paper we restrict our attention to continuous maps defined on trees. Even in
this case, there are still open questions related to the pantheon of the set of periods of
a zero-entropy map. The most ambitious problem would be to determine, in terms of
the topology of the tree, the maximum number of elements of the pantheon of the set of
periods that a zero-entropy map can have. Clearly, this maximum has to be smaller than
sΓ(s), where s is the number of edges of the tree. Theorem 1.1 gives also an upper bound,
much better than sΓ(s) in general. One can easily construct simple examples showing that
the exact computation of this maximum seems rather difficult and depends not only on
the number of endpoints, vertices, and edges of the tree but also on the way they are
organized.

There are also many other partial questions and results about the relationship between
the geometry of the tree on which a map f is defined, the arithmetics of its set of periods,
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and its topological entropy. One of them deals with the problem of determining the peri-
ods forced by the existence of a given periodic orbit. For instance, in [9], it is proved that
if the tree has e endpoints and f has an orbit of period larger than e, then f has also an
orbit of period m for some 1 <m≤ e. See also [10] for similar results.

We are interested in zero-entropy maps defined on trees. Given any n ∈ N, we de-
termine the minimum i such that there is a tree T with i endpoints and a zero-entropy
map f : T → T having a periodic orbit of period n. From now on, this minimum will be
denoted by en. The main result of this paper is the following.

Theorem 1.2. Let n ∈ N with n ≥ 2. Let n = s1s2 ···sk be the decomposition of n into a
product of primes such that si ≤ si+1 for 1≤ i < k. Then,

en = s1s2 ···sk −
k∑
i=2

sisi+1 ···sk. (1.2)

Using the formula given by Theorem 1.2 and a simple inductive argument, it is not
difficult to check that en ≥ 2 for each n ≥ 2. Moreover, en = 2 if and only if s1 = s2 =
··· = sk = 2.

As a consequence of Theorem 1.2, we obtain the following sufficient condition to de-
cide whether a continuous self-map f defined on a tree T has positive entropy.

Corollary 1.3. Let f : T → T be a tree map with a periodic orbit of period n. Let e be the
number of endpoints of T and let n= s1s2 ···sk be the decomposition of n into a product of
primes such that si ≤ si+1 for 1≤ i < k. If

e < s1s2 ···sk −
k∑
i=2

sisi+1 ···sk, (1.3)

then the topological entropy of f is positive.

For instance, assume that T has 9 endpoints and f is known to have an orbit of period
n= 15. Since e15 = 3 · 5− 5= 10, it follows that the map f has positive entropy. It is worth
observing that this fact cannot be directly obtained from Theorem 1.1. Indeed, T has at
most 15 edges (it is well known that any tree with e endpoints has at most 2e− 3 edges)
and, thus, 15 is an admissible period for a zero-entropy map according to Theorem 1.1
since it is odd and is not larger than the number of edges of T and all its prime divisors
are not larger than the number of endpoints of T .

We also remark that Theorem 1.2, in the same way as the results of Blokh, Llibre, and
Misiurewicz, states that the positive entropy of a map f is due to the gods of its periods
rather than to the periods themselves. To see it, take n ∈ N and set n′ = n · 2l for some
l ≥ 0. Let n = s1s2 ···sk and n′ = r1r2 ···rm be the decompositions of n and n′ into a
product of primes such that si ≤ si+1 and ri ≤ ri+1. It is easy to check that

s1s2 ···sk −
k∑
i=2

sisi+1 ···sk = r1r2 ···rm−
m∑
i=2

riri+1 ···rm. (1.4)
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Thus, in view of Theorem 1.2, en = en′ . This implies that, for each n∈N, en = egod(n). In
other words, egod(n) endpoints are enough to assure that a zero-entropy map can be de-
fined exhibiting a periodic orbit of period n.

2. Notation and basic definitions

Given any subset X of a topological space, we will denote by Int(X) and Cl(X) the interior
and the closure of X , respectively. For a finite set A, we will denote its cardinality by |A|.

By an interval, we mean any space homeomorphic to [0,1] ⊂ R. A tree is a uniquely
arcwise connected space that is either a point or a union of finitely many intervals. Any
continuous map from a tree into itself will be called a tree map. The set of periods of all
periodic orbits of a tree map f will be called the set of periods of f and will be denoted by
Per( f ).

If T is a tree and x ∈ T , we define the valence of x to be the number of connected
components of T \ {x}. The valence of x will be denoted by valT(x) or simply by val(x).
Each point of valence 1 will be called an endpoint of T and the set of such points will be
denoted by En(T). A point of valence different from 2 will be called a vertex of T , and the
set of vertices of T will be denoted by V(T). The closure of each connected component of
T \V(T) will be called an edge of T . The number of endpoints and the number of edges
of T will be denoted, respectively, by en(T) and ed(T).

Any tree which is a union of r intervals, with r > 1, whose intersection is a unique
point x of valence r, will be called an r-star, and x will be called its central point.

Given a treeT and P ⊂ T , we will define the convex hull of P, denoted by 〈P〉T or simply
by 〈P〉, as the smallest closed connected subset of T containing P. When P = {x, y}, we
will write 〈x, y〉 or [x, y] to denote 〈P〉. The notations (x, y), (x, y], and [x, y) will be
understood in the natural way.

The notion of topological entropy, introduced in [1], is defined for continuous maps
on compact metric spaces and is a quantitative measure of the dynamical complexity of
the map. It is an important topological invariant. The topological entropy of a map f will
be denoted by h( f ).

3. Proof of Theorem 1.2

This section is devoted to prove Theorem 1.2 and, thus, to calculate the constant en for
any n∈N. We recall that this constant has been defined in Section 1 as en =mini∈N

{
there

is a tree map f : T −→ T with en(T)= i, h( f )= 0, n∈ Per( f )
}

.
In order to calculate en, we will use the characterization of the zero-entropy tree maps

given in [4]. Next we introduce the necessary notions. Let f : T → T be a tree map and
let P be a periodic orbit of f . The map fP : 〈P〉 → 〈P〉 defined by fP = r ◦ f , where
r : T → 〈P〉 is the natural retraction, will be called the natural restriction of f to 〈P〉. Let
y be a fixed point of fP . We will denote by ZP,y the connected component of 〈P〉 \ P
containing y, and by Z

P,y
1 ,Z

P,y
2 , . . . ,Z

P,y
l the connected components of 〈P〉 \ZP,y .

Let P be a periodic orbit of a tree map f : T → T . We say that P has a division if for
a fixed point y of fP , there exist {M1,M2, . . . ,Mm} with m ≥ 2, a partition of 〈P〉 \ZP,y

such that each Mi consists of a union of some of the sets Z
P,y
j , f (Mi ∩ P) =Mi+1 ∩ P
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for 1≤ i < m, and f (Mm∩P)=M1∩P. The sets Mi will be called the branches of P. Ob-
serve that each branch contains |P|/m points of P.

Remark 3.1. In the notation used in the definition of division, it is not difficult to check
that

(i) 〈Mi〉∩Mj =∅ whenever i �= j. Hence, Mi∩P = 〈Mi〉∩P;
(ii) En(〈Mi〉)∩En(〈P〉) �= ∅;

(iii) there is at most one endpoint of 〈Mi〉 which is not an endpoint of 〈P〉. Thus,∑m
i=1 en(〈Mi〉)−m≤ en(〈P〉)≤∑m

i=1 en(〈Mi〉);
(iv) if |P∩Mi| = 1, then Mi reduces to the only point of P∩Mi. Thus, if each branch

contains one point of P, then
∑m

i=1 en(〈Mi〉)= en(〈P〉)= |P|.
The following result, which is [4, Corollary C], characterizes the zero-entropy tree

maps in terms of their orbits.

Theorem 3.2. Let f : T → T be a tree map. The following statements are equivalent.
(1) h( f )= 0.
(2) For every n∈N, each periodic orbit of f n of a period larger than 1 has a division.
(3) Per( f )⊂ {k · 2l : k ≤ en(T)! odd, and l ∈N∪{0}}.
Theorems 3.2 and 1.1 will be the main tools to calculate the number en in general.

However, it is easy to give simple expressions of en in some particular cases.

Lemma 3.3. Let n∈N.
(1) If n= 1, then en = 1.
(2) If n= 2k for some k ≥ 1, then en = 2.
(3) If n is prime, then en = n.

Proof. Statement (1) is obvious. Statement (2) follows from the fact that, given any k ∈
N, one can define a zero-entropy interval map exhibiting a periodic orbit of period 2k.
Indeed, by Šarkovs’kiı̆’s theorem [13], there exists an interval map f such that Per( f )=
{1,2,22, . . . ,2k}. By Theorem 1.1, the topological entropy of f is zero.

Now let us prove (3). Let T be a tree with en(T) = en and let f : T → T be a zero-
entropy map having a periodic orbit P of period n. Without loss of generality, we can
assume that En(T) ⊂ P. Indeed, otherwise the natural restriction of f on 〈P〉 would be
a zero-entropy map having P as a periodic orbit and en(〈P〉) ≤ en(T). Therefore, from
now on, we assume that 〈P〉 = T . By Theorem 3.2(2), P has a division. Let m≥ 2 be the
number of branches of P and let k be the number of points of P in each branch. Since
n = k ·m and n is prime, it follows that m = n and k = 1. By Remark 3.1(iv), each Mi

reduces to the only point of P∩Mi and en = en(〈P〉)=∑m
i=1 en(〈Mi〉)=m= n. �

Let us introduce a few more notions. Let Σ be the set of finite sequences (s1,s2, . . . ,sk)
such that si ∈N and si ≥ 2 for 1≤ i≤ k. Let f : T → T be a zero-entropy tree map and let
P be a periodic orbit of f . By Theorem 3.2(2), P has a division. Next we will associate an
element of Σ to the orbit P. This element will be denoted by sP . Let t1 ≥ 2 be the number
of branches of P and let M be a branch of P. Observe that P∩M is a periodic orbit of
f t1 of period |P|/t1. If |P|/t1 > 1, then P ∩M has a division by Theorem 3.2(2). Thus,
we can repeat the previous argument with P∩M instead of P and denote the number of
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branches of P∩M by t2 ≥ 2. By iterating as far as possible, after a finite number of steps,
we get a sequence (tk, tk−1, . . . , t2, t1) ∈ Σ, which we denote by sP . We note that, since the
number of branches of a periodic orbit with a division is not uniquely determined, there
is not a unique way of performing each step in the construction of sP . Thus, sP is not
uniquely determined. From now on, when we write sP = r for a certain r ∈ Σ, we mean
that there is a way of doing the above construction which yields r.

For each s ∈ Σ, let us define inductively a tree which will be called an s-star. For s =
(s1), an s-star is simply an s1-star. Let s = (s1,s2, . . . ,sk) with k > 1. Consider an sk-star S
and sk-many copies T1,T2, . . . ,Tsk of an (s1,s2, . . . ,sk−1)-star. That is, for 1 ≤ i ≤ k, there
exists a homeomorphism hi : Ti→ T1. Let x1,x2, . . . ,xsk be the endpoints of S. Choose an
endpoint w of T1. An s-star is the tree obtained when one glues together S,T1,T2, . . . ,Tsk

by identifying xi with hi(w), for each 1≤ i≤ sk.
Observe that, since there are several choices for the endpoint w in the construction

above, for a given s∈ Σ, there can be several nonhomeomorphic s-stars.

Remark 3.4. Let s = (s1,s2, . . . ,sk) ∈ Σ. If k = 1, then the number of endpoints of an s-
star is s1. When k ≥ 2, the number of endpoints of any s-star is sk(p− 1), where p is the
number of endpoints of any (s1,s2, . . . ,sk−1)-star. An inductive argument easily yields that
the number of endpoints of any s-star is

s1s2 ···sk −
k∑
i=2

sisi+1 ···sk. (3.1)

Let s ∈ Σ. A tree T will be called s-admissible if there exists a zero-entropy tree map
f : T → T exhibiting a periodic orbit P such that sP = s.

Lemma 3.5. For each s∈ Σ, an s-star is an s-admissible tree.

Proof. We will prove the following claim: there exists a zero-entropy s-star map exhibiting
a periodic orbit P such that sP = s and the endpoints of the s-star belong to P. Write
s = (s1,s2, . . . ,sk). Let us prove the claim by induction on k. For k = 1, the claim follows
by considering a rigid rotation of an s1-star T and the orbit composed by the endpoints
of T .

Now let k ≥ 2 and assume that the claim holds for i instead of k, for each 1 ≤ i < k.
Let R be an s-star. By definition, there exists a subtree S⊂ R such that S is an sk-star and
R \ S consists of sk-many disjoint connected components whose closures T1,T2, . . . ,Tsk

are pairwise homeomorphic (s1,s2, . . . ,sk−1)-stars. Let xi be the only endpoint of S which
belongs to Ti. For 1 ≤ i < sk, let φi : Ti→ Ti+1 be a homeomorphism such that φi(xi) =
xi+1 and let φsk : Tsk → T1 be a homeomorphism such that φsk (xsk ) = x1. In addition, we
choose the homeomorphisms in such a way that φsk ◦φsk−1 ◦ ··· ◦φ1 is the identity map
on T1. By the induction hypothesis, there exists a zero-entropy tree map g : T1 → T1 with
a periodic orbit Q such that Q ⊃ En(T1) and sQ = (s1,s2, . . . ,sk−1). Now consider the map
f : R→ R defined as follows:

(i) for each 1≤ i < sk and each x ∈ Ti, set f (x)= φi(x);
(ii) for each x ∈ Tsk , set f (x)= g(φsk (x));
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(iii) denote by y the central point of S. Set f (y)= y. For each 1≤ i≤ sk, define f to
map [y,xi] monotonically onto [y, f (xi)].

It is not difficult to check that f is well defined and continuous, f sk |T1 = g, and for each
n-periodic orbit X of g,

⋃sk
i=0 f

i(X) is an skn-periodic orbit of f . Conversely, the period
of each periodic orbit X of f (excluding the fixed point y) has the form skn for some
n ∈N, and the restriction of X to T1 is an n-periodic orbit of g. Summarizing, there is
a bijection between the set of n-periodic orbits of g and the set of skn-periodic orbits of
f . It easily follows that h( f )= h(g)/sk and therefore h( f )= 0. Set P =⋃sk

i=0 f
i(Q). Then

En(R) ⊂ P and it is not difficult to see that sP = (s1,s2, . . . ,sk), since sQ = (s1,s2, . . . ,sk−1).
This completes the induction step and proves the lemma. �

Lemma 3.6. For each s∈ Σ, an s-star has the minimum number of endpoints among the set
of s-admissible trees.

Proof. Set s = (s1,s2, . . . ,sk) and let T be an s-admissible tree. That is, there exists a pe-
riodic orbit P of a zero-entropy map f : T → T such that sP = s. It is enough to prove
that en(T) is not smaller than the number of endpoints of an s-star. To prove this claim,
we proceed by induction on k. For k = 1, we have s = (s1) and we must see that T has
at least s1 endpoints. Since sP = (s1), P has s1 branches and each branch contains exactly
one point of P. By Remark 3.1(iv), each branch Mi reduces to the only point of P∩Mi

and |P| = s1 = en(〈P〉). Since en(〈P〉)≤ en(T), the claim holds for k = 1.
Now let k ≥ 2 and assume that the claim holds for i instead of k for each 1≤ i < k. Since

sP = (s1,s2, . . . ,sk), P has sk branches. Choose a branch M of P with the least number of
endpoints. By Remark 3.1(iii), we have that

en
(〈P〉)≥ sk en

(〈M〉)− sk = sk
(

en
(〈M〉)− 1

)
. (3.2)

By definition of division, M∩P is a periodic orbit of f sk of period |P|/sk. Moreover,
sM∩P = (s1,s2, . . . ,sk−1) since sP = s. Let g be the natural restriction of f sk to 〈M〉. By
standard results (see, e.g., [3, Lemma 4.3.1(a)]), h(g)≤ h( f sk )= skh( f )= 0. Summariz-
ing, g : 〈M〉 → 〈M〉 is a zero-entropy tree map with a periodic orbit M ∩ P such that
sM∩P = (s1,s2, . . . ,sk−1). Let p be the number of endpoints of any (s1,s2, . . . ,sk−1)-star. By
the induction hypothesis, en(〈M〉) is not smaller than p. Since en(T) ≥ en(〈P〉), from
(3.2) it follows that en(T)≥ sk(p− 1), which, by Remark 3.4, equals the number of end-
points of an s-star. �

Lemma 3.7. Let s = (s1,s2, . . . ,sk) ∈ Σ with k ≥ 2 and assume that sp > sp+1 for some p ∈
{1,2, . . . ,k− 1}. Let s′ = (s1,s2, . . . ,sp−1,sp+1,sp,sp+2,sp+3, . . . ,sk). Then the number of end-
points of an s′-star is smaller than the number of endpoints of an s-star.

Proof. Observe that, for eachN ∈N, ((N − 1)sp+1− 1)sp < ((N − 1)sp− 1)sp+1. The state-
ment follows easily from this fact, Remark 3.4, and a simple inductive argument. �

Lemma 3.8. Let s= (s1,s2, . . . ,sk)∈ Σ and assume that sp =m · n, with n,m≥ 2, for some
p ∈ {1,2, . . . ,k}. Let s′ = (s1,s2, . . . ,sp−1,m,n,sp+1,sp+2, . . . ,sk). Then the number of end-
points of an s′-star is smaller than the number of endpoints of an s-star.
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Proof. Observe that, for each N ∈N, ((N − 1)m− 1)n < (N − 1)sp. The statement follows
easily from this fact, Remark 3.4, and a simple inductive argument. �

Finally, we are ready to prove Theorem 1.2.

Proof of Theorem 1.2. Let us call any r= (r1,r2, . . . ,rl)∈ Σ with n= r1r2 ···rl a decompo-
sition of n. In particular, s= (s1,s2, . . . ,sk) is a decomposition of n. By Lemma 3.6, for each
decomposition r of n, an r-star has the minimum number of endpoints among the set of
r-admissible trees. Therefore,

en =min
{

en(T) : T is an r-star for a decomposition r of n
}
. (3.3)

Observe that there are only finitely many decompositions of n. Using iteratively Lemmas
3.7 and 3.8 finitely many times, one gets that the minimum in the right-hand side of (3.3)
is reached when r= s. Thus, en is the number of endpoints of an s-star and the theorem
follows from (3.1). �
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