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The existence of maximal and minimal fixed points for various set-valued operators is
discussed. This paper presents some new fixed point theorems in ordered Banach spaces.
A necessary and sufficient condition for the existence of the fixed point to a class of mul-
tivalued maps has been obtained. The uniqueness of the positive fixed point has been
discussed. The results extend and improve the corresponding results. As an application,
we utilize the results to study the existence and uniqueness of positive fixed points for
a class of convex operators. In the end, we give a simple application to certain integral
equations.

1. Introduction

This paper presents some new fixed point theorems for multivalued maps in ordered
Banach spaces. Our arguments rely on the properties of closed convex cone in real Banach
spaces (see [6, 8]) and the Kuratowski measure of noncompactness [9]. Our results extend
and improve the corresponding results presented in the literature (see [1], [5, Chapter 3]).

We proceed as follows. In Section 2, we present basic concepts and results in ordered
Banach spaces. In Section 3, the main results and proofs are given. The results in [1] and
[5, Chapter 3] turn out to be special cases of our main results.

Motivated by the ideas and results in [11], we give in Section 4 a necessary and suffi-
cient condition for the existence of the fixed point to a class of multivalued maps which
satisfy certain conditions. At the end of Section 4, the uniqueness of the positive fixed
point has been discussed sketchily. To demonstrate the applicability of our results, we
study the existence and uniqueness of positive fixed points for a class of convex operators
and give in the final section of the paper a simple application to certain integral equations.

2. Preliminaries

In this section, we summarize some basic concepts and results in real Banach spaces.
Let X be a real Banach space and let S be a nonempty subset of X . Suppose that F :

S→ 2X ; here 2X denotes the family of nonempty subsets of X . Then F is said to be upper
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semi-continuous at x0 ∈ S if for any xn ∈ S, {xn} → x0 (as n→∞) and yn ∈ F(xn), {yn} →
y0 (as n→∞) implies that y0 ∈ F(x0). If F is upper semicontinuous at each point of S,
then F is called upper semi-continuous on S. Point x ∈ S is called a fixed point of F if
x ∈ F(x).

If A is a subset of X and c is a real number, we denote cA = {ca : a ∈ A}. Let ΩX be
bounded subsets of X , the Kuratowski measure of noncompactness is the map α : ΩX →
[0,+∞) defined by (here, D ∈ΩX)

α(D)= inf

{
r > 0 : D ⊂

n⋃
i=1

Di and diam
(
Di
)≤ r

}
. (2.1)

Then we have (see [10, 12, 13])
(1) α(A)= 0⇔ A is a relatively compact set;
(2) A⊂ B⇒ α(A)≤ α(B), here A, B are bounded subsets of X ; and

(i) F : S→ 2X is k-set contractive (here k ≥ 0) if α(F(W))≤ kα(W) for all non-
empty, bounded sets W of S;

(ii) F : S→ 2X is condensing if F is 1-set contractive and α(F(W)) < α(W) for all
nonempty, bounded sets W of S with α(W) 	= 0.

Following the terminology in [10], we say that a nonempty subset P ⊂ X is a convex
cone if P +P = P, λP ⊂ P for all real number λ≥ 0. If the cone is pointed, (i.e., P∩−P =
{0}) such a cone P induces an ordering on X . For x, y ∈ X , we write x ≥ y if x− y ∈ P. If
x ≤ y, the set [x, y]= {z ∈ X | x ≤ z ≤ y} is called the order interval between x and y.

Putting P̊ = {x ∈ P | x is an interior point of P}, a cone P is said to be solid if its inte-

rior P̊ is nonempty. In the case y− x ∈ P̊, we write x� y.
For all x, y ∈ X , the notation x ∼ y means that there exist λ > 0 and µ > 0 such that

λx ≤ y ≤ µx; clearly, ∼ is an equivalence relation. Given h > θ (i.e., h≥ θ and h 	= θ), we
denote by Ph the set

Ph = {x ∈ X | there exist λ(x),µ(x) > 0 such that λ(x)h≤ x ≤ µ(x)h}, (2.2)

and it is easy to see that Ph ⊂ P. These concepts discussed above can be found in [5, 6].
We will need the following definition [7, 8].

Definition 2.1. Given a closed convex cone P in the real Banach space X , the following
exist.

(i) P is normal if there exists b > 0, for all x, y ∈ P : x ≤ y⇒‖x‖ ≤ b‖y‖.
(ii) P is regular if every monotonically decreasing sequence x1 ≥ x2 ≥ . . ., which is

bounded from below by some element x̄ ∈ X , converges in norm.
(iii) P is strongly minimal if it follows from any bounded above set D ⊂ X that D has

supremum.

Definition 2.2 (see [14]). Let A be a positive single-valued mapping on P̊ and let α∈ R.
Then, say A is α-concave (α-convex) if and only if A(tx) ≥ tαAx(A(tx) ≤ tαAx) for all

x ∈ P̊ and t ∈ (0,1].
Let A be a positive mapping on P̊ which is α-concave (α ∈ [0,1]), and choose h ∈ P̊,

then Ph = P̊. So there exist λ,µ∈R+ (R+ denotes the positive reals) such that λh≤Ax≤µh
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and A(tx)≥ tαAx ≥ tAx for t ∈ (0,1]. Thus α-concave mappings are concave in the sense
of Martin (see [12, Page 185]). Similar remarks apply to α-convex mappings. Note also

that A is α-concave (α-convex) if and only if A(sx) ≤ sαAx(A(sx) ≥ sαAx) for all x ∈ P̊
and s≥ 1.

The following statements play a very important role in the proofs of main results. For
A,B ⊂ X , we write A≤sB (A≥s B) if a≤ b (a≥ b) for any a∈ A, b ∈ B. A map F : S→ 2X

is said to be increasing if x ≤ y implies that F(x) ≤s F(y). As a direct consequence, we
have that if A≤s A, then A is a singleton.

3. Maximal and minimal fixed point theorems

Throughout this section, we always assume that X is a real Banach space with a partial
order introduced by a closed convex cone P ofX . Take u0, v0 ∈ X , u0 < v0 andD = [u0,v0].

Theorem 3.1. Let F : D → 2D be an upper semicontinuous, increasing mapping with
nonempty value and let P be a regular cone. Then F has maximal and minimal fixed points
on [u0,v0].

Proof. Since F(u0) is nonempty, there exists u1 ∈ F(u0) such that u1 ≥ u0. If u1 = u0,
then u0 is a fixed point of F. So we can assume without loss of generality that u1 > u0,
therefore, F(u0) ≤s F(u1). So there is u2 ∈ F(u1) such that u2 ≥ u1, if u2 = u1, then u1 is
a fixed point. Also, we can assume that u2 > u1. In general, having defined un ∈ F(un−1)
such that un−1 ≤ un if un = un−1, then un−1 is a fixed point of F. Without loss of generality,
assume that un−1 < un. Repeating this process, we can obtain an increasing sequence as
follows:

u0 ≤ u1 ≤ ··· ≤ un ≤ ··· ≤ v0. (3.1)

Since P is regular, there exists u∗ such that un → u∗ as n→∞. On the other hand, from
the facts un ∈ F(un−1) and F is upper semicontinuous, it follows that u∗ ∈ F(u∗). That is
to say, u∗ is a fixed point of F.

Similarly, we can prove that there exists v∗ such that v∗ ∈ F(v∗).
In the following, we will show that u∗, v∗ are the maximal and minimal fixed points

of F on the order interval [u0,v0], respectively.
Suppose that u0 ≤ x̄ ≤ v0 with x̄ ∈ F(x̄). Then F(u0) ≤s F(x̄) ≤s F(v0), so we obtain

u1 ≤ x̄ ≤ v1. Repeating this process, we have F(un−1)≤s F(x̄)≤s F(vn−1), hence, un ≤ x̄ ≤
vn, passing the limit, u∗ ≤ x̄ ≤ v∗. This completes the proof. �

It is of interest to remark on the single-valued version of the Theorem 3.1.

Remark 3.2. (i) The conditions in Theorem 3.1 imply that {u0} ≤s F(u0),F(v0)≤s {v0}.
(ii) If u0 ∈ F(u0), then u0 is the minimal fixed point of F in D. Otherwise, if ui ∈

F(ui) for certain i 	= 0, we can prove that ui is the minimal fixed point of F in D. In fact,
supposing that ū∈ F(ū), ū∈D, ū 	= ui, then u0 < ū. Similar to the proof of Theorem 3.1,
we have ui ≤ ū. Similarly, if vj ∈ F(vj) for certain j, then vj is the maximal fixed point of
F in D.

(iii) If F is a singled-valued upper semicontinuous mapping, then it is continuous.
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In addition, we have the following corollary.

Corollary 3.3 (see [5]). Let cone P be regular and let F : D→ X be a single-valued con-
tinuous, increasing mapping, assume that

u0 ≤ F
(
u0
)
, F

(
v0
)≤ v0. (3.2)

Then F has maximal and minimal fixed points x∗, x∗ on [u0,v0] and

x∗ = lim
n→∞vn, x∗ = lim

n→∞un, (3.3)

where vn = F(vn−1), un = F(un−1) (n= 1,2, . . .) satisfy

u0 ≤ u1 ≤ ··· ≤ un ≤ vn ≤ ··· ≤ v1 ≤ v0. (3.4)

Proof. Since F : D→ X is a single-valued increasing mapping, and the facts u0 ≤ F(u0),
F(v0)≤ v0, we can obtain

u0 ≤ F
(
u0
)≤ F(x)≤ F

(
v0
)≤ v0, ∀x ∈ [u0,v0]. (3.5)

Thus, F : D → D. Note that F : D → X is continuous, we know that F : D → D is also
upper semicontinuous. By Theorem 3.1, F has maximal and minimal fixed points x∗, x∗
on [u0,v0]. From the proof of Theorem 3.1, (3.2) and (3.3) can be easily proved. �

Theorem 3.4. Let F : D→ 2D be an upper semicontinuous, increasing, condensing mapping
with nonempty value and let P be a normal cone. Then F has maximal and minimal fixed
points on [u0,v0].

Proof. From the proof of Theorem 3.1, we obtain

u0 ≤ u1 ≤ ··· ≤ un ≤ ··· ≤ v0,

v0 ≥ v1 ≥ ··· ≥ vn ≥ ··· ≥ u0,
(3.6)

where un ∈ F(un−1), vn ∈ F(vn−1) (n = 1,2, . . .), un ≤ vn. Evidently, {un},{vn} ⊂ [u0,v0].
Since P is normal, then {un}, {vn} are bounded sequences.

Suppose that α({un}) > 0, it follows from un ∈ F(un−1) that {un} ⊂ F({un})⊂ [u0,v0].
Thus α({un}) ≤ α(F({un})). Since F is condensing, we have α(F({un})) < α({un}). This
is a contradiction. So α({un})= 0, thus {un} is relatively compact in D. Therefore, there
exists a convergent subsequence {unk} ⊂ {un} and u∗ ∈D such that unk → u∗ as k→∞.

Now we prove that un→ u∗. Suppose that this is not the case, then there exist a ε0 > 0
and a subsequence {un′i } of {un} such that

∥∥un′i −u∗
∥∥≥ ε0 (i= 1,2, . . .). (3.7)

By the relative compactness of {un}, we know that there exists a subsequence {un′i j } of

{un′i } such that un′i j → ū ( j →∞). Hence, forany given k, it follows from the increasing of

{un} that when j is large enough, unk ≤ un′i j .



Z. Chengbo and Y. Chen 3251

First letting j →∞ and then letting k→∞, we have u∗ ≤ ū.
Similarly, we can also prove that ū ≤ u∗. Hence u∗ = ū. This implies that when j is

large enough, we have

∥∥un′i j −u∗
∥∥ < ε0. (3.8)

This contradicts

∥∥un′i −u∗
∥∥≥ ε0 (∀i). (3.9)

This completes the proof of un→ u∗(n→∞). �

Similarly, we can prove that there exists v∗ such that vn→ v∗ (n→∞).
The remainder is same as Theorem 3.1. We omit it.

Corollary 3.5 (see [5]). Let P be a normal cone and let F : D → X be a single-valued
increasing, condensing mapping (condensing mapping F possesses that F is continuous). As-
sume that (3.2) holds. Then F has maximal and minimal fixed points x∗, x∗ on [u0,v0] such
that (3.3), (3.4) hold.

Proof. Similar to the proof of Corollary 3.3, we have F : D→D. Since F : D→ X is a con-
densing mapping, we know that F : D→D is continuous. Thus, F : D→D is upper semi-
continuous. So all the conditions of Theorem 3.4 are satisfied. The conclusion follows
from Theorem 3.4. �

Theorem 3.6. Let cone P be strongly minimal and let F : D→ 2D be an increasing mapping
with nonempty value. Then F has fixed points x̄, x on [u0,v0], where

x̄ = sup
{
x | u0 ≤ x ≤ v0, u≥ x, ∀u∈ F(x)

}
,

x = inf
{
x | u0 ≤ x ≤ v0, v ≤ x, ∀v ∈ F(x)

}
.

(3.10)

Proof. Let Ω = {x | u0 ≤ x ≤ v0, u ≥ x, ∀u ∈ F(x)}. Evidently, Ω is nonempty (u0 ∈Ω)
and Ω has an upper bound v0. From P being strongly minimal, we know that

x̄ = supΩ exists, thus u0 ≤ x̄ ≤ v0. (3.11)

In the following, we prove that x̄ is the fixed point of F on [u0,v0].
For x ∈Ω, u0 ≤ x ≤ x̄ ≤ v0 holds. So we obtain

{
u0
}≤s F(x)≤s F(x̄)≤s

{
v0
}
. (3.12)

Since {x} ≤s F(x), then {x} ≤s F(x̄), which implies that u≥ x for all u∈ F(x̄). That is to
say, for all u ∈ F(x̄) is the upper bound of Ω. Therefore, x̄ ≤ u for all u ∈ F(x̄). Hence,
F(x̄) ≤s F(u) for all u ∈ F(x̄). So {u} ≤s F(u) for ∀u ∈ F(x̄). By the definition of Ω, we
have u∈Ω, thus F(x̄)⊂Ω. It follows that F(x̄)≤s {x̄}. So u≤ x̄ for all u∈ F(x̄). Conse-
quently, x̄ = u, namely, F(x̄)= {x̄} (a singleton). This implies that x̄ is the fixed point of
F on [u0,v0].
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Similarly, we can prove that

x = inf
{
x | u0 ≤ x ≤ v0, v ≤ x, ∀v ∈ F(x)

}
(3.13)

is the fixed point of F on [u0,v0]. �

Remark 3.7. Here we remove the assumption that F is upper semicontinuous. If F is a
single-valued mapping, then

x̄ = sup{x | u0 ≤ x ≤ v0, F(x)≥ x},
x = inf{x | u0 ≤ x ≤ v0, F(x)≤ x} (3.14)

are the maximal and minimal fixed points of F on [u0,v0]. In fact, suppose that there is
x∗ ∈ [u0,v0] such that F(x∗) = x∗, then we have x∗ ∈ {x | u0 ≤ x ≤ v0, F(x) ≥ x} and
x∗ ∈ {x | u0 ≤ x ≤ v0, F(x)≤ x}. Thus, x ≤ x∗ ≤ x̄. This shows the following corollary.

Corollary 3.8 (see [1]). Let cone P be strongly minimal and let F : D→ X be a single-
valued increasing mapping. In addition, (3.2) holds. Then F has maximal and minimal
fixed points on [u0,v0].

4. Necessity and sufficiency

In this section, we present a necessary and sufficient condition for the existence of the
fixed point to multivalued maps which satisfy some conditions. In addition, we can obtain
the uniqueness result under relatively strong conditions. We also do not assume that the
mapping is upper semicontinuous.

Theorem 4.1. Let cone P be normal and let F : Ph → 2Ph be an increasing mapping with
nonempty value. In addition, there exist µ∈ (0,1) such that

F(tx)≥s tµF(x), for t ∈ (0,1), ∀x ∈ Ph. (4.1)

Then a necessary and sufficient condition for F to have a fixed point in Ph is that the following
holds. There exist u0,v0 ∈ Ph with u0 < v0 such that

{
u0
}≤s F

(
u0
)
, F

(
v0
)≤s

{
v0
}
. (4.2)

Proof. (1) Sufficiency. From the proof of Theorem 3.1, we obtain

u0 ≤ u1 ≤ ··· ≤ un ≤ ··· ≤ v0,

v0 ≥ v1 ≥ ··· ≥ vn ≥ ··· ≥ u0,
(4.3)

where un ∈ F(un−1), vn ∈ F(vn−1) (n = 1,2, . . .), un ≤ vn. The fact that u0,v0 ∈ Ph, u0 <
v0 shows that there is λ0 ∈ (0,1) such that u0 ≥ λ0v0, then we have λ0

µF(v0) ≤s F(u0).
This implies that u1 ≥ λ0

µv1, then λ0
µ2

F(v1)≤s F(u1), and so u2 ≥ λ0
µ2

v2. Repeating this
process, we can obtain un ≥ λ0

µnvn. Therefore,

0≤ vn−un ≤ vn− λ0
µnvn =

(
1− λ0

µn)vn < (1− λ0
µn)v0. (4.4)



Z. Chengbo and Y. Chen 3253

By the normality of cone P, we have

∥∥vn−un
∥∥≤N

(
1− λ0

µn)∥∥v0
∥∥−→ 0 (n−→∞), (4.5)

here N is the normal constant. Further,

0≤ un+p−un ≤ vn−un,

0≤ vn− vn+p ≤ vn−un (p ∈N).
(4.6)

Thus, ∥∥un+p−un
∥∥≤N

∥∥vn−un
∥∥−→ 0 (n−→∞),∥∥vn− vn+p

∥∥≤N
∥∥vn−un

∥∥−→ 0 (n−→∞).
(4.7)

So we can claim that {un}, {vn} are Cauchy sequences. Then there exists u∗ such that
un → u∗ as n→∞ and vn → u∗ as n→∞. It follows that un < u∗ < vn. Thus, F(un) ≤s

F(u∗)≤s F(vn). Since un+1 ∈ F(un), vn+1 ∈ F(vn), we obtain

un+1 ≤ u≤ vn+1, ∀u∈ F
(
u∗
)
, (4.8)

passing the limit in (4.8), u = u∗, namely, F(u∗) = {u∗}. This implies that u∗ is a fixed
point of F.

(2) Necessity. Let x0 be the fixed point of F, then tµF(x0)≤s F(tx0). Take t0 sufficiently
small such that t0µ > t0, then

{
t0u
}≤s

{
t0
µu
}≤s F

(
t0x0

)
, ∀u∈ F

(
x0
)
, (4.9)

which implies that

{
t0u | ∀u∈ F

(
x0
)}≤s F

(
t0x0

)
, (4.10)

that is, t0F(x0)≤s F(t0x0). It follows from tµF(x0)≤s F(tx0) that

F
(
x0
)= F

(
t · 1

t
x0

)
≥s tµF

(
1
t
x0

)
. (4.11)

So we have

F
(

1
t
x0

)
≤s 1

tµ
F
(
x0
)
, (4.12)

and we can choose t1 sufficiently small satisfying 1/t1µ < 1/t1, then

F
(

1
t1
x0

)
≤s
{

1
t1µ

u
}
≤s
{

1
t1
u
}

, ∀u∈ F
(
x0
)
. (4.13)

That is,

F
(

1
t1
x0

)
≤s
{

1
t1
u | ∀u∈ F

(
x0
)}= 1

t1
F
(
x0
)
. (4.14)
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Now we write t̄ =min{t0, t1} < 1, u0 = t̄x0, v0 = (1/t̄)x0. Then

u0 < v0,
{
u0
}≤s F

(
u0
)
, F

(
v0
)≤s

{
v0
}
. (4.15)

Taking λ0 ∈ (0, t̄ 2), we have u0 ≥ λ0v0. The proof is complete. �

The uniqueness of the positive fixed point appears somewhat difficult to study. In the
following, we give a result under relatively strong conditions.

Theorem 4.2. Let cone P be normal and let F : Ph → 2D be a strictly increasing mapping
(i.e., x < y implies that F(x) <s F(y)) with nonempty value. In addition, assume that

(i) u0,v0 ∈ Ph and u0 /∈ F(u0),v0 /∈ F(v0);
(ii) there exists µ∈ (0,1) such that F(tx)≥s tµF(x) for t ∈ (0,1),for all x ∈ P.

Then F has a unique fixed point in D.

Proof. From (i), we have

u0 < u1 < ··· < un < ··· < vn < ··· < v1 < v0, (4.16)

where un ∈ F(un−1), vn ∈ F(vn−1) (n= 1,2, . . .).
From the sufficiency of Theorem 4.1, we know that there exists u∗ ∈D such that un→

u∗, vn→ u∗, u∗ ∈ F(u∗).
In the following, we prove that u∗ is the unique fixed point of F in D. In fact, suppose

that ū is the fixed point of F with ū 	= u∗, then u0 < ū < v0. So F(u0) <s F(ū) <s F(v0), thus
u1 < ū < v1. Repeating this process, we have

un < ū < vn, (4.17)

passing the limit in (4.17), ū= u∗. This is a contradiction. This completes the proof. �

From a theoretical viewpoint, it is of interest to discuss the single-valued version of
Theorems 4.1 and 4.2, then in that case, the operator is called µ-convex, some results of
this type can be found in [4, 14].

5. Applications

It is well known that concave and convex operators defined on a cone in a Banach space
play an important role in theory of positive operators (see e.g., [7, Chapter 6]). In [14],
Potter introduced the definitions of α-concave operators and α-convex operators, he
shows that for α ≥ 0, increasing α-concave and decreasing (−α)-convex mappings have
contraction ratios less than or equal to α and give the existence of solutions to the non-
linear eigenvalue problem Ax = λx. The method is based upon Hilbert’s projective metric
(see [2] for details). In [15], the author improves the corresponding results presented in
[14] by using contraction mapping theorem. In [4], Guo widens the conditions and re-
moves the hypotheses of continuation for operators, and then extends the results of fixed
points, eigenvectors for α-concave (−α-convex) operators. However, they restrict their
attention to 0 <| α |≤ 1, while for the remaining cases α > 1 and α <−1, the research pro-
ceeds slowly and appears difficult because Hilbert’s projective metric is useless for these
cases. Up to now, pleasant results are seldom obtained.
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The aim of this section is to obtain the existence and uniqueness of positive fixed points
for α-convex (α > 1) operators by using Theorem 4.1.

Theorem 5.1. Let E be a real Banach space and let P be a normal cone in E. Let A : Ph→ Ph
be an increasing α-convex operator (α > 1), that is, A(tx) ≤ tαAx for all x ∈ Ph and t ∈
(0,1]. Assume that there exists a nonempty, totally ordered set S⊂ Ph such that

(i) λS⊂ S (λ∈ (0,1)), AS= S;
(ii) Av0 ≥ v0 for certain v0 ∈ S.

Then A has exactly one positive fixed point in S.

Proof. Now we divide the proof into several steps.

Step 1. Consider the operator A : S→ S. For all y ∈ S, set A−1y = {x ∈ S : Ax = y}. Then
A−1 : S→ 2S is a set-valued mapping. Consequently, we have the following conclusions.

(a) A−1 is increasing in the sense of set-valued mappings.
In fact, if y1 > y2 for all y1, y2 ∈ S, then A−1y1 ≥s A−1y2. Suppose that this is not true,

then we have x1 < x2 for all x1 ∈A−1y1, x2 ∈ A−1y2. Using the monotonicity of A, we have
Ax1 ≤ Ax2, that is to say, y1 ≤ y2, this is a contradiction.

(b) A−1(sy)≥s s1/αA−1y for y ∈ S, s∈ (0,1).
For x ∈ A−1y, then Ax = y and A(tx)≤ tαAx, for t ∈ (0,1). Let s= tα, then we have
A(s1/αx)≤ sAx, and (a) implies that A−1(A(s1/αx))≤s A−1(sAx). Thus

{
s1/αx

}≤s A−1(sy), ∀x ∈A−1y. (5.1)

By the arbitrariness of x, one obtains that

{
s1/αx | x ∈A−1y} ≤s A−1(sy), (5.2)

namely, s1/αA−1y ≤s A−1(sy).

Step 2. For v0 ∈ S, t ∈ (0,1), we have A(tv0)≤ tαAv0. Since Av0 ∈ S⊂ Ph, there exist λ,µ >
0 such that λv0 ≤ Av0 ≤ µv0, so A(tv0) ≤ tαAv0 ≤ µtαv0. So we can choose t1 sufficiently
small satisfying µtα < t, then A(t1v0)≤ t1v0, t1 ∈ (0,1).

Now we write u0 = t1v0, then Au0 ≤ u0 and u0 < v0. Taking λ0 = t12, then λ0 ∈ (0,1),
u0 = t1v0 ≥ t12v0 = λ0v0.

Step 3. By Step 2 and (ii), we know that

u0,v0 ∈ S, u0 < v0, u0 ≥ λ0v0, Au0 ≤ u0, Av0 ≥ v0. (5.3)

Evidently, A−1u0 ≥s {u0}, A−1v0 ≤s {v0}. An application of the sufficiency of Theorem 4.1
shows that A−1 has a fixed point, write u∗, which implies that Au∗ = u∗. That is to say,
u∗ is the positive fixed point of A.

Step 4. In the following, we prove that u∗ is the unique fixed point of A in S.
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In fact, suppose that ū is the fixed point of A with ū 	= u∗. Evidently, ū,u∗ > θ. Since
S is a totally ordered set, we assume without loss of generality that ū > u∗, write x1 = u∗,
x2 = ū, then x2 > x1. The fact that x1,x2 ∈ Ph shows that there exists µ0 > 0 such that
x1 ≥ µ0x2. Obviously, µ0 < 1.

If x1 = µ0x2, then Ax1 = A(µ0x2) ≤ µ0
αAx2, that is, x1 ≤ µ0

αx2 < µ0x2, this is a con-
tradiction. Thus x1 > µ0x2, so A−1x1 ≥s A−1(µ0x2) ≥s µ0

1/αA−1x2, this shows that x1 ≥
µ0

1/αx2. If x1 = µ0
1/αx2, then A(x1) = A(µ0

1/αx2) ≤ µ0x2, this is a contradiction. Hence
x1 > µ0

1/αx2, repeating this process, we obtain x1 > µ0
1/αnx2. Consequently,

θ < x2− x1 < x2−µ0
1/αnx2 =

(
1−µ0

1/αn)x2, (5.4)

by the normality of cone P, we have

∥∥x2− x1
∥∥≤N

(
1−µ0

1/αn)∥∥x2
∥∥−→ 0 (n−→∞), (5.5)

thus, x1 = x2, this is a contradiction. This completes the proof. �

Corollary 5.2. Let E be a real Banach space and let P be a normal cone in E. Let A :
Ph → Ph be an increasing α-convex operator (α > 1), that is, A(tx) ≤ tαAx for all x ∈ Ph
and t ∈ (0,1]. Assume that there exists a nonempty, totally ordered set S ⊂ Ph such that
λS⊂ S (λ > 0), AS= S. Then A has exactly one positive fixed point in S.

Proof. From the proof of Theorem 5.1, we only have to prove that there exists v0 ∈ S such
that Av0 ≥ v0.

For all x0 ∈ S, s > 1, we have A(sx0) ≥ sαAx0. Since Ax0 ∈ S ⊂ Ph, there exist µ,λ > 0
such that λx0 ≤ Ax0 ≤ µx0, thus A(sx0) ≥ sαλx0. So we can choose s0 large enough such
that sα0λ≥ s0. Hence, A(s0x0)≥ s0x0. Now we write v0 = s0x0, then Av0 ≥ v0. The proof is
complete. �

Remark 5.3. (i) Under the hypotheses of this section, the tool—Hilbert’s projective
metric—used in those papers [2, 3, 14] cannot be used.

(ii) By using the properties of inverse mapping, (set-valued mapping) we give the sim-
ilar results to α-concave operators (0 < α < 1). So our results compliment the theory of
concave and convex operators and the method is new and different from previous ones.

Example 5.4. Theorem 5.1 or Corollary 5.2 can be used to discuss the solution of the
following special integral equation:

x(t)=
∫ 1

0
k(t,s)xα(s)ds, α > 1. (5.6)

Suppose that k(t,s)= h(t) f (s), and h, f are nonnegative continuous functions with f (t)>
0, h(t) > 0, for t ∈ [0,1]. Then, (5.6) has exactly one positive continuous solution.

Proof. First, we have some notation. Put X = C[0,1] (the space of continuous functions
defined on [0,1] endowed with supremum norm). Let P be the cone of nonnegative
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functions in X and so P is normal, P̊ is the set of positive functions in X . Noting that

P is a closed solid, the norm is monotonic. Consider the integral operator A : P̊→ X de-
fined by

Ax(t)=
∫ 1

0
k(t,s)xα(s)ds, x ∈ P̊. (5.7)

Therefore,

Ax(t)= h(t)
∫ 1

0
f (s)xα(s)ds= ah(t), (5.8)

where a= ∫ 1
0 f (s)xα(s)ds= xα(ξ)

∫ 1
0 f (s)ds, for certain ξ ∈ (0,1). Evidently, a > 0, ah∈ P̊,

so A : P̊ → P̊. Let S = {x : x(t) = ah(t), a ∈ R+}, then we have S ⊂ P̊ and S is a totally
ordered set with λS⊂ S(λ > 0). In the following, we prove that AS= S. For all y ∈ S, y =
ah, there is x = (a/H)1/αh∈ S such that Ax = y, where H = ∫ 1

0 f (s)hα(s)ds. Thus, AS= S.

Since A is increasing in P̊, Theorem 5.1 implies that A has exactly one fixed point x∗ in S.
Further, x∗ =H1/1−αh. In fact, let x∗ = a0h, then Ax∗ = A(a0h)= a0

αAh= a0
αHh= a0h.

So we obtain a0 =H1/1−α, thus (5.6) has one positive solution x∗(t)=H1/1−αh(t). �

Remark 5.5. For (5.6), we can also use the following lemma generalized from [2, 3] to
prove the results.

Lemma 5.6. Let the norm in Banach space X be monotonic on cone P, let A : P̊→ P̊ be pos-

itive homogeneous of degree p, 0 <| p |< 1 (i.e., A(tx)= tpAx,∀x ∈ P̊, t > 0). In addition,
A is increasing (0 < p < 1) or decreasing (−1 < p < 0). Then A has exactly one positive fixed

point in P̊.

Proof of (5.6). As in the proof above, A : S→ S, AS = S. For x1,x2 ∈ S with x1 	= x2, then
Ax1 	= Ax2. In fact, let x1 = a1h, x2 = a2h, a1 	= a2, a1,a2 > 0. Then Ax1 =A(a1h)= a1

αAh,
and Ax2 = A(a2h) = a2

αAh, this together with a1
α 	= a2

α implies the conclusion. So A is
one-to-one mapping, consequently, A−1 : S→ S exists, further,

A−1(tx)= t1/αA−1x, t ∈ (0,1). (5.9)

Since A is strictly increasing, we obtain that A−1 is also increasing. Otherwise, for y1, y2 ∈
S, y1 ≤ y2, we have A−1y1 > A−1y2, thus, AA−1y1 > AA−1y2, that is, y1 > y2. This is a
contradiction. An application of Lemma 5.6 implies that A−1 has exactly one positive
fixed point in S. Since Ah=Hh, A−1(λx)= λ1/αA−1x. We have A−1h=H−1/αh. Let u0 = h,
un = A−1un−1 (n= 1,2, . . .). Then

u1 = A−1u0 = A−1h=H−1/αh,

u2 = A−1u1 =A−1(H−1/αh
)= (H−1/α)(1+1/α)

h,

...

un+1 =A−1un = (H−1/α)(1+1/α+···+1/αn)h=H(1−1/αn)/(1−α)h.

(5.10)
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Thus, we have

∥∥un+1−H1/1−αh
∥∥=|H(1−1/αn)/(1−α)−H1/1−α | ‖h‖ −→ 0 (n−→∞); (5.11)

consequently, un→H1/1−αh. In addition,

A−1(H1/1−αh
)= (H1/1−α)1/α

H−1/αh=H1/1−αh. (5.12)

which implies that H1/1−αh is the fixed point of A−1. Hence, A has exactly one positive
fixed point H1/1−αh in S. �

Remark 5.7. For the uniqueness of the solution of (5.6), we can also prove it by using the
following method.

Proof. Let x1, x2 be the solutions of (5.6). Noting that x1 = a1h, x2 = a2h, then x1 = a1/a2,
x2 = ax2, where a= a1/a2, evidently, 0 < a <∞.

When a > 1, we have Ax1 = A(ax2) = aαAx2 = aαx2 > ax2, that is, x1 > ax2. This is a
contradiction. When a < 1, we have Ax1 = A(ax2)= aαAx2 = aαx2 < ax2, that is, x1 < ax2.
This is a contradiction. So a= 1, and we obtain x1 = x2. This completes the proof. �
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