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Existence of reaction-diffusion-convection waves in unbounded strips is proved in the
case of small Rayleigh numbers. In the bistable case the wave is unique, in the monos-
table case they exist for all speeds greater than the minimal one. The proof uses the im-
plicit function theorem. Its application is based on the Fredholm property, index, and
solvability conditions for elliptic problems in unbounded domains.

1. Introduction

Propagation of reaction-diffusion waves, if it occurs in a liquid or in a gaseous medium,
can be accompanied by natural convection. Convection can influence the speed and the
stability of the front, or can result in its extinction. Influence of natural convection on
propagating polymerization fronts is studied in detail experimentally [1, 2, 3, 4, 9] and
theoretically [7, 8] (see also [6, 10, 17]) with the use of formal asymptotic expansions. In
particular, it is shown how convection changes the onset of thermal instability. Condi-
tions of convective instability of thermal fronts are determined.

Probably the first mathematical work devoted to reaction-diffusion fronts with con-
vection is [19] where it is shown that in some cases the corresponding eigenvalue problem
can be reduced to a monotone system and, consequently, a minimax representation for
the principal eigenvalue can be obtained [14, 16, 20]. This allows one to obtain conditions
of convective instability of reaction-diffusion fronts.

Bifurcations of convective fronts and their stability are studied in [12, 13]. These re-
sults concern the upward propagating exothermic fronts in a gaseous medium. The main
result can be formulated in a physically clear way: if the Rayleigh number R is suffi-
ciently large, then the reaction-diffusion wave loses its stability, and a reaction-diffusion-
convection wave appears. This result is consistent with the experimental observations and
with the results of the formal asymptotic analysis, though both of them concern a liquid
and not a gaseous medium.
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There is a principal difference between vertically propagating fronts and fronts propa-
gating in any other direction. In the first case, if the Rayleigh number is sufficiently small,
then there is no convection. If it is sufficiently large, a convective reaction-diffusion front
appears as a result of a bifurcation. This means that the reaction-diffusion front without
convection is still a solution of the problem with convection but it is unstable.

If the front is not vertical but propagates in another direction, then the solution with-
out convection exists only for R= 0. For any R �= 0, a pure reaction-diffusion front can-
not exist. Therefore the natural question is as follows: suppose that for R = 0 there is
a reaction-diffusion front. Is there a reaction-diffusion-convection front for R �= 0 and
sufficiently small?

An answer to this question could be given by the implicit function theorem. However
it is not directly applicable to travelling waves because the linearized problem has a zero
eigenvalue. This is also the reason why solutions invariant with respect to translation
are not generically structurally stable. A small perturbation of the system can result in
disappearance of solutions.

In this work, we show how to apply the implicit function theorem to such problems. It
will allow us in particular to prove existence of reaction-diffusion waves with convection.
This construction is based on the theory of elliptic problems in unbounded domains:
Fredholm property, index, solvability conditions.

We consider the reaction-diffusion equation or system coupled with the Navier-Stokes
equations under the Boussinesq approximation in the stream function - vorticity formu-
lation:

u
∂θ

∂x
+ v

∂θ

∂y
= a∆θ + c

∂θ

∂x
+F(θ), (1.1)

u
∂ω

∂x
+ v

∂ω

∂y
= P∆ω+ c

∂ω

∂x
−R∂θ

∂x
, (1.2)

∆ψ +ω = 0. (1.3)

Here the components of the vector θ correspond to the temperature and to the concen-
trations, ψ is the stream function, ω the vorticity, u= ∂ψ/∂y is the horizontal component
of the velocity, v =−∂ψ/∂x is its vertical component, x is the coordinate along the axis of
the 2D strip, y is the orthogonal variable, P and R are positive parameters. The gravity
acts along the y-direction.

We consider the no-flux boundary conditions for the temperature and free-surface
boundary conditions for the velocity:

y = 0, H :
∂θ

∂y
= 0, ω = 0, ψ = 0. (1.4)

If R = 0, then (1.2), (1.3) become independent of (1.1). Their solution is ψ = ω = 0.
Therefore, u= v = 0, and (1.1) is a usual reaction-diffusion equation describing travelling
wave solutions. We assume that F(0)= F(1)= 0. If the nonlinearity F is bistable, that is,
F′(0) < 0, F′(1) < 0, then, as it is well known, the solution of the problem

θ′′ + cθ′ +F(θ)= 0, θ(−∞)= 1, θ(+∞)= 0, (1.5)
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if it exists, is unique up to translation in space. In the monostable case, where F′(0) > 0,
F′(1) < 0, the waves are not unique and exist for a half-closed bounded or unbounded
interval of wave speeds.

The main result of this work concerns the existence of reaction-diffusion-convection
waves for small R.

Theorem 1.1. Suppose that in the bistable case problem (1.5) has a solution. Then for all R
sufficiently small problem (1.1)–(1.4) has a solution for some c that depends on R.

In the monostable case problem (1.1)–(1.4) has a solution for all R sufficiently small and
for all c for which problem (1.5) has a solution (see Remark 4.2 at the end of Section 4).

The proof of this theorem is based on the application of the implicit function theo-
rem. For this we need the invertibility of the linearized operator. To prove it we study
properties of elliptic operators in unbounded domains. We verify that the operators un-
der consideration satisfy the Fredholm property and compute their index. In the bistable
case the index equals zero while the dimension of the kernel of the operator is positive
because of the zero eigenvalue related to the invariance of solutions with respect to trans-
lation in space. Therefore the codimension of the image of the operator has also a positive
dimension. This means that there are some solvability conditions that should be satisfied.
We show that these solvability conditions can be formulated in terms of solutions of the
homogeneous formally adjoint problem. The explicit form of solvability conditions and
some spectral properties of the linearized operator allow us to prove that if the operator
is linearized also with respect to the unknown wave speed, then it is invertible, and the
implicit function theorem is applicable.

In the monostable case, the index of the operator is positive, and the number of solv-
ability conditions can be zero. In this case we do not need to vary the wave speed to satisfy
the solvability conditions. Existence of reaction-diffusion-convection waves in this case is
proved for a fixed speed.

The contents of the paper are as follows. In the next section, we recall some results on
the existence of waves for reaction-diffusion systems that will be used below. In Section 3,
we discuss the structural stability of families of solutions. We show how the Fredholm
property of elliptic operators, their index, and solvability conditions allow the applica-
tion of the implicit function theorem. It is illustrated with some reaction-diffusion prob-
lems. In the last section, this approach is used to study existence of reaction-diffusion-
convection waves.

2. Existence of reaction-diffusion waves

2.1. 1D waves. Consider first the scalar equation

u′′ + cu′ +F(u)= 0, (2.1)

where F(0) = F(1) = 0 and F(u) ∈ C1[0,1]. In the bistable case, that is, if F′(0) < 0,
F′(1) < 0, if the wave with the limits at infinity

u(−∞)= 1, u(+∞)= 0 (2.2)
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exists, then it is unique. The wave may exist or not depending on the function F. In the
simplest case, where

F(u) < 0, 0 < u < a, F(u) > 0, a < u < 1 (2.3)

for some a∈ (0,1), the wave exists. In the general bistable case, there exists a minimal sys-
tem of waves that can contain a single wave, a finite, or even infinite number of waves [16].

In the monostable case, where F′(0) > 0, F′(1) < 0, if a wave exists for some c, then
waves exist for all values of c from some interval [c0,c1), where c1 can be finite or infinite.
In the simplest case, where F(u) is positive for u∈ (0,1), the waves exist for all c ≥ c0. In
the general case, waves may not exist. In this case, we should consider systems of waves.

These results are generalized for monotone systems where

∂Fi
∂uj

> 0, i, j = 1, . . . ,n. (2.4)

Let u= (u1, . . . ,un), F = (F1, . . . ,Fn). Suppose that F(u±)= 0, where u+ < u−, and the in-
equality between the vectors are understood component-wise. In the bistable case, we
suppose that all eigenvalues of the matrices F′(u±) have negative real parts. If in the in-
terval u+ < u < u−, there are no other stable zeros of the function F(u), then there exists a
unique wave with the limits u(−∞)= u−, u(+∞)= u+. It is monotone with respect to x.
This result remains valid if the inequality in (2.4) is not strict (under some weaker condi-
tions) and for locally monotone systems where these conditions are imposed only at zero
surfaces of the functions Fi.

If there are other stable zeros in u+ < u < u−, then, as in the case of the scalar equation,
the wave may not exist, and we should consider systems of waves. In the monostable case,
without stable intermediate zero, waves exist for c ≥ c0. Existence of 1D reaction-diffusion
waves for other systems is reviewed in [16].

2.2. Multidimensional waves. We consider the parabolic system of equations

∂u

∂t
= a(x′)∆u+

m∑
j=1

bj(x′)
∂u

∂xj
+F(u,x′) (2.5)

in a cylinder Ω=Ω′ ×R. Here u(x)= (u1(x), . . . ,un(x)), x = (x1, . . . ,xm), x1 is the variable
along the axis of the cylinder, x′ = (x2, . . . ,xm) is the variable in the section Ω′ of the
cylinder, the domain Ω′ is bounded and has a boundary of the class C2+δ with some
positive δ, a(x′), bj(x′) are smooth diagonal matrices,

ai(x′)≥ a0 > 0, x′ ∈Ω′, i= 1, . . . ,n, j = 1, . . . ,m, (2.6)

where ai are diagonal elements of the matrix a, F = (F1, . . . ,Fn) is a smooth vector-valued
function. On the boundary ∂Ω of the cylinder we consider the boundary conditions

u(x)= φ(x′), x ∈ ∂Ω, (2.7)

where φ(x′)∈ C2+δ(Ω̄) depends only on the variable in the section of the cylinder.
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Travelling wave solution of the problem (2.5), (2.7) is a solution of the form

u(x, t)=w(x1− ct,x2, . . . ,xm
)
, (2.8)

where c is an unknown constant, the wave velocity. This function is a solution of the
problem

a(x′)∆w+ c
∂w

∂x1
+

m∑
j=1

bj(x′)
∂w

∂xj
+F(w,x′)= 0,

w(x)= φ(x′), x ∈ ∂Ω.
(2.9)

We assume that for n > 1, the nonlinearity F satisfies the following condition:

∂Fi
∂uj

≥ 0, i �= j, i, j = 1, . . . ,n. (2.10)

This condition means that we can use comparison theorems for the systems under con-
sideration. For n = 1, there are no additional conditions and the comparison theorems
are also applicable. The systems of this type arise in numerous applications (see [16]).

We look for the travelling waves having limits at infinity:

lim
x1→±∞

w(x)=w±(x′), (2.11)

where the functions w± are solutions of the problem in the section of the cylinder

a(x′)∆′w± +
m∑
j=2

bj(x′)
∂w±
∂xj

+F
(
w±,x′

)= 0,

w±(x′)= φ(x′), x′ ∈ ∂Ω′,

(2.12)

where ∆′ is the Laplace operator with respect to the variables in the section of the cylinder.
We recall the classification of the problems according to the stability of solutions w+

and w−. We consider the eigenvalue problem for the corresponding linearized equation

L±u≡ a(x′)∆′u+
m∑
j=2

bj(x′)
∂u

∂xj
+F′

(
w±(x′),x′

)
u= λu,

u= 0, x′ ∈ ∂Ω′.

(2.13)

If all eigenvalues of both operators L+ and L− are in the left half-plane, then it is so-
called bistable case. If for one of them there are eigenvalues in the right half-plane and
for another one all eigenvalues have negative real parts, it is the monostable case. Finally,
in the unstable case both operators have eigenvalues in the right half-plane. As it is well
known (see [16]), properties of travelling waves are different in these three cases.
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(1) Bistable case. In this section, we consider the problem

a∆w+ c
∂w

∂x1
+F(w)= 0, (2.14)

w|∂Ω = 0. (2.15)

The constant c, the wave velocity, is unknown and should be found together with the
function w as a solution of the problem.

We consider travelling waves having limits at infinities:

lim
x1→±∞

w(x)=w±(x′), (2.16)

where w+(x′) and w−(x′) are given vector-valued functions,

w+(x′) < w−(x′), x′ ∈G. (2.17)

The functions w+(x′) and w−(x′) are solutions of the equation in the section of the
cylinder

a∆′v+F(v)= 0, v|∂G = 0, (2.18)

where ∆′ is the Laplace operator in the section of the cylinder, ∂G is the boundary of G.

Theorem 2.1. Let system (2.14) be monotone, let the matrix F′(0) be irreducible, and let
w+ and w− be stable solutions of (2.18). Suppose that all solutions v(x′) of problem (2.18)
satisfying the inequality

w+(x′)≤ v(x′)≤w−(x′), v(x′) �=w±(x′) (2.19)

are unstable. Then there exists a unique monotone in x1 travelling wave, that is, a constant c
and a classical solution w(x) of (2.14), (2.15) satisfying (2.16).

The proof of this theorem can be found in [15].
The following representation takes place:

c = inf
ρ∈K

sup
x,i

ai∆ρi +Fi(ρ,x′)
−∂ρ/∂x1

= sup
ρ∈K

inf
x,i

ai∆ρi +Fi(ρ,x′)
−∂ρ/∂x1

. (2.20)

Here, ai are the diagonal elements of the matrix a, Fi and ρi are the elements of the vec-
tors F and ρ, respectively, K is the class of functions continuous with second derivatives,
decreasing in x1, satisfying the boundary conditions, and such that

∥∥ρ(x)−w(x)
∥∥
L2
<∞. (2.21)

In 1D case, a similar representation was obtained in [16].
Suppose now that there exists a stable solution w0 of problem (2.18) satisfying the

inequality

w+(x′)≤w0(x′)≤w−(x′). (2.22)
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For simplicity, we restrict ourselves to the case where there is only one such solution, and
all other solutions of (2.18) satisfying (2.22), which are not equal to w±, are unstable. By
Theorem 2.1, there exist a [w+,w0]-wave and a [w0,w−]-wave with the limits at infinities

lim
x1→+∞w(x)=w+(x′), lim

x1→−∞
w(x)=w0(x′),

lim
x1→+∞w(x)=w0(x′), lim

x1→−∞
w(x)=w−(x′),

(2.23)

respectively. Denote c+ and c− as their velocities.

Theorem 2.2. Under the assumptions of Theorem 2.1, suppose that there exists one stable
solution w0(x′) of (2.18) satisfying (2.19). Then a monotone in x1 solution of the problem
(2.14)–(2.16) exists if and only if c+ < c−. Moreover, the velocity c satisfies the inequality
c+ ≤ c ≤ c−.

The proof of this theorem can be found in [15].
Suppose that c+ ≥ c−. Then it follows from Theorem 2.2 that the wave [w+,w−] does

not exist. Similarly to the results in the 1D case [16], we can consider ordered systems of
waves.

A system of waves consisting of two waves as above is called ordered if c+ ≥ c−. A
similar definition can be given for a system of any finite number of waves. In particular, a
system which consists of one wave is ordered by definition.

For the scalar equation, the minimal systems of waves mentioned above are ordered.
In the bistable case, the ordered system of waves is unique. The principal difference of
system of equations is that the ordered system of waves may be nonunique [18].

Theorem 2.2 implies that if there exists one stable intermediate solution of (2.18), then
an ordered system of waves exists and consists of one wave (if c+ < c−) or of two waves (if
c+ ≥ c−). This result may be generalized for the case of a finite number of stable interme-
diate solutions of (2.18) as it was done in the 1D case.

(2) Monostable case. We make the following assumptions on the solutions w+ and w− of
the problem (2.9), (2.11).

Assumption 2.3. The functions w± belong to C(2+δ)(Ω̄′) and the following inequality

w+(x′) < w−(x′), x′ ∈Ω′ (2.24)

holds.

Assumption 2.4. There are no other solutions of the problem (2.9), (2.11) satisfying the
inequality

w+(x′)≤w ≤w−(x′), x′ ∈Ω′. (2.25)

Assumption 2.5. There exists a sequence of functions {vn(x′)} uniformly bounded in
C(2+δ)(Ω̄′) satisfying the inequality (2.25) and the following conditions:

vn(x′)−→w+(x′) as n−→∞ (2.26)
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uniformly in x′,

a(x′)∆′vn +
m∑
j=2

bj(x′)
∂vn
∂xj

+F
(
vn,x′

)≥ 0,

vn(x′)= φ(x′), x′ ∈ ∂Ω′.

(2.27)

Theorem 2.6. Let Assumptions 2.3, 2.4, and 2.5 be satisfied. Then there exists a constant c0

such that for every c ≥ c0 there exists a monotone in x1 solution of the problem (2.5), (2.7).
The constant c0 is given by the minimax representation

c0 = inf
ρ∈K

sup
x∈Ω, i=1,...,n

Bi, (2.28)

where

Bi =
ai(x′)∆ρi +

∑m
j=1 bi j(x

′)
(
∂ρi/∂xj

)
+Fi(ρ,x′)

−∂ρi/∂x1
, (2.29)

bi j are the diagonal elements of the matrix bj ,K is a class of sufficiently smooth vector-valued
functions ρ(x) such that

lim
x1→±∞

ρ(x)=w±(x′), ρ(x)= φ(x′) for x ∈ ∂Ω, (2.30)

the derivative ∂ρ/∂x1 is negative, and the normal derivative

∂
(
ρ−w+(x)

)
∂ν

, x ∈ ∂Ω (2.31)

in the direction of the outer normal is also negative. For c < c0 such solutions do not exist.

The proof of this theorem can be found in [15].

3. Structural stability of families of solutions of operator equations

3.1. Structural instability. Consider an operator A(u) acting from a Banach space E to
another Banach space F. Suppose that it is continuous, and that it has a Fréchet derivative
A′(u)v : E→ F for all u in a neighborhood of some u0 ∈ E. We assume that A′(u) is a
bounded operator that satisfies the Fredholm property. We denote by α the dimension of
its kernel, β the codimension of its image, κ = α− β its index. They can depend on the
point u about which the operator is linearized.

Let the equation

A(u)= 0 (3.1)

have a family of solutions u(h) ∈ E, where h = (h1, . . . ,hk) is a vector-valued parameter.
Suppose next that for any h in a neighborhood of some value h0,

u(h)= u(h0
)

+
k∑
j=1

hjvj + o
(|h|), (3.2)
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where vj are some elements from E, which we assume for simplicity to be different from
each other. Then

0=A(u(h)
)= A(u(h0

))
+A′

(
u
(
h0
)) k∑

j=1

hjvj + o
(|h|). (3.3)

Therefore

A′
(
u(h0)

)
vj = 0, j = 1, . . . ,k, (3.4)

that is, the operator A′(u(h0)) has a zero eigenvalue with the multiplicity greater than or
equal to k.

We consider next a perturbed problem

A(u) + εB(u)= 0, (3.5)

where B(u) : E→ F is a continuous operator that has a Fréchet derivative. Suppose that
(3.5) has a family of solutions u(h,ε) such that

u(h,ε)= u(h) + εw(h) + o
(|ε|) (3.6)

for some w(h)∈ E. Substituting (3.6) into (3.5), we obtain

0=A(u(h,ε)
)

+ εB
(
u(h,ε)

)= A(u(h)
)

+ εA′
(
u(h)

)
w(h) + εB

(
u(h)

)
+ o
(|ε|). (3.7)

Hence

A′
(
u(h)

)
w(h)=−B(u(h)

)
. (3.8)

This means that the equation

A′
(
u(h)

)
w =−B(u(h)

)
(3.9)

has a solution. On the other hand, since we assume that the operator A′(u(h)) satisfies
the Fredholm property, it is solvable if and only if

φj
(
B
(
u(h)

))= 0, j = 1, . . . ,β, (3.10)

where φj are some linearly independent functionals from the space F∗ dual to F. For a
given index κ of the operator, β = α− κ≥ k− κ. Therefore if

κ < k, (3.11)

then the number of solvability conditions is positive. We can chose an operator B such
that the solvability conditions (3.10) are not satisfied. Hence the assumption about the ex-
istence of the family of solutions u(h,ε) leads to contradiction. In other words, we obtain
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that a small perturbation of the operator can lead to disappearance of the family of solu-
tions. Thus, family of solutions of operator equations are not generally structurally stable.

Condition (3.11) means that the dimension of the manifold of solutions is greater than
the index of the operator. On the other hand, it is well known [11] that the dimension of
the manifold of solutions of an operator equation A(u)= f with a Fredholm operator A
equals the index of the operator if f is a regular point. Hence (3.11) corresponds to the
case where 0 is not a regular point of the operator A.

Example 3.1. Consider the operator

A(u)= u′′ +F(u) (3.12)

acting from C2+δ(R) to Cδ(R). Let the function F(u) satisfy the following conditions:

F(0)= 0, F′(0) < 0,
∫ 1

0
F(u)du= 0,

∫ u
0
F(s)ds < 0, 0 < u < 1. (3.13)

Then there exists a solution u0(x) of the problem

u′′ +F(u)= 0, u(±∞)= 0. (3.14)

It is invariant with respect to translation: any function u0(x+h), h∈ R is also a solution.
Therefore there exists a one-parameter family of solutions. The index of the linearized
operator A′(u0) equals zero [5]. Thus, the dimension of the family of solutions is greater
than the index.

The linearized operator

A′
(
u0
)= u′′ +F′

(
u0
)
u (3.15)

is selfadjoint. The eigenfunction of the formally adjoint operator (A′(u0))∗ =A′(u0) cor-
responding to the zero eigenvalue coincides with the eigenfunction of the operatorA′(u0)
corresponding to the zero eigenvalue, that is, with u′0(x). Therefore the equation

u′′ +F′
(
u0
)
u= f (3.16)

is solvable if and only if

∫∞
−∞

f (x)u′0(x)dx = 0. (3.17)

However, the function u′0(x) is odd. Therefore for any g(u),

∫∞
−∞

g
(
u0(x)

)
u′0(x)dx = 0, (3.18)

and the solvability condition is satisfied.
This does not prove yet that the family of solutions persists under a perturbation of the

nonlinearity because we have obtained the solvability condition as a necessary condition.
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However it can be easily proved directly that if a perturbation is sufficiently small, then a
one-parameter family of solutions still exists.

This example is not in contradiction with the general construction described above.
In this particular case, any autonomous perturbation satisfies the solvability condition. A
nonautonomous perturbation may not satisfy it.

Example 3.2. Consider the same problem as above except that we assume in addition that

F(u) < 0, 0 < u <
1
2

, F(u) > 0,
1
2
< u < 1, (3.19)

and that the limits of the solution at infinity are different:

u(−∞)= 1, u(∞)= 0. (3.20)

It is well known (see [16]) that this problem has a solution if and only if

∫ 1

0
F(u)du= 0. (3.21)

Therefore a small perturbation of F such that the integral becomes different from zero
leads to disappearance of the family of solutions.

3.2. Problems with parameter. Consider an operator A(u,c,ε) depending on a vector-
valued parameter c = (c1, . . . ,cm) and on a parameter ε. It is defined on the space E2 =
E1 ×R, where E1 = E×Rm, with the image in F. We assume that the operator A is con-
tinuous with respect to (u,c,ε).

We will find conditions that would allow us to apply the implicit function theorem.
Suppose that the equation

A(u,c,0)= 0 (3.22)

has a family of solutions (u0(h),c0), where h = (h1, . . . ,hk) is a vector-valued parameter,
and c0 = (c0

1, . . . ,c0
m) is a constant (independent of h) vector. We assume that the family of

solutions u0(h) admits the representation (3.2) in a neighborhood of each h0. As above
we suppose that the elements vj , j = 1, . . . ,k are different from each other.

Suppose next that there exists a Fréchet derivative A′(u,c,ε) : E1 → F of the operator
A with respect to the variables (u,c) in a neighborhood of the point (u0(h0),c0,0). We
suppose that it is a bounded operator continuous with respect to (u,c,ε) in the operator
norm.

To apply the implicit function theorem, we should study the invertibility of the oper-
ator L=A′(u(h0),c0,0). We have

L(ũ, c̃)=A′u
(
u
(
h0),c0,0

)
ũ+

m∑
j=1

A′cj
(
u
(
h0),c0,0

)
c̃ j , (3.23)

where A′u and A′cj are the partial Fréchet derivatives with respect to u and cj , respectively.
We suppose that the operatorA′u(u(h0),c0,0) satisfies the Fredholm property with α being



180 Reaction-diffusion-convection waves

the dimension of its kernel, β the codimension of the image, and κ its index. We will
discuss the solvability conditions for the equation

L(ũ, c̃)= f (3.24)

assuming that α and κ are given. We rewrite this equation in the form

A′u
(
u
(
h0),c0,0

)
ũ= f −

m∑
j=1

A′cj
(
u
(
h0),c0,0

)
c̃ j . (3.25)

We consider below some cases interesting for applications.
Case 1 (κ = 0, α = k). Here β = k. Denote by φj ∈ F∗, j = 1, . . . ,k linear independent
functionals that vanish at the image of the operator A′u(u(h0),c0,0). Then (3.25) is solv-
able if and only if

m∑
j=1

φi
(
A′cj
(
u
(
h0),c0,0

))
c̃ j = φi( f ), i= 1, . . . ,k. (3.26)

This system is solvable with respect to c̃ j for any f if and only if the matrix Pi j =
φi(A′cj (u(h0),c0,0)) has the rank k. We suppose that this condition is satisfied. Then (3.24)
is solvable for any f ∈ F. Moreover, it has a k-dimensional family of solutions

ũ= ũ0 +
k∑
j=1

τjvj , (3.27)

where τj are constants and c̃ is fixed.
Denote by ψj , j = 1, . . . ,k linearly independent functionals from E∗ such that

ψj
(
u0
(
h0))= 0, j = 1, . . . ,k, (3.28)

and the matrix Qij = ψj(vi) is invertible. Let E0
1 be a subspace of E1 such that

ψj(ũ)= 0, j = 1, . . . ,k, ∀(ũ, c̃)∈ E0
1. (3.29)

Then the restriction L0 of the operator L to the subspace E0
1 is invertible. Therefore we

can apply the implicit function theorem for the restriction A0(u,c,ε) of the operator
A(u,c,ε):

A0(u,c,ε) : E0
1 −→ F. (3.30)

Thus we have proved the following theorem.

Theorem 3.3. Suppose that the operator A(u,c,ε) : E2 → F is continuous, and there exists
a k-dimensional manifold of solutions (u0(h),c0) of the equation A(u,c,0)= 0.
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Assume that the Fréchet derivative A′(u,c,ε) : E1 → F exists and satisfies the following
properties:

(1) it is a bounded operator, continuous with respect to (u,c,ε) in the operator norm in a
neighborhood of (u0(h0),c0,0),

(2) A′u(u0(h0),c0,0) is a Fredholm operator with the index zero and with the dimension
k of the kernel,

(3) the matrix Pi j = φj(A′ci(u0(h0),c0,0)), where φj are linearly independent functionals
vanishing on the image of the operator A′u, has the rank k.

Then for all ε sufficiently small, there exists a unique solution (uε(h0),cε) of the equation
A(u,c,ε)= 0 satisfying the conditions

ψj
(
uε
(
h0))= 0, j = 1, . . . ,k, (3.31)

where ψj are linearly independent functionals that vanish at the subspace of E complemen-
tary to the kernel of the operator A′u. The family of solutions (uε(h0),cε) is continuous with
respect to ε.

This theorem provides structural stability of the family of solutions for an arbitrary but
fixed h0. This means in particular that the perturbation of the operator can depend on h0.
In this case, cε may also depend on h0. Therefore we obtain a manifold (uε(h0),cε(h0)) of
solutions in E1. It lies in the neighbourhood of the manifold (u0(h0),c0(h0)), and it does
not generally belong to a subspace c = const.

Another conclusion from Theorem 3.3 is that to provide structural stability of k-
dimensional manifold of solutions, we need k free parameters, that is, k parameters that
are not a priori given and that are chosen to solve the problem.

If we look for a solution of the equation

A(u,c,ε)= 0 (3.32)

for a given c, then we should consider the equation

cε(h)= c. (3.33)

Let

cmax = sup
h
cε(h), cmin = inf

h
cε(h). (3.34)

Then for any cmin < c < cmax there exists a solution of (3.33) and, consequently, of (3.32).
Since cmax and cmin are continuous functions of ε, then solutions of (3.33) persist under
a small perturbation, though the corresponding value of h is not necessarily continuous
with respect to ε.

If the perturbation does not depend on h, then cmax = cmin.
Case 2 (κ= k, α= k). Here β = 0. The equation

A′u
(
u
(
h0),c0,0

)
ũ= f (3.35)
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is solvable for any f ∈ F. Therefore we do not need to linearize the operator A(u,c,ε)
with respect to c. We consider it as acting from E to F for c0 fixed.

We have the following theorem.

Theorem 3.4. Suppose that the operator A(u,c,ε) : E→ F is continuous, and there exists a
k-dimensional manifold of solutions (u0(h),c0) of the equation A(u,c,0)= 0.

Assume that the Fréchet derivative A′u(u,c0,ε) : E→ F exists and satisfies the following
properties:

(1) it is a bounded operator, continuous with respect to (u,ε) in the operator norm in a
neighborhood of (u0(h0),0),

(2) A′u(u0(h0),0) is a Fredholm operator with the index and with the dimension of the
kernel equal to k.

Then for all ε sufficiently small there exists a unique solution uε(h0) of the equation A(u,c0,
ε)= 0 satisfying the conditions ψj(uε(h0))= 0, j = 1, . . . ,k, where ψj are linearly indepen-
dent functionals that vanish at the subspace of E complementary to the kernel of the operator
A′u. The family of solutions uε(h0) is continuous with respect to ε.

Let c = (c1, . . . ,cm) be as above a vector-valued free parameter. Consider the operator
L = A′(u,c,ε) linearized with respect to both u and c. We write the equation L(ũ, c̃) = 0
in the form

A′u
(
u
(
h0),c0,0

)
ũ=−

m∑
j=1

A′cj
(
u
(
h0),c0,0

)
c̃ j . (3.36)

By virtue of the assumptions above this equation is solvable for any right-hand side. Sup-
pose that the elements A′cj (u(h0),c0,0), j = 1, . . . ,m are linearly independent. Then the
solutions wj of the equations

A′u
(
u
(
h0),c0,0

)
ũ=−A′cj

(
u
(
h0),c0,0

)
(3.37)

are also linearly independent. Moreover, they are linearly independent with the eigen-
functions vi corresponding to the zero eigenvalue of the operator A′u(u(h0),c0,0). Indeed,
if there is a nontrivial linearly combination

a1v1 + ···+ akvk + b1w1 + ···+ bmwm = 0, (3.38)

then applying to it the operator A′u(u(h0),c0,0) we obtain a contradiction with the as-
sumption that A′cj (u(h0),c0,0) are linearly independent.

Thus the dimension of the kernel of the operator L becomes k+m. The codimension of
its image remains zero. On the other hand, it is surjective. Therefore, 0 is a regular point of
the operator A(u,c,ε). Hence the dimension of the manifold of solutions of the equation
A(u,c,ε)= 0 in the space E1 equals k +m. The dimension k corresponds to a fixed value
of the parameter c, and additional m dimensions come from m free parameters.
Case 3 (κ= k, α > k). Here β > 0. This case is close to the Case 1 We need free parameters
to satisfy the solvability conditions.
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3.3. 1D reaction-diffusion problems. Consider the 1D reaction-diffusion system

au′′ + cu′ +F(u)= 0. (3.39)

Here a is a constant matrix, c is a constant. Problems of this type describe travelling wave
solutions of parabolic systems. Suppose that for some c = c0 there exists a solution of this
system with the limits at infinity

lim
x→±∞u(x)= u±. (3.40)

The solution of this problem is invariant with respect to translation in space. Therefore
there exists a 1D family of solutions u0(h).

Consider the operator

A(u)= a(u+u0
)′′

+ c
(
u+u0

)′
+F
(
u+u0

)
(3.41)

acting from C2+δ
0 (R) to Cδ0 (R). Here u0 is a solution of the problem (3.39)-(3.40) for some

given value of h, Ck+δ
0 (R) denotes the space of functions equal to zero at infinity.

The essential spectrum of the operator A′, that is, the set of complex λ where the
operator A′ − λ does not satisfy the Fredholm property is given by the algebraic equation

det
(− aξ2 + ciξ +F′

(
u±
)− λE)= 0, ξ ∈ R. (3.42)

Here E is the identity matrix.

(1) Bistable case. Suppose that (3.42) does not have solutions for any nonnegative real
λ. Then the operator A′ is Fredholm with the zero index. It has a zero eigenvalue. If it is
simple, then the linearized system

au′′ + cu′ +F′
(
u0(x)

)
u= f (3.43)

has a solution if and only if

∫∞
−∞

f (x)v(x)dx = 0, (3.44)

where v(x) is a solution of the homogeneous formally adjoint problem

aTv′′ − cv′ +
(
F′
(
u0(x)

))T
v = 0. (3.45)

Here the superscript T denotes the transposed matrix. Therefore the problem linearized
with respect u and c,

au′′ + c0u
′ +F′

(
u0(x)

)
u= f − cu′0 (3.46)

is solvable for any f . Indeed,

∫∞
−∞

u′0v(x)dx �= 0, (3.47)
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by virtue of the simplicity of the zero eigenvalue, and c can be chosen to satisfy the solv-
ability condition.

Consider the perturbed operator

Aε(u)= a(u′′ +u′′0
)

+ c
(
u′ +u′0

)
+F
(
u+u0

)
+ εg(u,x), (3.48)

where g(0,x) = 0. Then A0(0) = 0. In the space E = C2+δ(R) we define a subspace E0 =
{u∈ E, φ(u)= 0}, where φ is a functional that is different from zero at the eigenfunction
u′0 corresponding to the zero eigenvalue of the linearized operator A′. We can put, for
example,

φ(u)=
∫∞
−∞

uu′0dx or φ(u)= u1(0), (3.49)

where u1 denotes the first component of the vector u. In the second case we take into
account that u′0(x) �= 0, x ∈ R. Applying the implicit function theorem we obtain that the
equation

Aε(u)= 0 (3.50)

has a family of solutions (uh,ch) for all ε sufficiently small. For the scalar equation and for
the monotone systems the principle eigenvalue is simple, and condition (3.47) is satisfied.
Otherwise it should be assumed.

(2) Monostable case. In the monostable case, the index of the linearized operator is posi-
tive. If the codimension β of its image equals zero, then the problem

au′′ + c0u
′ +F′

(
u0(x)

)
u= f (3.51)

is solvable for any f . Therefore perturbed problem (3.48) has a family of solutions uh for
c = c0 and all ε sufficiently small. For the scalar equation, it can be verified that β = 0. For
systems of equations it is not known whether β = 0 or it can be positive. The latter case
seems to be not very probable. If β = 1, then the solvability condition can be satisfied by
linearization with respect to c. For β > 1, it cannot be done.

We note that if α > 0 and β = 0, then the dimension of the root space is necessarily
greater than the dimension of the kernel. Indeed, if u0 belong to the kernel of an operator
L, then Lu0 = 0. On the other hand, equation Lu= u0 has a nonzero solution. Therefore,
the equation L2u= 0 has a nonzero solution different from u0.

(3) Reduction of systems. Here, we consider the situation where we reduce the system to
the scalar equation or to a system with less equations. We will restrict ourselves to the
system of two equations

u′′ + cu′ +F(u) + g(u,v)= 0,

v′′ + cv′ − av+ εh(u,v)= 0.
(3.52)

Suppose that g(u,0)= 0, a �= 0. Then for ε = 0, v = 0 is the solution of the second equa-
tion, and the first equation depends only on u.
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If the nonlinearity F corresponds to the bistable case, and there exists a solution u0(x)
of the equation

u′′ + c0u
′ +F(u)= 0, (3.53)

then for ε sufficiently small there exists a solution of system (3.52) close to (u0(x),0). This
follows from the solvability of the linearized system

u′′ + c0u
′ +F′

(
u0(x)

)
u+ g′u

(
u0(x),0

)
u+ g′v

(
u0(x),0

)
v = f1− cu′0(x),

v′′ + c0v
′ − av = f2.

(3.54)

We use here the fact that the second component of the solution for ε = 0 equals zero, and
g′u(u0(x),0) = 0. Then the second equation in the linearized system does not contain c,
and it is solvable for any f2. From the first equation we find c to satisfy the solvability
condition. It is solvable for any f1.

The same approach may be not applicable for the system

u′′ + cu′ +F(u) + εg(u,v)= 0,

v′′ + cv′ +F(v) + εh(u,v)= 0.
(3.55)

For ε = 0 the linearized system has the form

u′′ + c0u
′ +F′

(
u0(x)

)
u= f1− cu′0(x),

v′′ + c0v
′ +F′

(
v0(x)

)
v = f2− cv′0(x).

(3.56)

We have only one free parameter c to satisfy two solvability conditions. Therefore the
linearized system is not solvable for any f1 and f2. It can be verified that perturbed system
(3.55) may not have solutions.

In the monostable case, we do need to linearize the operator with respect to c:

u′′ + c0u
′ +F′

(
u0(x)

)
u= f1,

v′′ + c0v
′ +F′

(
v0(x)

)
v = f2.

(3.57)

The solvability conditions are satisfied. Therefore system (3.55) has solutions for c = c0

and ε sufficiently small.
In the mixed case,

u′′ + cu′ +F(u) + εg(u,v)= 0,

v′′ + cv′ +G(v) + εh(u,v)= 0,
(3.58)

where the nonlinearity F is bistable and G is monostable, the linearized system

u′′ + c0u
′ +F′

(
u0(x)

)
u= f1− cu′0(x),

v′′ + c0v
′ +G′

(
v0(x)

)
v = f2− cv′0(x)

(3.59)

is solvable for any f1 and f2. Indeed, we first choose c to satisfy the solvability condition
in the first equation. The second equation is solvable for any right-hand side. Therefore
the perturbed system has a solution with a variable c.
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4. Existence of reaction-diffusion-convection waves

In this section, we study existence of convective fronts described by reaction-diffusion-
convection system of equations in unbounded horizontal layers. We will see below that
this case is essentially different in comparison with the case of vertically propagating
fronts studied in [12, 13]. We consider the model where a reaction-diffusion system is
coupled with the Navier-Stokes equations written in the stream function-vorticity for-
mulation:

∂T

∂t
+ v ·∇T = κ∆T +F(T),

∂ω

∂t
+ v ·∇ω = P∆ω−PR∂T

∂x
,

−∆Ψ= ω.

(4.1)

HereT is the temperature of the mixture,Ψ is the stream function, andω the vorticity; κ is
the thermal diffusivity, P is the Prandtl number, and R is the Rayleigh number describing
the intensity of free convection. The velocity v = (vx,vz) is defined as

vx = ∂Ψ

∂z
, vz =−∂Ψ

∂x
. (4.2)

This system of equations is considered in the domain

Ω= {−∞ < x < +∞, 0 < z < l} (4.3)

with the boundary conditions

z = 0, l :
∂T

∂z
= 0. (4.4)

The free-surface boundary condition for the velocity can be written in terms of the stream
function and vorticity as follows:

z = 0, l : ω = 0, Ψ= 0. (4.5)

4.1. Bistable case. Existence and uniqueness of waves depend on stability properties of
zeros of the source term F. In the bistable case both points u = 0 and u = 1 are stable
stationary points of the equation

du

dt
= F(u). (4.6)

The equation

∂T

∂t
= κ∆T +F(T) (4.7)

has a stationary travelling wave solution that has the form

T(x,z, t)= θ(x− ct), (4.8)
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where c is an unknown wave velocity. Because of the Neumann boundary condition it
can be a 1D planar wave. This solution has the limits at infinity:

θ± = lim
x→±∞θ(x), (4.9)

where F(θ±)= 0.
The function θ(x) satisfies the equation

κθ′′ + cθ′ +F(θ)= 0. (4.10)

Moreover this solution is also a travelling wave solution of system of equations (4.1) with
v = 0 and R = 0. In a vertical layer, this stationary solution exists and is stable as long
as R < Rcritical; then a supercritical bifurcation occurs and this solution is no more stable
while a stable convective travelling wave solution bifurcates. In this case, the principal real
eigenvalue is negative when R < Rcritical and it becomes positive when R passes its critical
value.

However there exist no stationary travelling wave solutions for problem (4.1)–(4.5)
with v = 0 and R �= 0 if the domain is not vertical. This makes the main difference between
this work and the vertical domain case. The transition from the nonconvective solution
for R= 0 to a convective solution for R �= 0 does not occur through a bifurcation. In fact,
it is the same branch of solutions.

A travelling wave solution of problem (4.1)–(4.5) is a solution of the form

T(x,z, t)= T(x− ct,z), ω(x,z, t)= ω(x− ct,z), Ψ(x,z, t)=Ψ(x− ct,z).
(4.11)

It satisfies the system of equations

κ∆T +
(
c− ∂Ψ

∂z

)
∂T

∂x
+
∂Ψ

∂x

∂T

∂z
+F(T)= 0,

P∆ω+
(
c− ∂Ψ

∂z

)
∂ω

∂x
+
∂Ψ

∂x

∂ω

∂z
+PR

∂T

∂x
= 0,

∆Ψ+ω = 0,

(4.12)

with the boundary conditions

∂T

∂z
= 0, ω = 0, Ψ= 0 : z = 0, l. (4.13)

We introduce the spaces of functions

E1 =
{
T ∈ C(2+δ)(Ω̄),

∂T

∂z
= 0 : z = 0, l

}
,

E2 =
{
ω ∈ C(2+δ)(Ω̄), ω = 0 : z = 0, l

}
,

E3 =
{
Ψ∈ C(2+δ)(Ω̄), Ψ= 0 : z = 0, l

}
.

(4.14)
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To get rid of the invariance of solutions with respect to translation in space we consider
the subspace EΘ1 of the space E1:

EΘ1 =
{
Θ∈ E1, Θ

(
x0
)= 0

}
. (4.15)

A function φ∈ C(2+δ)(Ω̄) such that limx→±∞φ = θ± and φ(x0)= (θ+ + θ−)/2 is introduced
to work in a space of functions that equal zero at infinity. We can put φ = θ, where θ(x)
is the solution of (4.10), and represent T as T = φ+Θ, where Θ∈ EΘ1 .

Then we define the product spaces E = E1×E2×E3 and EΘ = EΘ1 ×E2×E3. Hence we
consider the operator A : Y ×X → Z with X =R, Y = EΘ×R, and Z = (C(δ)(Ω̄))3:

AR(u,c)=




κ∆(Θ+φ) +
(
c− ∂Ψ

∂z

)
∂(Θ+φ)

∂x
+
∂Ψ

∂x

∂(Θ+φ)
∂z

+F(Θ+φ),

P∆ω+
(
c− ∂Ψ

∂z

)
∂ω

∂x
+
∂Ψ

∂x

∂ω

∂z
+PR

∂(Θ+φ)
∂x

,

∆Ψ+ω.

(4.16)

Thus the problem can be written as

AR(u,c)= 0, (4.17)

and A0(0,c0)= 0.
The operator AR(u,c) is continuous. The linearized operator A′R(u0,c0)(u,c) is

bounded and continuous in the operator norm with respect to R, u0, and c0.
We consider now the operator linearized with respect to (u,c) about the solution of

system without convection, that is, u0 = (θ(x),0,0)∈ E, c0 ∈R, and R= 0:

L(u,c)=




κ∆T + c0
∂T

∂x
+ cθ′ − ∂Ψ

∂z
θ′ +F′(θ)T ,

P∆ω+ c0
∂ω

∂x
,

∆Ψ+ω,

(4.18)

acting from E×R to Z. It should be shown that it satisfies the Fredholm property, that
its index equals zero, and that the kernel is empty. Then its invertibility in the subspace
EΘ×R will follow.

We introduce the corresponding limiting operator L± : E→ Z to study the Fredholm
property of the operator L:

L±(u,c)=




κ∆T + c0
∂T

∂x
+F′

(
θ±
)
T ,

P∆ω+ c0
∂ω

∂x
,

∆Ψ+ω.

(4.19)

It can be easily shown that the problem L±u= 0 has only zero solution. Therefore the
operator L is normally solvable with a finite-dimensional kernel [21]. It remains to study
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solvability for the problem L(u,c) = ( f ,g,h) where f ,g,h ∈ C(δ)(Ω̄). We will solve each
equation one after another.

The second equation is

P∆ω+ c0
∂ω

∂x
= g, ω|∂Ω = 0. (4.20)

The corresponding operator is a Fredholm operator with the index zero. Moreover it
does not have the zero eigenvalue. Thus the solvability conditions are satisfied for all
g ∈ C(δ)(Ω̄) and there exists a solution ω ∈ C(2+δ)(Ω̄).

The third equation

∆Ψ=−ω+h, Ψ|∂Ω = 0 (4.21)

is solvable for any h∈ C(δ)(Ω̄), and there exists a unique solution Ψ∈ C(2+δ)(Ω̄).
Finally, we study the solvability of the problem

κ∆T + c0
∂T

∂x
+F′(θ)T =

(
∂Ψ

∂z
− c
)
θ′(x) + f ,

∂T

∂z

∣∣∣∣
∂Ω
= 0. (4.22)

The operator

Bu= κ∆T + c0
∂T

∂x
+F′(θ)T (4.23)

acting from the space C(2+δ)(Ω̄) with the homogeneous Neumann boundary condition
to the space C(δ)(Ω̄) satisfies the Fredholm property, it has the zero index, and a simple
zero eigenvalue. The equation

Bu= f (4.24)

is solvable if and only if

∫
Ω
f vdx = 0, (4.25)

where v is a solution of the homogeneous formally adjoint equation

κ∆T − c0
∂T

∂x
+F′(θ)T = 0,

∂T

∂y

∣∣∣∣
∂Ω
= 0. (4.26)

Its solution is unique up to a constant factor, and positive [14, 20]. Therefore for any
g ∈ C(δ)(Ω̄) there exists a solution (u,c) of the equation

Bu= g − cθ′(x). (4.27)

This proves the solvability of problem (4.22).
Thus the operator L : EΘ×R is invertible. This proves the applicability of the implicit

function theorem and Theorem 1.1 in the bistable case.
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4.2. Monostable case. We consider now the monostable case which provides different
properties of solutions for the stationary problem. We suppose that the wave speed is
fixed, c = c∗, where c∗ is some value such that c∗ > 2

√
κF′(θ+). We will also impose some

additional condition on the width l of the strip (see Remark 4.2).
We consider now the problem linearized with respect to u about the solution u0 =

(θ(x),0,0)∈ C(2+δ)(Ω̄) for R= 0. Consider the operator L : E→ Z

Lu=




κ∆T + c∗
∂T

∂x
− ∂Ψ

∂z
θ′ +F′(θ)T ,

P∆ω+ c∗
∂ω

∂x
,

∆Ψ+ω.

(4.28)

We study solvability of the problem Lu = ( f ,g,h) where f ,g,h ∈ C(δ)(Ω̄). For this
purpose consider the solvability of each equation separately.

The second equation

P∆ω+ c∗
∂ω

∂x
= g, ω|∂Ω = 0 (4.29)

is solvable for any g ∈ C(δ)(Ω̄), and there exists a unique solution ω ∈ C(2+δ)(Ω̄).
Then the third equation ∆Ψ=−ω+ h, Ψ|∂Ω = 0, is solvable for any h∈ C(δ)(Ω̄), and

there exists a unique solution Ψ∈ C(2+δ)(Ω̄).
Consider finally the problem

κ∆T + c∗
∂T

∂x
+F′(θ)T = ∂Ψ

∂z
θ′(x) + f ,

∂T

∂z

∣∣∣∣
∂Ω
= 0. (4.30)

The operator

BT = κ∆T + c∗
∂T

∂x
+F′(θ)T (4.31)

is a Fredholm operator with a positive index [5]. We will show that the codimension of
its image equals zero, that is, there are no solvability conditions.

The corresponding homogeneous adjoint problem is

κ∆T − c∗ ∂T
∂x

+F′(θ)T = 0 (4.32)

with the following boundary conditions

z = 0, l :
∂T

∂z
= 0. (4.33)

Furthermore we notice that

F′
(
θ+
)= lim

x→+∞F
′(θ) > 0, c∗ > 0. (4.34)
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Multiplying equation (4.32) by cos(kz) and integrating over z, we obtain for the func-
tion

u(x)=
∫ l

0
T(x,z)cos(kz)dz, k = 2πm

l
, m∈ R, (4.35)

the following equation:

κu′′ − c∗u′ +F′(θ)u= κk2u. (4.36)

It can be verified that it does not have nonzero bounded solutions (see Lemma 4.1 below).
Hence the codimension of the image of the operator B equals zero, and problem (4.30) is
solvable for any right-hand side. Therefore we can apply the implicit function theorem.
It proves Theorem 1.1 in the monostable case.

Lemma 4.1. Let u0(x) be a bounded positive solution of the equation

u′′ + cu′ + b(x)u= 0, (4.37)

where c > 0, b+ = limx→+∞ b(x) > 0, b− = limx→−∞ b(x) < 0, and c2 > 4b+. Then the equa-
tion

u′′ − cu′ + b(x)u= µu (4.38)

does not have nonzero solutions for positive µ �= b+.

Proof. Solution u(x) of (4.38) behaves at +∞ as exp(λx) with

λ= c

2
±
√
c2

4
− b+ +µ. (4.39)

If µ < b+, it is not bounded.
Suppose that µ > b+. Then the eigenvalue problem (4.38) has an the eigenvalue µ lo-

cated to the right of the essential spectrum given by the expression

σess =−ξ2− ciξ + b±, ξ ∈ R. (4.40)

Therefore there exists a simple positive eigenvalue µ0 ≥ µ such that the corresponding
eigenfunction is positive [14]. This eigenvalue is principal. Consequently, µ0 is also the
principal eigenvalue of the problem

u′′ + cu′ + b(x)u= µu, (4.41)

and the corresponding eigenfunction u1(x) is also positive. We have for x→∞,

u1(x)∼ eλ1x, λ1 =− c2 −
√
c2

4
− b+ +µ0. (4.42)

Consider the functions

v0(x)= u0(x)exp(σx), v1(x)= u1(x)exp(σx). (4.43)
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They satisfy the equations

v′′ + (c− 2σ)v′ +
(
σ2− cσ + b(x)

)
v = 0, (4.44)

v′′ + (c− 2σ)v′ +
(
σ2− cσ + b(x)

)
v = µ0v, (4.45)

respectively.
We take the value of σ such that

c

2
−
√
c2

4
− b+ < σ <

c

2
+

√
c2

4
− b+. (4.46)

Then the essential spectrum of the operator corresponding to the left-hand side of (4.45)
lies in the left half-plane. On the other hand, v1 is a bounded positive solution of (4.45).
This contradicts the existence of the positive solution (bounded or unbounded) v0(x) of
(4.44) [14]. �

Remark 4.2. We have proved that the codimension of the image of the operator B in the
monostable case equals zero under some additional conditions. Namely, we assume that
c∗ > 2

√
κF′(θ+) and k2 �= F′(θ+)/κ. The first assumption implies that the solution θ(x) is

monotone. Nonmonotone solutions are unstable already for the scalar reaction-diffusion
equation. Unstable solutions are not particularly interesting from the physical point of
view.

The case of the equality, c∗ = 2
√
κF′(θ+) is in some sense exceptional, and the situation

here is not quite clear. On one hand, there is a monotone wave θ(x). On the other hand,
we cannot move the essential spectrum to the left half-plane, and cannot conclude about
the solvability conditions. We recall that it is the so-called KPP case that represents some
peculiarities in wave behavior (see [16]).

The second restriction, which shows that there are some specific wavenumbers k or, in
the other words, values of the width l, is probably technical.

We have studied here the case of the Neumann boundary condition for the tempera-
ture. The case of the Dirichlet condition, T|∂Ω = 0, is to some extent different but can also
be studied by the same method [2]. The main difference is related to the computation of
the index of the operator and to the solvability conditions.
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non bornés, C. R. Acad. Sci. Paris Sér. I Math. 333 (2001), no. 12, 1077–1082 (French).
[13] , Reaction-diffusion-convection problems in unbounded cylinders, Rev. Mat. Complut. 16

(2003), no. 1, 233–276.
[14] A. I. Volpert and V. A. Volpert, Spectrum of elliptic operators and stability of travelling waves,

Asymptot. Anal. 23 (2000), no. 2, 111–134.
[15] , Existence of multidimensional travelling waves and systems of waves, Comm. Partial

Differential Equations 26 (2001), no. 3-4, 421–459.
[16] A. I. Volpert, V. A. Volpert, and V. A. Volpert, Traveling Wave Solutions of Parabolic Sys-

tems, Translations of Mathematical Monographs, vol. 140, American Mathematical Society,
Rhode Island, 1994.

[17] V. Volpert, V. Volpert, M. Garbey, and J. Pojman, Instabilities of reaction fronts, Gas Phase
Chemical Reaction Systems (J. Wolfrum, H.-P. Volpp, R. Rannacher, and J. Warnatz, eds.),
Springer Series in Chemical Physics, vol. 61, Springer, Berlin, 1996, pp. 309–317.

[18] V. A. Volpert and A. I. Volpert, Wave trains described by monotone parabolic systems, Nonlinear
World 3 (1996), no. 2, 159–181.

[19] , Convective instability of reaction fronts: linear stability analysis, European J. Appl. Math.
9 (1998), no. 5, 507–525.

[20] , Existence and stability of multidimensional travelling waves in the monostable case, Israel
J. Math. 110 (1999), 269–292.

[21] V. A. Volpert, A. I. Volpert, and J. F. Collet, Topological degree for elliptic operators in unbounded
cylinders, Adv. Differential Equations 4 (1999), no. 6, 777–812.
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