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Whenever there is a time delay in a dynamical system, the study of stability becomes an
infinite-dimensional problem. The centre manifold theorem, together with the classical
Hopf bifurcation, is the most valuable approach for simplifying the infinite-dimensional
problem without the assumption of small time delay. This dimensional reduction is il-
lustrated in this paper with the delay versions of the Duffing and van der Pol equations.
For both nonlinear delay equations, transcendental characteristic equations of linearized
stability are examined through Hopf bifurcation. The infinite-dimensional nonlinear so-
lutions of the delay equations are decomposed into stable and centre subspaces, whose
respective dimensions are determined by the linearized stability of the transcendental
equations. Linear semigroups, infinitesimal generators, and their adjoint forms with bi-
linear pairings are the additional candidates for the infinite-dimensional reduction.

1. Introduction

Time delay problems are frequently encountered in control devices (see [4, 5]), machine-
tool chatter (see [2, 7, 15, 17]), and building structures subject to earthquakes (see [16]).
Delay differential equations (DDEs) are generally the best choice over ordinary differen-
tial equations for the study of stability of the occurring dynamics.

Suppose a dynamical system with a time delay is described by DDEs of the form

ẍ(t) + 2δω0ẋ(t) +ω2
0x(t) +ω2

0µ
(
x(t) + x(t− τ)

)= 0, (1.1)

where the real values δ,ω0 are the damping factor and natural frequency with δ = c/2√mk
and ω0 =

√
k/m, wherem is the model mass, c and k are the viscous damping and stiffness

coefficients, respectively. We define µ= k1/k as a bifurcation parameter, where k1 denotes
a force coefficient, which can vary in accordance with the material of the model elements
and the proportional and time delay control forces applied at the period of steady state
motion. When µ= 0, the delay equation (1.1) becomes an ODE of the form

ẍ(t) + 2δω0ẋ(t) +ω2
0x(t)= 0. (1.2)
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The linearized stability study of (1.1) and (1.2) usually begins with the substitution of the
trial solutions x(t)= eλt, x(t− τ)= eλ(t−τ), ẋ(t)= λeλt into the differential equations. This
will yield the transcendental and algebraic characteristic equations accordingly,

∆DDE := λ2 + 2δω0λ+ω2
0

(
1 +µ

(
1 + e−τλ

))= 0,

∆ODE := λ2 + 2δω0λ+ω2
0 = 0.

(1.3)

It can be readily seen that ∆DDE = 0 has infinite number of eigenvalues due to the tran-
scendental exponent e−τλ, while the algebraic equation ∆ODE = 0 has a finite number of
eigenvalues. Incidentally, there will be inherent qualitative differences between the sta-
bility exchanges of the differential equations (1.1) and (1.2). Difficulty in dealing with
DDEs customarily leads to the use of conventional asymptotic techniques, such as the
(i) Taylor series expansion, (ii) perturbation method, and (iii) harmonic balancing un-
der the assumption of small time delays. During their application, small errors that are
generated in the inclusion of, say the first and second terms of the series expansion can
be magnified upon the addition of the third- or higher-order terms. The publications by
Èl’sgol’ts and Norkin [6], Kurzweil [13], and Mazanov and Tognetti [14] include some
illustrations on the inconsistencies generated by using the Taylor series expansion of
x(t − τ) = x(t)− (1!)−1τẋ(t) + (2!)−1τ2ẍ(t)− ··· to convert DDEs to ODEs under the
assumption of small delay τ > 0. The presence of time delay in a differential equation
requires that an initial continuously differentiable function be defined in the domain
[−τ,0]. Such an initial function forms a basis for the infinite-dimensional solutions of
the DDEs in the range Rn. Apparently, the stability state of a delay system at time t is
very much dependent on the stability state at an earlier time t− τ. One must know the
solution behaviour of the delay system at xt(θ), −τ ≤ θ ≤ 0 in order to determine the fu-
ture solution behaviour x(t+ θ), t ≥ 0. The graphs of the solutions at time t and t− τ are
connected by means of the fundamental definition xt(θ)= x(t+ θ), −τ ≤ θ ≤ 0. Unique-
ness and existence of the solutions of the DDEs follow directly with the specification of
the initial function. The infinite-dimensional reduction of DDEs to finite-dimensional
under the assumption of small time eliminates such a requirement.

Alternatively, this paper follows the work presented in [10, 11, 12] to reduce a class of
nonlinear DDEs in the infinite-dimensional space C([−τ,0],Rn). It is our aim to derive
equivalent centre manifold ODEs for the DDEs in C([−τ,0],Rn) without the assumption
of small time delay τ > 0. The dimension of the ODEs and critical model parameters
for stability exchanges as the eigenvalues of transcendental characteristic equations cross
from left to right in the complex plane are determined by linearized analysis of the DDEs
at a Hopf bifurcation.

2. Dimensional reduction

The centre manifold theorem is a means of reducing high-dimensional systems into
lower-dimensional forms, while at the same time preserving the inherited dynamics of the
original systems. A valuable tool for classifying dimensions of systems is Hopf bifurcation
theorem [9, 12]. The word Hopf bifurcation is in recognition of E. Hopf ’s contribution
in 1942 to the study of periodic solutions of ODEs under some prescribed conditions.
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The conditions state that among a known n-number of eigenvalues associated with lin-
earized stability analysis of a nonlinear dynamical system at a particular equilibrium
point, there is a pair of complex-conjugate eigenvalues crossing the imaginary axis with a
nonzero velocity, and while the remaining n− 2 eigenvalues will lie in the left-hand side
of the complex plane as a parameter crosses a critical value. There are explicit formulas
for calculating the corresponding periodic solutions. The dimensional reduction of DDEs
in the space C([−τ,0],Rn) will be carried out without violating the Hopf conditions. No-
tations and mathematical arguments to be presented are taken from [3, 10, 11, 12].

The specific DDEs considered are of the form

ẋ(t)= f
(
xt(θ),µ,ε

)
, x(t)∈Rn, xt(θ)∈ C := C([−τ,0],Rn

)
, 0≤ ε� 1, (2.1)

where for any given initial continuously differential function φ(θ) ∈ C equipped with
the usual supremum norm ‖ · ‖ in C and vector norm | · | in Rn defined by ‖φ(θ)‖ =
sup−τ≤θ≤0 |φ(θ)|, one can state the condition φ(θ)= x(θ), −τ ≤ θ ≤ 0. f = f (xt(θ),µ,ε) :
R× C → Rn is nonlinear and continuous with respect to its arguments. The element
xt(θ) ∈ C is the past history state for all time t of the future state x(t) ∈ Rn up to time
t = 0 for which xt(θ) is defined in the domain [−τ,0], and then translated forward onto
the rangeRn through the fundamental definition xt(θ)= x(t+ θ),−τ ≤ θ ≤ 0. Essentially,
a function x = x(t,µ,ε)∈Rn is a solution of (2.1) through φ(θ) with initial value φ(0) at
zero if and only if for t ∈ [−τ,∞) the function xt = xt(θ,µ,ε)∈ C exists and is a solution
of (2.1). We will find the solution of (2.1) in C for τ > 0 as the parameter µ is varied near
some critical value µc.

We assume that there is an equilibrium point, which for simplicity is the trivial so-
lution xt(θ) = 0 of (2.1). At this equilibrium point, we further assume that f (0,µ,0) =
∂ f (0,µ,0)/∂φ(θ) = 0 and the Fréchet derivative ∂ f (0,µ,0)/∂φ(θ) of f with respect to
φ(θ) ∈ C is given by ∂ f (0,µ,0)/∂φ(θ) ≡ L(φ(θ),µ)φ(θ), where L = L(xt(θ),µ) : C×R→
Rn is a linear functional mapping. With the representation ∆ f = ∆ f (φ(θ),µ,ε) : R ∈
C→Rn, we define f in (2.1) as f = L(φ(θ),µ)φ(θ) + ε∆ f (φ(θ),µ,ε), where ∆ f is strictly
a nonlinear functional mapping. Furthermore, it is known by the Riesz representation
theorem that the linear functional mapping L can be written in terms of a function of
bounded variation, denoted by η(θ,µ) : [−τ,0] → Rn, and a Riemann-Stieltjes integral
type. To this end, we have the variational DDEs of the form

ẋ(t)= L(φ(θ),µ
)
φ(θ) + ε∆ f

(
φ(θ),µ,ε

)
, ∆ f

(
φ(θ),µ,ε

)
:R×C −→Rn, (2.2a)

where the Fréchet derivative ∂ f (0,µ,0)/∂φ(θ) of f is given by

∂ f (0,µ,0)
∂φ(θ)

= L(φ(θ),µ
)
φ(θ) :=

∫ 0

−τ

[
dη(θ,µ)

]
φ(θ), φ(θ)∈ C,

η(θ,µ)=


L
(
φ(−τ),µ

)
, θ =−τ,

0, −τ < θ < 0,

L
(
φ(0),µ

)
, θ = 0.

(2.2b)
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The function x(t,µ,ε)∈Rn is the nonlinear solution of (2.2), provided that xt(θ,µ,ε)∈ C
satisfies the variation of constant-integral equation

xt(θ,µ,ε)= J(t,µ)φ(θ) + ε
∫ t

0
J
(
(t− ξ),µ

)×X0(θ)
 f
(
xt(θ),µ,ε

)
dξ, t ∈ (−∞,∞),

(2.3a)

in C, where the element X0(θ) is n×n matrix function, defined as

X(θ)=
0 −τ ≤ θ < 0,

I θ = 0,
(2.3b)

and I is an identity operator. In the integral equations (2.3), J(t,µ), t,µ≥ 0 is a semigroup
of bounded linear operators with infinitesimal generator A(θ,µ)∈ C defined with the aid
of the linearized delay equation

ẋ(t)=
∫ 0

−τ

[
dη(θ,µ)

]
φ(θ), x(θ)= φ(θ), −τ ≤ θ ≤ 0, (2.4a)

as follows:

D
(
A(θ,µ)

)= {φ(θ)∈ C :
dφ(θ)
dθ

∈ C,
dφ(θ)
dθ

∣∣∣∣
θ=0

=
∫ 0

−τ

[
dη(θ,µ)

]
φ(θ)

}
,

A(θ,µ)φ(θ)= dφ(θ)
dθ

,

(2.4b)

where φ(θ) is in the domainD(A(θ,µ)). The semigroup J(t,µ) maps C into itself, namely,
J(t,µ) : C ∈ R→ C, that is, a linear solution of (2.2), defined in the domain [−τ,0] can
be carried over to the range Rn by the relation xt(φ(θ),µ)= J(t,µ)φ(θ), for t,µ≥ 0. Gen-
erally, the explicit nature of J(t,µ) is not known, but in view of its linearity, compactness,
and the fact that J(0,µ) = I and J(t,µ) J(σ,µ) = J(t + σ,µ) for t,σ ≥ 0, one can infer that
the point spectral sets σ(J(t,µ)) of J(t,µ) and σ(A(θ,µ)) of the generator A(θ,µ)∈ C are
exactly the eigenvalues λ of the transcendental characteristic equation

∆(λ,µ) := det
{
λI −

∫ 0

−τ

[
dη(θ,µ)

]
eλθ
}
= 0, (2.5)

which may be real or occur in complex conjugates as the parameter µ varies.
We will assume that at the critical value µc of the bifurcation parameter µ, the charac-

teristic equation ∆(λ,µ) = 0 has the eigenvalues λ1,2 = υ(µ)± iω(µ), υ(µ) > 0, ω(µ) �= 0,
satisfying Hopf bifurcation conditions υ(µc) = 0, ω(µc) �= 0, Re{d∆(λ,µ)/dµ} �= 0. No
other eigenvalues, in particular, for any integer κ, ±iκω(µ), are on the imaginary axis.
All the remaining eigenvalues of ∆(λ,µ) = 0 have negative real parts. Then, there ex-
ists the direct sum decomposition of C = P⊕Q by all eigenvalues of ∆(λ,µ) = 0, where
the subspace P = P(λ,µ) ∈ C is the centre generalized eigenspace corresponding to the
eigenvalues λ1,2 =±iω(µ), i=√−1 and Q =Q(λ,µ)∈ C is the infinite-dimensional com-
plementary subspace associated with the remaining eigenvalues of ∆(λ,µ) = 0. Further-
more, tangent to the generalized subspace P is a parabolic smooth curve representing
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a local centre manifold MP
µ =MP

µ (A(θ,µ))∈ C([−τ,0],Rn) in which interesting dynam-
ics of (2.2) can be explored via studying the solutions of the centre manifold ODEs. The
subspaces P and Q are disjoint and invariant under J(t,µ) and its generator A(θ,µ). The
invariant means that a solution in C starting from a point in either P, or Q, will indeed
always remain in P for all t ∈ (−∞,∞), or in Q for all t ∈ [0,∞). Also, it is interesting
to note that A(θ,µ)MP

µ (A(θ,µ)) ⊂MP
µ (A(θ,µ)), and there exists a κ× κ constant matrix

B ∈ C whose elements are the eigenvalues of ∆(λ,µ)= 0 with zero real parts. The values
of κ = 1,2, . . . ,n correspond to the multiplicity of the eigenvalues of the point spectra of
the semigroup J(t,µ) and its generator A(θ,µ).

For the particular eigenvalues λ1,2 =±iω(µ) of (2.5), the centre manifold MP
µ is of di-

mension 2. We denote the linearly independent solutions for λ1,2 = ±iω(µ) by the ma-
trix function Φ(θ) = [φ1(θ),φ2(θ)] ∈ C, whose elements are symbolically denoted by
φ1(θ) = [φ11(θ),φ21(θ)]T , φ2(θ) = [φ12(θ),φ22(θ)]T , where T stands for transpose. This
matrix function Φ(θ)∈ C forms a basis for P ∈ C or for all the solutions to (2.2) on the
centre manifold MP

µ . Moreover, Φ(θ) constitutes the elements of the initial continuous
function, namely, φ(θ)=Φ(θ)b, −τ ≤ θ ≤ 0, where b is some constant vector.

To determine the basis for the stable complementary subspace Q ∈ C, we further con-
sider the delay equation

u̇(s)= L̂(ψ(s),µ
)
ψ(s)=−

∫ 0

−τ

[
dη̂(s,µ)

]
ψ(−s), ut̂(s)= ψ(s), 0≤ s≤ τ, (2.6a)

in the space Ĉ := Ĉ([0,τ],Rn) and along with its semigroup J(t̂,µ), t̂,µ≥ 0 and infinites-
imal generator Â(s,µ) defined for ψ(s)∈D(Â(s,µ)) as

D
(
Â(s,µ)

)= {ψ(s)∈ Ĉ :
dψ(s)
ds

∈ Ĉ,
(
dψ(s)
ds

)
s=0
=−

∫ 0

−τ

[
dη̂(s,µ)

]
ψ(−s)

}
,

Â(s,µ)ψ(s)=−dψ(s)
ds

,

(2.6b)

which are formally adjoint to (2.4) with respect to the bilinear relation

(
ψj(s),φκ(θ)

)= (ψj(0),φk(0)
)−∫ 0

−τ

∫ θ
0
ψj(ξ−s)

[
dη(θ,µ)

]
φκ(ξ)dξ, j,κ= 1,2,3, . . . ,n,

(2.6c)

in C× Ĉ, where φκ(θ)∈ C, ψj(s)∈ Ĉ and η̂(s,µ) : [0,τ]→Rn is the transpose of η(θ,µ) :

[−τ,0] → Rn. The properties of the semigroup J(t̂,µ) and its generator Â(s,µ) of the
adjoint equations (2.6) are the same as those of J(t,µ) and A(θ,µ) in C. Essentially,
the point spectral sets of J(t̂,µ) and Â(s,µ) are of the finite type and they have eigen-
values satisfying the adjoint transcendental characteristic equation ∆̂(λ,µ) := det{λI −∫ 0
−τ[dη̂(s,µ)]e−λs} = 0. These eigenvalues λ of ∆̂(λ,µ)= 0 are exactly those of ∆(λ,µ)= 0

in C. Then, in the same way as before, we have the centre generalized eigenspace P̂ =
P̂(λ,µ) ∈ Ĉ and the centre manifold M̂P̂

µ = M̂P̂
µ (Â(s,µ)) ∈ Ĉ for the eigenvalues λ1,2 =

±iω(µ) at µ= µc. P̂ and M̂P̂
µ are both invariant under J(t̂,µ) and Â(s,µ), and there exists
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also a constant matrix B̂, whose elements are the real values of ∆̂(λ,µ) = 0. The corre-
sponding basis for P̂ is the matrix function Ψ(s) = [ψ1(s),ψ2(s)]T ∈ Ĉ whose elements
are denoted symbolically by the form ψ1(s) = [ψ11(s),ψ21(s)]T , ψ2(s) = [ψ12(s),ψ22(s)]T .

Again, with some constant vector b̂, we have the required initial function ψ(s)=Ψ(s)b̂ in
Ĉ for all the solutions to the adjoint delay equations (2.6).

Having the bases Φ(θ)∈ C, Ψ(s)∈ Ĉ for P ∈ C, P̂ ∈ Ĉ, and the generatorsA(θ,µ)∈ C,
Â(s,µ) ∈ Ĉ as above, the constant matrices B ∈ C and B̂ ∈ Ĉ can be derived as follows.
It is known that A(θ,µ)Φ(θ) = Φ(θ)B, −τ ≤ θ ≤ 0, and Â(s,µ)Ψ(s) = Ψ(s)B̂, 0 ≤ s ≤ τ.
The relationA(θ,µ)Φ(θ)=Φ(θ)B at Hopf bifurcation yields Φ(θ)=Φ(0)eBθ ,−τ ≤ θ ≤ 0
with B = [[0,ω]T , [−ω,0]T]. Incidentally, J(t,µ)φ(θ)=Φ(0)eB(t+θ)b, t ≥ 0 is the solution
operator of the linearized delay equations (2.4). By the definition of the adjoint solutions
of the DDEs in C× Ĉ, it is further known that (Ψ(s),A(θ,µ)Φ(θ))= (Â(s,µ)Ψ(s),Φ(θ)),
where using the identities (Ψ(s),A(θ,µ)Φ(θ))= (Ψ(s),Φ(θ))B and (Â(s,µ)Ψ(s),Φ(θ))=
B̂(Ψ(s),Φ(θ)), one can see that (Ψ(s),Φ(θ))B = B̂(Ψ(s),Φ(θ)). From this, it readily fol-
lows that B = B̂, if and only if the inner product matrix (Ψ(s),Φ(θ)) = I , is the iden-
tity matrix. The elements of the inner product matrix (Ψ(s),Φ(θ)) are the bilinear pair-
ing in (2.6c), namely, (Ψ(s),Φ(θ)) = (ψj(s),φκ(θ)), j,κ = 1,2. Oftentimes, the value of
(Ψ(s),Φ(θ)) is different from being the identity matrix, that is, (Ψ(s),Φ(θ)) �= I . In such
a situation, one can normalize the adjoint basis Ψ(s) for P̂ ∈ Ĉ to a new basis function
Ψ̄(s)∈ Ĉ by computing Ψ̄(s)= (Ψ̄(s),Φ(θ))−1Ψ(s). Then, the substitution of the new bi-
linear elements (ψ̄ j(s),φκ(θ)), j,κ= 1,2 of (Ψ̄(s),Φ(θ)) into (2.6c) will yield (Ψ̄(s),Φ(θ))

= I , and thus B = B̂.
Since the elements φ(θ),X0(θ), xt(φ(θ),µ,ε) in the variation-of-constant integral equa-

tions (2.3) are contained in C, the decomposition of C as C = P ⊕Q yields the unique
representations

xt(θ,µ,ε)= xPt
(
φ(θ),µ,ε

)
+ xQt

(
φ(θ),µ,ε

)
, (2.7a)

where

xPt (θ,µ,ε)= J(t,µ)φP(θ) + ε
∫ t

0
J
(
(t− ξ),µ

)×XP
0 (θ)
 f

(
xt(θ),µ,ε

)
dξ, t ∈ (−∞,∞),

xQt
(
θ,µ,ε

)= J(t,µ)φQ(θ) + ε
∫ t

0
J
(
(t− ξ),µ

)×XQ
0 (θ)
 f

(
xt(θ),µ,ε

)
dξ, t ∈ [0,∞),

(2.7b)

and the elements are

φ(θ)= φP(θ) +φQ(θ), φP(θ) :=Φ(θ)b, φQ(θ) := φ(θ)−Φ(θ)b,

X0(θ)= XP
0 (θ) +XQ

0 (θ), XP
0 (θ)= Ψ̄(0)Φ(θ), XQ

0 (θ)= X0(θ)− Ψ̄(0)Φ(θ),

Φ(θ)=Φ(0)eBθ , −τ ≤ θ ≤ 0, Ψ(s)=Ψ(0)e−B̂s, 0≤ s≤ τ,

b = (Ψ̄(s),φ(θ)
)
, B =

[
0 −ω
ω 0

]
, Ψ̄(0)= {(Ψ̄(s),Φ(θ)

)−1
Ψ(s)

}
s=0.

(2.7c)
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At this stage, the exponential estimates of the integral solutions (2.7) can be determined.
The next theorem is a candidate for the solution estimates in C.

Theorem 2.1 (Hale [10], Hale and Verduyn Lunel [11]). For any real number, say β, let
∧(λ,µ) = {λ ∈ A(θ,µ) | ∆(λ,µ) = 0, Reλ ≥ β} be the point spectral set of the finite type
and have eigenvalues satisfying the characteristic equation (2.5). If C is decomposed into the
generalized eigenspace P and complementary subspaceQ by all the eigenvalues of ∆(λ,µ)= 0
as C = P⊕Q, then, for any φ(θ) ∈ C with the representation φ(θ) = φP(θ) +φQ(θ), there
exist positive constants ρ and ν= ν(ρ) such that the following inequalities hold:∥∥J(t,µ)φP(θ)

∥∥≤ νe(β+ρ)t
∥∥φP(θ)

∥∥, t ≤ 0, (2.8a)∥∥J(t,µ)φQ(θ)
∥∥≤ νe−(β+ρ)t

∥∥φQ(θ)
∥∥, t ≥ 0. (2.8b)

Remark 2.2. The proof of the estimation theorem is found in [10, 11]. The inequali-
ties (2.8) form the framework for the determination of bounds for the projected nonlin-
ear solutions of (2.2) in P and Q, respectively. With the solution operator J(t,µ)Φ(θ) =
Φ(0)eB(θ+t), t ≥ 0, the inequalities (2.8) will yield the estimates of the linearized solutions
in P,Q ∈ C as follows: ‖xPt (φ(θ),µ)‖ → 0 as t → −∞, ‖xPt (φ(θ),µ)‖ �= 0 as t →∞, and
while ‖xQt (φ(θ),µ)‖ → 0 when t →∞. In the same way, the inequality (2.8b) yields the
estimate for the nonlinear integral solution xQt (θ,µ,ε) of Q∈ C as

∥∥J(t,µ)φQ(θ)
∥∥= ∥∥∥∥xQt (φ(θ),µ

)− ε×∫ t
0
J
(
(t− ξ),µ

)
XQ

0 (θ)∆ f
(
φ(θ),µ,ε

)
dξ
∥∥∥∥, t ∈ [0,∞),

(2.9)

where the use of the elements in (2.7c) leads to∥∥J(t,µ)φQ(θ)
∥∥= ∥∥J(t,µ)

{
φ(θ)−φP(θ)

}∥∥
= ∥∥J(t,µ)Φ(0)eBtb−Φ(0)eBtb

∥∥−→ 0

=
∥∥∥∥xQt (φ(θ),µ

)− ε∫ t
0
J
(
(t− ξ),µ

)
XQ

0 (θ)∆ f
(
φ(θ),µ,ε

)
dξ
∥∥∥∥,

(2.10)

as t →∞ and J(0,µ) = I . On the other hand, the inequality (2.8a) will show that the
exponential estimate for xPt (φ(θ),µ,ε), t ∈ (−∞,∞) of P is bounded as t→−∞ and un-
bounded when t →∞. The latter is indeed the solution that is equivalent to the centre
manifold ODEs. Chow and Mallet-Paret [3] pointed out that solutions of DDEs of the
form xQt (φ(θ),µ,ε) in Q, in general, do not satisfy the fundamental property, namely,
xQt (θ) �= xQt (t + θ), −τ ≤ θ ≤ 0. There is no loss of generality to describe the long-term
behaviour of the original nonlinear DDEs (2.2) with the corresponding set of centre man-
ifold ODEs for xPt (φ(θ),µ,ε), −τ ≤ θ ≤ 0, t ∈ [0,∞).

Consequently, the direct differentiation of xPt (φ(θ),µ,ε) = Φ(θ)y(t) + xQt (φ(θ),µ,ε),
where y(t)∈R2, y(t)= (Ψ̄(s),φP(θ)), gives

Φ(θ)
dy(t)
dt

= d

dt

(
J(t,µ)φP(θ) + ε

∫ t
0
J
(
(t− ξ),µ

)
XP

0 (θ)
 f
(
xt(θ),µ,ε

)
dξ

)
, (2.11a)
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and using the elements in (2.7c) leads to

Φ(0)eB(θ+t) dy(t)
dt

= d

dt

(
Φ(0)eB(θ+t)b+ ε

∫ t
0
Φ(0)eB(θ+t−ξ)Ψ̄(0)
 f

(
Φ(θ)y(t),µ,ε

)
dξ

)
,

(2.11b)

which will subsequently produce the centre manifold ODEs[
ẏ1

ẏ2

]
=
[

0 −ω
ω 0

][
y1

y2

]
+ ε

[
ψ̄11(0) ψ̄12(0)
ψ̄12(0) ψ̄22(0)

][
0


 f (Φ(θ)y(t) + xQt (θ,µ,ε),µ,ε)

]
,

(2.11c)

for all values of t ∈ [−τ,∞). The variation-of-constant integral equation xQt (θ,µ,ε) in the
infinite-dimensional complementary space Q ∈ C is equivalent to the operator differen-
tial equation

dxQt (θ,µ,ε)
dt

= AQ(θ,µ)
(
xQt (θ) + εXQ

0 (θ)
)
(θ)
 f

(
xQt (θ),µ,ε

)
= AQ(θ,µ)

(
xt(θ)− xPt (θ)

)
+ ε
(
X0(θ)− Ψ̄(0)Φ(θ)

)
 f
(
xt(θ),µ,ε

)
,

(2.12)

where the infinitesimal generator AQ has eigenvalues restricted to Q and none of these
eigenvalues are of the form ±iκω(µ) for all integers κ. In the ODEs (2.11), the time de-
lay τ now appears as a coefficient, and the study of stability can be carried out without
much difficulty. The next sections contain specific applications of the aforementioned
dimensional reduction approach.

3. Duffing equation with delay

Consider the delay differential equation

ẍ+ 2δω0ẋ+ω2
0x+ω2

0µ
(
x+ x(t− τ)

)
+ εω2

0σ3
(
x+ x(t− τ)

)3 = 0, (3.1)

for which 0 ≤ ε� 1, we define εσ3 = γ3/k and γ3 is a force coefficient due to the cu-
bic nonlinearity. Whenever a damped or undamped motion of a dynamical system with
nonlinear spring is of interest, the Duffing equation has always come handy. The equation
has led to important nonlinear phenomena, connecting mathematical theories of nonlin-
ear dynamics and applications. It is an important equation, which most undergraduate
and graduate students learn to solve fundamental problems of nonlinear dynamics. As
seen in (3.1), the equation is modified by adding the time delay τ as a means to trig-
ger instability in an otherwise stable system when the model parameters vary and pass
critical values. This modification presents an infinite-dimensional problem, and from
the perspectives on modelling, phenomena, and analysis, it provides an opportunity for
more dimensional variability in the study of stability. It is indeed amenable to new phe-
nomenological dynamics and computational tools at the interface of delay differential
equations and the theories of nonlinear dynamics in higher-dimensional settings. The
goal here is to determine critical values for µ and τ when stability exchanges take place at
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some desired frequency and damping factor 0 < δ < 1. We begin by first focusing on the
linearized analysis of the delay equation (3.1) at a Hopf bifurcation point.

3.1. Linear analysis. The linearized delay equation when ε = 0,

ẍ+ 2δω0ẋ+ω2
0(1 +µ)x+ω2

0µx(t− τ)= 0, µ= µc + εµ̃, (3.2a)

in C := C([−τ,0],Rn) and its adjoint form

ü(t̂)− 2δω0u̇+ω2
0(1 +µ)u+ω2

0µu(t̂+ τ)= 0, (3.2b)

in the space Ĉ := Ĉ([0,τ],Rn) with respect to the associated bilinear relation

(
ψj(s),φκ(θ)

)= (ψj(0),φκ(0)
)−ω2

0µ
∫ 0

−τ
ψj(ζ + τ)φk(ζ)dζ , j,κ= 1,2, . . . , (3.2c)

have eigenvalues λ satisfying the transcendental characteristic equation

∆(λ,µ) := λ2 + 2δω0λ+ω2
0

{
1 +µ

(
1 + e−λτ

)}= 0. (3.2d)

By Hopf bifurcation, we let λ1,2 = υ(µ)± iω(µ) with υ(µ) > 0, ω(µ) �= 0, and υ(µc) = 0,
Re{d∆(λ,µ)/dµ} �= 0, be the eigenvalues of (3.2d). All the remaining eigenvalues
of ∆(λ,µ) = 0 have negative real parts. Then, the substitution of λ1 = υ(µ) + iω(µ) into
∆(λ,µ)= 0, and setting the real and imaginary parts of the resulting algebraic equations
to zero, we have

∆(λ,µ) :=G(λ,µ) + iM(λ,µ)= 0,

G(λ,µ) := υ2−ω2 + 2δω0υ+ω2
0

{
1 +µ

(
1 + e−υτ cosωτ

)}= 0,

M(λ,µ) := 2υω+ 2δω0ω−ω2
0µe

−υτ sinωτ = 0,

(3.3a)

which by putting υ = 0 reduces to the form

G(λ,µ) := ω2
0−ω2 +ω2

0µ(1 + cosωτ)= 0,

M(λ,µ) := 2δω0ω−ω2
0µsinωτ = 0,

(3.3b)

or equivalently

ω2
0µ(1 + cosωτ)=−(ω2

0−ω2), ω2
0µsinωτ = 2δω0ω. (3.3c)

Possible values of ωτ are of the form ωτ ∈ (2πκ, (2κ+ 1)π), κ = 0,1,2, . . . , and they are
such that (3.3) hold. Now, squaring both sides of (3.3c) and adding the result together
will lead to

2ω4
0µ

2(1 + cosωτ)= (ω2
0−ω2)2

+
(
2δω0ω

)2
, (3.4a)
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where the substitution of the first equation in (3.3c) into (3.4a) yields the explicit expres-
sion for the bifurcation parameter µ as

µ=−
(
ω2

0−ω2
)2

+
(
2δω0ω

)2

2ω2
0

(
ω2

0−ω2
) =−

(
1− (ω/ω0

)2)2
+ 4δ2

(
ω/ω0

)2

1− (ω/ω0
)2 . (3.4b)

We compute Hopf ’s transversality condition by differentiating implicitly (3.2d) with re-
spect to µ, obtaining

d

dµ

{
∆(λ,µ)

}= d∆(λ,µ)
dλ

× dλ

dµ
+
d∆(λ,µ)
dµ

= 0, (3.5a)

from which the real and imaginary parts when λ= ν + iω are given by

{
dλ

dµ

}
λ=υ+iω

=−
{(

d∆(λ,µ)
dµ

)(
d∆(λ,µ)
dλ

)−1
}
λ=υ+iω

=
{
− ω2

0

(
1 + e−λτ

)
2
(
λ+ δω0

)−ω2
0τµe−λτ

}
λ=υ+iω

=
{
∆(1)

111(λ,µ)

∆(2)
111(λ,µ)

}
λ=υ+iω

= G̃(λ,µ) + iM̃(λ,µ), i=√−1,

(3.5b)

with the representations

λ2 + 2δω0λ+ω2
0 =−ω2

0µ
(
1 + e−λτ

)
,

∆(1)
111(λ,µ) := µ−1(λ2 + 2δω0λ+ω2

0

)
,

∆(2)
111(λ,µ) := τµλ2 + 2µ

(
1 + δω0τ

)
λ+µ

(
ω2

0τ(1 +µ) + 2δω0
)
,

(3.5c)

G̃(λ,µ) := 1
µ
(
β2

111 +β2
112

){β111
(
ω2−ω2

0− 2δω0υ− υ2)+ 2ωβ112
(
υ+ δω0

)}
,

M̃(λ,µ) :=− 1
µ
(
β2

111 +β2
112

){2ωβ111
(
υ+ δω0

)
+β112

(
ω2−ω2

0− 2δω0υ− υ2)},
(3.5d)

β111 := τ(ω2− υ2)− 2δω0τυ−ω2
0τ(1 +µ) + 2

(
υ+ δω0

)
,

β112 :=−2ω
(
1− τ(υ+ δω0

))
,

(3.5e)

and putting υ = 0 into these equations will thus show that

Re
(
dλ

dµ

)
λ=iω

= {G̃(λ,µ)
}
λ=iω > 0, (3.5f)
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if the choice of values for the model parameters are such that the inequality

µ
(
ω2−ω2

0

){
τ
(
ω2

0(1 +µ)−ω2)+ 2δω0
}
> 4δω0ωµ

(
1 + δω0τ

)
, (3.5g)

holds. This means that the pair of eigenvalues λ1,2 = υ(µ)± iω(µ) of ∆(λ,µ) = 0 with
υ(µc)= 0, ω(µc) �= 0 will cross the imaginary axis from left to right in the complex plane
with a nonzero speed as the bifurcation parameter µ varies near its critical value µc. Also,
it ensures that the steady state stability of the system is lost at µ= µc, and instability in the
sense of supercritical and subcritical bifurcations will persist for larger values of µ. The
exact nature of such bifurcations satisfying Hopf ’s conditions (3.3)–(3.5) will depend on
the nonlinearity in the delay system.

Rewriting (3.4b) as a quadratic in ω2 and letting ω2 = ω̃, we have

ω̃2 +α1ω̃
2 +α2 = 0, α1 := 2ω2

0

(
2δ2− (1 +µ)

)
, α2 := ω4

0(1 + 2µ), (3.6a)

whose real and positive solutions are of the form

ω̃1 = 1
2

(
−α1 +

√
α2

1− 4α2

)
, ω̃2 = 1

2

(
−α1−

√
α2

1− 4α2

)
, (3.6b)

if the following hold:

α1 < 0 | 2δ2 < (1 +µ); α2
1− 4α2 > 0 | {2δ2− (1 +µ)

}2
> (1 + 2µ),

α1 < 0 | 2δ2 < (1 +µ); α2
1− 4α2 = 0 | {2δ2− (1 +µ)

}2 = (1 + 2µ).
(3.6c)

In addition, one has to show that the substitution of ω̃1 and ω̃2 into (3.5) will ensure
Hopf ’s transversality condition, that is, Re(dλ/dµ)λ=iω > 0. Therefore, with ω̃1 = ω2 and
Re(dλ/dµ)λ=iω > 0, we obtain

2ω2 +α1 = 0 | ω
ω0
=
√
−(2δ2− (1 +µ)

)
,

α2
1− 4α2 = 0 | (µ− 2δ(δ + 1)

)(
µ− 2δ(δ− 1)

)= 0,

∴ µ1 = 2δ(1 + δ) > 0, 0 < δ < 1, µ2 = 2δ(δ− 1) > 0, δ > 1,

(3.7a)

where by setting ωmin = ω and µmin = µ1, we have

µmin = 2δ(1 + δ),
ωmin

ω0
=
√
−(2δ2− (1 +µm

))= √1 + 2δ. (3.7b)

These are the minimum values separating the regimes of stable and unstable solutions
of the linearized delay equation at the Hopf bifurcation point µ= µc, λ1,2 =±iω(µmin)=
±iω0

√
1 + 2δ. Below and equal to these minimum values, all the infinite number of eigen-

values of the transcendental characteristic equation (3.2d) will lie in the left-hand side of
the complex plane. The minimum values are consistent with earlier computations by
Campbell et al. [1], Cooke and Grossman [5], and Fofana et al. [8].
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Next, deriving an expression for τ begins by further rewriting (3.3c) as follows:

sinωτ
1 + cosωτ

=− 2δω0ω

ω2
0−ω2

=− 2δ
(
ω/ω0

)
1− (ω/ω0

)2 , (3.8a)

where with cos2ωτ + sin2ωτ = 1 in mind and the trigonometric identity

tan
ωτ

2
=
√

sin2ωτ/2
cos2ωτ/2

=
√

1/2(1− cosωτ)
1/2(1 + cosωτ)

=
√

(1− cosωτ)(1 + cosωτ)
(1 + cosωτ)(1 + cosωτ)

=
√

1− cos2ωτ

(1 + cosωτ)2
=
√√√√ sin2ωτ

(1 + cosωτ)2

=
∣∣∣∣ sinωτ

1 + cosωτ

∣∣∣∣= sinωτ
1 + cosωτ

,

(3.8b)

so that

ωτκ
2
= arctan

(
sinωτκ

1 + cosωτκ

)
+πκ, κ= 0,1,2,3, . . . ,n, . . . , (3.8c)

we obtain

τκ = 2
ω

(
arctan

(
− 2δ

(
ω/ω0

)
1− (ω/ω0

)2

)
+πκ

)
, (3.8d)

and using the minimum value for ωmin in (3.7b), we get

τκ,min = 2

ω0
√

1 + 2δ

(
arctan

(
− 2δ

√
1 + 2δ

1− (√1 + 2δ
)2

)
+πκ

)

= 2

ω0
√

1 + 2δ

(
arctan

(√
1 + 2δ

)
+πκ

)
κ= 0,1,2,3, . . . ,n, . . . .

(3.8e)

With these minimum values for the gain µmin, time delay τκ,min, and the response fre-
quency ωmin = ω0

√
1 + 2δ, one can describe all the critical settings of the model parame-

ters in the delay equation (3.1) at which unstable-free oscillation persists. Should unstable
oscillations appear at some desired frequency such thatωmin = ω0

√
1 + 2δ > 1, fine-tuning

the model parameters in the vicinity of their critical settings can control such oscillations.
To find out whether the bifurcations are supercritical and/or subcritical, we carry out a
local centre manifold analysis of the nonlinear delay equation (3.1) as presented in the
preceding section.
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3.2. Nonlinear analysis. We begin by defining the elements of the initial continuous
function φ(θ)∈ C and its projections φP(θ), φQ(θ) onto the centre and stable subspaces
P,Q ∈ C. For the eigenvalues of λ=±iω, we have φP(θ)=Φ(θ)b with φPκ (θ)= eλκθ ,−τ ≤
θ ≤ 0 of the generalized eigenspace P ∈ C and ψP̂(s) = Ψ(s)b̂, ψP̂j (s)e−λj s, 0 ≤ s ≤ τ, j =
κ= 1,2 of the adjoint generalized eigenspace P̂ ∈ Ĉ. The values of the basis Φ(θ)∈ C for
P is thus given by

Φ(θ)b= [φ1(θ),φ2(θ)
]= c1e

iωθ

[
1
−iω

]
+ c2e

−iωθ
[

1
iω

]

=
[

c1eiω + c2e−iω

−iωc1eiω + iωc2e−iω

]
, −τ ≤ θ ≤ 0,

=
[ (

c1 + c2
)

cosωθ i
(
c1− c2

)
sinωθ

ω
(
c1 + c2

)
sinωθ −iω(c1− c2

)
cosωθ

][
cosωθ −sinωθ
ω sinωθ ωcosωθ

][
b1

b2

]
,

(3.9a)

where

c1 := p+ iq, c2 := p− iq | c1 + c2 = 2p := b1, i
(
c1− c2

)=−2q :=−b2, (3.9b)

and similarly the basis Ψ(s)∈ Ĉ for P̂ is of the form

Ψ(s)= [ψ1(s),ψ2(s)
]T = [ cosωs ω sinωs

−sinωs ωcosωs

]
, 0≤ s≤ τ. (3.9c)

These bases form the inner product matrix

(
Ψ(s),Φ(θ)

)= [ψ1(s)

ψ2(s)

][
φ1(θ) φ2(θ)

]

=
[(
ψ1(s)φ1(θ)

) (
ψ1(s)φ2(θ)

)(
ψ2(s)φ1(θ)

) (
ψ2(s)φ2(θ)

)] ,

(3.10a)

in which

(
ψ1(s)φ1(θ)

)= (cosωscosωθ +ω2 sinωssinωθ
)
,(

ψ1(s)φ2(θ)
)=−(cosωssinωθ−ω2 sinωscosωθ

)
,(

ψ2(s)φ1(θ)
)=−(sinωscosωθ−ω2 cosωssinωθ

)
,(

ψ2(s)φ2(θ)
)= (sinωssinωθ +ω2 cosωssinωθ

)
.

(3.10b)



324 Dimensional reduction of nonlinear time delay systems

The substitution of the elements of (Ψ(s),Φ(θ)) into the bilinear relation (3.2c) yields the
nonsingular matrix (i.e., det(Ψ,Φ)nsg �= 0)

(Ψ,Φ)nsg =
[(
ψ1,φ1

) (
ψ1,φ2

)(
ψ2,φ1

) (
ψ2,φ2

)] , (3.11a)

where

(
ψ1,φ1

)= 1− 1
2
ω2

0µ
{(

1
ω
−ω

)
sinωτ + τ

(
1 +ω2)cosωτ

}
,

(
ψ1,φ2

)=−1
2
ω2

0τµ
(
1 +ω2)sinωτ,(

ψ2,φ1
)= 1

2
ω2

0τµ
(
1 +ω2)sinωτ,

(
ψ2,φ2

)= ω2 +
1
2
ω2

0µ
{(

1
ω
−ω

)
sinωτ − τ(1 +ω2)cosωτ

}
.

(3.11b)

Then, the basis Ψ(s) for P̂ ∈ Ĉ of the adjoint equation (3.2b) is normalized to Ψ̄(s) =
[ψ̄1(s), ψ̄2(s)]T ∈ Ĉ, computing Ψ̄(s)= (Ψ,Φ)−1

nsgΨ(s) to yield

Ψ̄(s)=
[
ψ̄11(s) ψ̄12(s)
ψ̄21(s) ψ̄22(s)

]
, 0≤ s≤ τ,

ψ̄11(s)= 1
det

(
(Ψ,Φ)−1

nsg

){(ψ2,φ2
)

cosωs+
(
ψ1,φ2

)
sinωs

}
,

ψ̄12(s)= ω

det
(
(Ψ,Φ)−1

nsg

){(ψ2,φ2
)

sinωs− (ψ1,φ2
)

cosωs
}

,

ψ̄21(s)=− 1
det

(
(Ψ,Φ)−1

nsg

){(ψ2,φ1
)

cosωs+
(
ψ1,φ1

)
sinωs

}
,

ψ̄22(s)=− ω

det
(
(Ψ,Φ)−1

nsg

){(ψ2,φ1
)

sinωs− (ψ1,φ1
)

cosωs
}

,

det
(
(Ψ,Φ)−1

nsg

)= {(ψ1,φ1
)(
ψ2,φ2

)− (ψ1,φ2
)(
ψ2,φ1

)}
,

(3.12a)

where the substitution of the new elements (ψj(s),φk(θ)), j,k = 1,2 into (3.2c) will lead
to the identity matrix

(Ψ,Φ)id = 1
det

(
(Ψ,Φ)−1

nsg

) [det
(
(Ψ,Φ)−1

nsg

)
0

0 det
(
(Ψ,Φ)−1

nsg

)]= [1 0
0 1

]
. (3.12b)

Consequently, the constant matrices B ∈ C and B̂ ∈ Ĉ are equivalent, and the elements of
B at Hopf bifurcation are B = [[0,ω]T , [−ω,0]T].
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With the algebraic simplifications

eBθ = I +Bθ +
(Bθ)2

2
+

(Bθ)3

3!
+

(Bθ)4

4!
+

(Bθ)5

5!
+ ···

=
[

1 0
0 1

]
+ θ

[
0 −ω
ω 0

]
+
θ2

2

[
0 −ω
ω 0

]2

+
θ3

6

[
0 −ω
ω 0

]3

+
θ4

24

[
0 −ω
ω 0

]4

+
θ5

120

[
0 −ω
ω 0

]5

+ ···

=


(

1− ω2θ2

2
+ ···

)
−
(
ωθ− ω3θ3

6
+ ···

)
(
ωθ− ω3θ3

6
+ ···

) (
1− ω2θ2

2
+ ···

)
=

[
cosωθ −sinωθ
sinωθ cosωθ

]
,

(3.13a)

one can easily see that

Φ(θ)=Φ(0)eBθ =
[

cos(0) −sin(0)
ω sin(0) ωcos(0)

][
cosωθ −sinωθ
sinωθ cosωθ

]

=
[

1 0
0 ω

][
cosωθ −sinωθ
sinωθ cosωθ

]

=
[

cosωθ −sinωθ
ω sinωθ ωcosωθ

]
, −τ ≤ θ ≤ 0,

(3.13b)

and it follows that J(t,µ)Φ(θ) = Φ(0)eB(θ+t) is indeed the solution operator of the lin-

earized delay equations in C. Similarly, we have Ψ̄(s)= Ψ̄(0)e−B̂s, 0≤ s≤ τ and Ĵ(t̂,µ)Ψ̄(s)

= Ψ̄(0)eB̂(t̂+s) is the solution operator for the adjoint delay equations in Ĉ.
By the change of variables xPt (θ,µ,ε) = Φ(θ)y(t) + xQt (θ,µ,ε) with y(t) ∈ R2, y(t) =

(Ψ̄(s),φP(θ)), we obtain as the following a first-order approximation in ε, for θ =−τ,

[
x1(t− τ)
x2(t− τ)

]
=
[

cosω(−τ) −sinω(−τ)
ω sinω(−τ) ωcosω(−τ)

][
y1(t)
y2(t)

]

=
[

cosωτ sinωτ
−ω sinωτ ωcosωτ

][
y1(t)
y2(t)

]

=
[

y1(t)cosωτ + y2(t)sinωτ
−y1(t)ω sinωτ + y2(t)ωcosωτ

]
,

(3.14a)

and for θ = 0, [
x1(t− 0)
x2(t− 0)

]
=
[

cosω(0) −sinω(0)
ω sinω(0) ωcosω(0)

][
y1(t)
y2(t)

]

=
[

1 0
0 ω

][
y1(t)
y2(t)

]
=
[
y1(t)
ωy2(t)

]
.

(3.14b)



326 Dimensional reduction of nonlinear time delay systems

Hence, the centre manifold ODEs in C([−τ,0],Rn) are of the form

ẏ1(t)=−ωy2− εω2
0ψ̄12(0)

{
σ3
(
y1(1 + cosωτ)+y2 sinωτ

)3
+µ̃
(
y1(1 + cosωτ)+y2 sinωτ

)}
,

ẏ2(t)=ωy1−εω2
0ψ̄22(0)

{
σ3
(
y1(1 + cosωτ)+y2 sinωτ

)3
+µ̃(y1

(
1 + cosωτ)+y2 sinωτ

)}
,

(3.15)

where ψ̄12(0), ψ̄22(0) are the values for s= 0 in the normalized function Ψ̄(s)∈ Ĉ([0,τ],
Rn) for all values of t ∈ [−τ,∞). By using the transformation

z1 = y1−mωy2, z2 =mωy1 + y2, m := ψ̄12(0)
ωψ̄22(0)

, (3.16a)

so that the substitution of

y1 = 1
1 +m2ω2

(
z1 +mωz2

)
, y2 =− 1

1 +m2ω2

(
mωz1− z2

)
, (3.16b)

into the perturbation

g
(
y1, y2,µ,ε

)
:= σ3ω

2
0

(
y1(1 + cosωτ) + y2 sinωτ

)3
+ µ̃ω2

0

(
y1(1 + cosωτ) + y2 sinωτ

)
,

(3.16c)

we obtain

G
(
z1,z2,µ,ε

)
:= σ3ω

2
0(

1 +m2ω2
)3

{(
z1 +mωz2

)
(1 + cosωτ)− (mωz1− z2

)
sinωτ

}3

+ µ̃ω2
0

{(
z1 +mωz2

)
(1 + cosωτ)− (mωz1− z2

)
sinωτ

}
.

(3.16d)

Hence, the centre manifold ODEs are further written into the form

ż1(t)=−ωz2,

ż2(t)= ωz1− ε ψ̄
2
12(0) + ψ̄2

22(0)
ψ̄22(0)

G
(
z1,z2,µ,ε

)
.

(3.17)

Bifurcation scenarios of (3.17) leading to stable and unstable regimes can be described
using standard mathematical tools of nonlinear dynamics [9].

4. The van der Pol equation with delay

Consider the infinite-dimensional reduction of the delay version of the van der Pol-type
equation

ẍ(t) + εβ3
(
x2(t− τ)− 2δω0

)
ẋ(t− τ) +ω2

0x(t)= 0 (4.1)

in C := C([−τ,0],Rn), where β3 is a real coefficient representing the perturbation. The
linearized part of (4.1) in C and its corresponding adjoint form in Ĉ([0,τ],Rn) have
eigenvalues λ satisfying the characteristic equation ∆ := λ2 +ω2

0 = 0. Clearly, λ1,2=±iω0
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are eigenvalues of ∆= 0, and the corresponding bases Φ(θ) of P ∈ C and Ψ(s) of P̂ ∈ Ĉ
are therefore given by

Φ(θ)= [φ1(θ),φ2(θ)
]= [ cosωθ

(
ω0
)−1

sinωθ
−ω sub0sinωθ cosωθ

]
, −τ ≤ θ ≤ 0,

Ψ(s)= [ψ1(s),ψ2(s)
]T = [ cosωs −ω sub0sinωs(

ω0
)−1

sinωθ cosωs

]
, 0≤ s≤ τ.

(4.2)

Proceeding exactly as above, the change of variables xPt (θ) = Φ(θ)y(t) + xQt (φ(θ),µ,ε),
y(t)∈R2 will give rise to

x1(t)= y1(t), x2(t)= y2(t), θ = 0,

x1(t− τ)= y1 cosω0τ − y2
(
ω0
)−1

sinω0τ,

x2(t− τ)= y1ω0 sinω0τ + y2 cosω0τ, θ =−τ.
(4.3)

The equivalent centre manifold ODEs for the delay version van der Pol equation (3.16)
are thus given by

ẏ1(t)= y2,

ẏ2(t)=−ω2
0 y1− εβ3

{(
y1 cosω0τ − 1

ω0
y2 sinω0τ

)2

− 2δω0

}
× {y1ω0 sinω0τ + y2 cosω0τ

}
.

(4.4)

Again, possible bifurcations can be determined for different values of the time delay τ > 0.

5. Conclusion

The role of the centre manifold theorem and Hopf bifurcation theorem in the infinite-
dimensional reduction of DDEs to finite-dimensional ODEs has been established. The
underlying mathematical arguments of the reduction approach based upon the work by
Hale [10] are presented. The time delay versions of the Duffing and van der Pol equations
are considered as illustrative examples.
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