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To categorize the convergence properties of mesh-based approximations to manifolds
and surfaces, this paper defines these approximations as “Wk,p-manifolds” and “Wk,p-
surfaces.” In particular, this paper examines the importance of these classifications in the
convergence in L1-norm of interpolants, built on the approximate manifold or surface,
of functions defined on the approximated manifold or surface. To provide context, the
applicability of an interpolation framework established by Nédélec involving the con-
vergence of metric determinants is examined. An extension of Nédélec’s framework to
Wk,p-surfaces is presented.

1. Introduction

The paper [16] presents a framework for measuring error in mesh-based approximations
of functions across multiple coordinate systems of a manifold or surface. That paper also
points out the need to clarify the role “weak” Wk,p-differentiability plays in such approx-
imation. To fill this need, this paper defines Wk,p-manifolds and surfaces and discusses
where they fit into mesh-based approximation. Thus, we will review the convergence
measuring framework of [16]. We will then discuss the need for Wk,p-manifolds and
Wk,p-surfaces within this framework and present definitions. To provide context, we will
discuss the importance of Nédélec’s approximation framework [14] in measuring con-
vergence and examine when this framework applies. We then extend this framework to
Wk,p-surfaces and present numerical results verifying this extension.

2. Background

While the most common error estimates for mesh-based approximation on surfaces and
manifolds are local or L∞-estimates (a commonly used L∞-estimate appears in Sheng
and Hirsch [17]. The work [15] provides a survey of error estimates for mesh-based ap-
proximation on surfaces and manifolds), the work [16] provides a global L1-estimate. We
now review the framework for measuring the convergence of mesh-based interpolants of
functions on surfaces and manifolds from [16].
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Mesh-based approximation on a manifold or surface involves three separate approx-
imations. The first step is the approximation of the different, local coordinate domains
with triangulated sets. The second step is the approximation of the maps from the local
coordinate domains to the global set (i.e., the surface or underlying manifold). The final
step is the approximation of the desired function with a mesh-based interpolant (e.g.,
piecewise-linear finite elements). Each step produces approximation error.

The difference between a function f on a manifold M and an approximation fh of f
on a triangulated approximation Mh of M is measured via a “metric” dM,Mh( f , fh). This
metric essentially sums the L1-norms of the differences of f and fh (both weighted with
their manifolds’ respective metric determinants g and gh and partition of unity functions
φi and φh,i) over the sets Di, triangulated approximations of Ci, the coordinate patches of
M. The following estimate governs the convergence of fh to f in this metric:

dM,Mh

(
f , fh

)≤ K∑
i

(∥∥φi−φh,i
∥∥
L1(Di)

+
∥∥ f − fh

∥∥
L1(Di)

+
∥∥|g|−∣∣gh∣∣∥∥L1(Di)

+ Jhr
)

,

(2.1)

where K is a constant and J is the number of Di, which do not exactly coincide with their
respective Ci · r, r = 1 or 2, refers to the piecewise, Wr,1-differentiability of the boundary
curves of Ci, and h refers to the maximum length of the side of a triangle.

The ‖ f − fh‖ term reflects how well the mesh-based interpolant fh approximates f
on each triangle. The ‖φi − φh,i‖ and Jhr terms reflect how well the triangulated sets Di

approximate Ci, which in turn reflect the differentiability of the transition functions. The
metric term ‖|g| − |gh|‖ reflects the quality of approximation of the maps from the co-
ordinate patches to the global set, which in turn reflects the differentiability of the chart-
to-surface maps.

3. The need forWk,p-manifolds and Wk,p-surfaces

The classical definitions of manifolds and surfaces and the differentiability of these quan-
tities do not address important considerations in the approximation of these quantities
via mesh-based interpolation. Further, to understand the convergence of such approx-
imations, we must remember the often overlooked point that the differentiability of a
surface and the differentiability of the same structure, viewed as a manifold, are related,
but different, quantities. These issues become apparent when one examines the partition
of unity and metric determinant terms of the preceding estimate.

The partition of unity term in the preceding estimate is bounded by theWk,1- differen-
tiability of the transition functions. The effects ofWk,1-differentiability, as opposed toCk-
differentiability, can unexpectedly appear in common approximation problems. Consider
the spherical coordinates (cosθ cosφ, sinθ cosφ, sinφ) and (sinα, sinβcosα, cosβcosα)

and the transition function β = arccos(sinφ/
√

1− (cosθ cosφ)2). This function has the

derivative ∂β/∂θ = cosθ cosφ sinφ/(1− (cosθ cosφ)2). If we set cosθ = cosφ = √1− ε2,
∂β/∂θ will go to infinity as ε goes to zero. However, since β is finite-valued, this derivative
is finite in L1-norm and thus, β lies in W1,1: its derivative is not well defined classically,
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but is “well behaved” under the integral sign. Similarly, infinite derivatives in the transi-
tion function occur in the two-patch example given by George and Borouchaki [8] and
studied in [16]. The convergence of an integral of a mesh-based approximation spanning
these respective patches will be governed by this W1,1-differentiability, as demonstrated
by the numerical results in [16].

To introduceWk,1-differentiability to manifolds and surfaces, we examine the classical
definitions of differentiability of manifolds and surfaces.

Definition 3.1 (adapted from [19]). A d-dimensional, Ck-manifold M, k ≥ 1, is a set,
together with a collection of subsets {Oα} satisfying the following:

(i) the {Oα} cover M;
(ii) for each α, there exists a one-to-one onto map ψα :Oα �→Uα, where Uα is an open

subset of Rd. (Uα and ψ−1
α are both often called “charts” or “coordinate systems”);

(iii) ifOα∩Oβ is nonempty, then the map ψβ ◦ψ−1
α from ψα[Oα∩Oβ]⊂ Rd to ψβ[Oα∩

Oβ]⊂ Rd is Ck-continuous.

Definition 3.2 (adapted from [7]). A subset S⊂ R3 is a Ck-surface if, for each p ∈ S, there
exist a neighborhood V in R3 and a map x :U �→V ∩ S of an open set U ⊂ R2 onto V ∩ S
such that

(i) the components of x are Ck-differentiable maps from R2 to R;
(ii) x has a continuous inverse;

(iii) x induces a nonsingular metric on U , that is, |(xu · xu)(xv · xv)− (xu · xv)2| > 0.

Note that in the definition of surface, the degree of differentiability is defined by the
local-to-global coordinate maps, whereas in the definition of manifold, the degree of dif-
ferentiability is defined by the local-to-local coordinate transition functions. As these
quantities play important roles in the convergence measuring framework, the distinc-
tion is crucial. To examine the relationship between these two quantities, consider C1-
differentiability. The neighborhoodsV ∩ S form a covering of the surface and correspond
to {Oα} in the manifold definition. The map x corresponds to ψ−1

α . Now, if ψβ ◦ψ−1
α isC1-

continuous, S will be a C1-manifold. Via the chain rule, the derivatives of this transition
function will consist of products of derivatives of ψβ and ψ−1

α . Since ψ−1
α has continuous

derivatives by assumption, we need to establish that ψβ, the inverse of some chart map x,
is C1-continuous. The following claim provides a sufficient condition for a C1-surface to
be a C1-manifold.

Claim 3.3. A C1-surface S defines a C1-manifold if whenever a chart set U ⊂ R2, where
S = ( f1(u,v), f2(u,v), f3(u,v)) on U , overlaps another chart set, the functions fi satisfy the
following condition: for all pairs i, j ∈ {1,2,3}, i �= j, ∂( fi, f j)/∂(u,v) �= 0, where ∂( fi, f j)/
∂(u,v)= (∂ fi/∂u)(∂ f j /∂v)− (∂ fi/∂v)(∂ f j /∂u).

Proof. The inverse of the chart map will have bounded, continuous first derivatives if
the implicit function theorem is satisfied for all three equations F1 = x − f1(u,v) = 0,
F2 = y− f2(u,v)= 0, and F3 = z− f3(u,v)= 0. Requiring these three functions to be zero
produces an overdetermined system. Thus, the implicit function theorem must be satis-
fied for all pairs Fi, Fj , i, j ∈ {1,2,3}, i �= j. If ∂( fi, f j)/∂(u,v) �= 0, the implicit function
theorem will apply. �
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This claim emphasizes the important point that a C1-surface is not necessarily a C1-
manifold. As we have seen, the spherical coordinates (cosθ cosφ, sinθ cosφ, sinφ) and
(sinα, sinβcosα, cosβcosα) can form a C∞-surface which is not a C1-manifold. The infi-
nite derivatives of the transition functions prevent the surface from being a C1-manifold.
The following claim helps set a context for when such an infinite derivative can occur.

Claim 3.4. Let U be a chart set with a chart map f (u,v) = ( f1(u,v), f2(u,v), f3(u,v)),
where the derivatives of f are continuous on U . Suppose that there exist points nz and z
in the parameter set (u,v) such that (∂( fi, f j)/∂(u,v))(nz) �= 0 and (∂( fi, f j)/∂(u,v))(z) =
0. Suppose further that ∂( fi, f j)/∂(u,v) is not constant in a neighborhood of z, and that
(∂ f j /∂u)(z) �= 0 or (∂ f j /∂v)(z) �= 0. Assume that f has continuous, well-defined inverse
functions h= (h1,h2), where u= h1(x1,x2,x3) and v = h2(x1,x2,x3). Then,

lim
np→ f (z),np∈U

∣∣∣∣∂hk∂xi

(
np
)∣∣∣∣=∞ (3.1)

holds for k = 1 if (∂ f j /∂v)(z) �= 0, and for k = 2 if (∂ f j/∂u)(z) �= 0.

Proof. We suppose that |(∂ f j /∂v)(z)| = K �= 0 and note that the proof will work similarly
in the other case. By the continuity of the derivatives of f , ∂( fi, f j)/∂(u,v) is continu-
ous. So, as np → f (z), (∂( fi, f j)/∂(u,v))(h(np))→ 0 and |(∂ f j/∂v)(h(np))| → K . Further,
by assumption, we may choose np so that (∂( fi, f j)/∂(u,v))(h(np)) �= 0, np �= z. Now, fix
np close enough to f (z) that |(∂( fi, f j)/∂(u,v))(h(np))| < ε and |(∂ f j/∂v)(h(np))| > K/2.
Now, apply the implicit function theorem to a small neighborhood of np. We then have
a well-defined inverse function, which, by uniqueness, must be h1. Further, h1 has a con-
tinuous derivative which satisfies

∣∣∣∣∂h1

∂xi

(
np
)∣∣∣∣=

∣∣∣∣∣∂ f j∂v

(
h
(
np
))
/
∂
(
fi, f j

)
∂(u,v)

(
h
(
np
))∣∣∣∣∣ > K

2ε
. (3.2)

Thus, as np → f (z), ε→ 0 and |(∂h1/∂xi)(np)| →∞. �

From this claim, we see, if we apply this inverse function h1 to an overlapping chart
(r1(a1,a2),r2(a1,a2),r3(a1,a2)), the potential for a transition function with an infinite de-
rivative. In fact, unless the derivatives {∂ri/∂ak} cancel out the unboundedness of |∂h1/
∂xi|, a transition function will have an infinite derivative.

Transition functions with infinite derivatives should integrate to finite values. Since
we know their antiderivatives, the transition functions are finite. Thus, the transition
functions are in W1,1. This fact leads us to consider Wk,p-manifolds and Wk,p-surfaces.

A further problem with the classical definitions appears in the reliance on open covers
and the resultant reliance on partitions of unity with measurable overlap. This problem
is more a headache of implementation than a theoretical obstacle. In practice, the diffi-
culty in implementing separate, overlapping triangulations across different chart sets has
led most researchers to ignore overlap (see Lin [12] for a discussion of these difficulties).
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Manifolds are treated as though they have been decomposed into polygonal, nonoverlap-
ping (overlap occurs only on the boundaries of the polygons) chart sets and the overlap,
which still occurs if the chart sets are not exactly polygonal, is ignored. While Munkres
[13] has shown that all manifolds may be exactly partitioned into measurably disjoint,
polygonal charts sets, others have observed that such chart sets are often difficult to find
or give rise to complicated chart maps [12, 15]. Thus, mesh-based surface modeling tech-
niques in engineering and computer graphics generally partition manifolds and surfaces
into chart sets “disjointly,” via boundary curves, often called “trimming curves.” Exam-
ples of this approach appear in Shimada et al. [18], Anglada et al. [1], Cho et al. [4, 5],
Klein [11], George and Borouchaki [8], and Borouchaki et al. [2]. The disjoint coverings
used in this approach are insufficient to define a Ck-manifold or surface. This type of
partitioning corresponds to discontinuous, characteristic functions as partition of unity
functions and as such fits more naturally with Wk,p-differentiability.

In summary, we extend these definitions of surfaces and manifolds to the spaces Wk,p

for the following reasons:
(i) many PDEs and finite element approximations to PDEs are naturally posed on

these spaces;
(ii) surfaces implemented in existing applications often have transition functions

with unbounded derivatives;
(iii) finite element methods and surface modeling techniques in engineering and com-

puter graphics generally favor measurably disjoint partitions which fit better with
Wk,p-differentiability.

4. Wk,p-manifolds and Wk,p-surfaces

Definition 4.1. A d-dimensional, Wk,p-manifold M is a set, together with a collection of
subsets {Oα} satisfying the following:

(i) the {Oα} cover M;
(ii) for each α, there exists a one-to-one onto map ψα :Oα �→Uα, where Uα is a closed,

connected subset of Rd with piecewise Wk,p-boundary;
(iii) ifOα∩Oβ is nonempty, then the map ψβ ◦ψ−1

α from ψα[Oα∩Oβ]⊂ Rd to ψβ[Oα∩
Oβ]⊂ Rd is in Wk,p.

Definition 4.2. A subset S⊂ R3 is a Wk,p-surface if, for each p ∈ S, there exist a set V in
R3 and a map x : U �→ V ∩ S of a set U ⊂ R2 (U is a closed connected set with piecewise
Wk2,p-boundary) onto V ∩ S such that

(i) the components of x are Wk,p-differentiable maps from R2 to R;
(ii) x has a continuous inverse;

(iii) x induces a nonsingular metric on U , that is, |(xu · xu)(xv · xv)− (xu · xv)2| > 0.

Note that these definitions use closed chart sets rather than the traditional open sets.
In surface triangulation, we commonly see decompositions of surfaces into sets of charts
which intersect only at their boundaries. The use of closed chart sets accommodates these
triangulations. Further, some surfaces of interest cannot easily be represented with open
chart sets. For example, surfaces formed by the stitching together of two surfaces such as
the outer surface formed by the joining of two spheres have closed chart sets. The curves
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of intersection of the two distinct surfaces will be boundary curves of the correspond-
ing charts. An open covering would require a chart containing a neighborhood of points
on the boundary curves, which would require one surface’s coordinate system to be de-
fined on the other surface. The relaxation of the open set requirement is a natural devel-
opment from the substitution of Wk,p with Ck, as boundary curves are sets of measure
zero, which do not affect theWk,p-differentiability of a function (e.g., |x| ∈ C1((0,1)) but
|x| /∈ C1([0,1]); however, W1,1((0,1)) and W1,1([0,1]) are the same space). We also note
that the change to the conventional definition of a surface may allow for surfaces with
self-intersections and cusps (curves where the tangent plane is discontinuous), provided
their metric determinants are still bounded away from zero at these points.

We require the chart sets to have piecewise Wk′,p-boundaries. The boundaries of these
chart sets will generally come from applying transition functions to piecewise smooth
boundaries of other chart sets. Thus, the differentiability of the boundaries should reflect
the differentiability of the transition functions. Thus, in the Wk,p-manifold definition,
k′ = k. In the Wk,p-surface definition, k′ = k2, where k2 may be different from k, as the
chart-to-surface maps and the transition functions need not have the same level of dif-
ferentiability.

The functions used to define the manifolds and surfaces determine the values of k and
k2. However, the value of p is arbitrary, depending on the norm in which one wishes to
measure functions on the surface. Because we use the global L1-estimate of [16], we use
p = 1 in this paper.

Earlier in this paper, we discuss cases, detailed in [16], where theW1,1-differentiability,
of the transition functions and thus the manifold, limits the convergence of mesh-based
interpolants. The Wk,p-manifold differentiability governs the convergence in the parti-
tion of unity term and the Jhr term of the convergence estimate. Wk,p-surface differen-
tiability, on the other hand, governs the convergence of the metric determinant term. To
see how surface differentiability affects the metric determinant term ‖|g| − |gh|‖ of the
convergence estimate, we examine the applicability of the approximation framework of
Nédélec.

5. Approximation in the Nédélec framework

Nédélec [14] provides a framework for analyzing the convergence of the metric determi-
nant of an approximate surface to the metric determinant of the desired, “true” surface.
Provided the true surface is “sufficiently differentiable,” Nédélec demonstrates a rate of
convergence one degree higher than would be expected from standard interpolation the-
ory (such a lower order estimate, using standard interpolation theory, of the convergence
of the metric determinant appears in [6]). More specifically, if we build the approximate
metric determinant |gh| from the derivatives of piecewise, degree l polynomial approx-
imations of the chart-to-surface maps Φi, standard interpolation theory predicts O(hl)
convergence in the L∞-norm (and by extension, the Lp-norm, 1 ≤ p <∞, since we re-
strict ourselves to finite measure chart sets),

∥∥|g|−∣∣gh∣∣∥∥L∞ ≤ Chl∥∥Dl+1Φi

∥∥
L∞ . (5.1)
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Nédélec proves O(hl+1) convergence∥∥|g|−∣∣gh∣∣∥∥L∞ ≤ Chl+1
∥∥Dl+1Φi

∥∥
L∞ . (5.2)

Using degree l polynomials to approximate both the maps Φi and the function f , we
would obtain O(hl+1) convergence in both the ‖ f − fh‖ term and the metric term in our
estimate. Given an exact, disjoint partition of the manifold M into polygonal chart sets,
the partition of unity term and Jhr term vanish, allowing the approximate integral of f
to converge at O(hl+1).

This framework depends on the properties of a map (the map Ψ discussed below in
the sketch of the proof of Claim 5.1) between the approximate surface and the true sur-
face that allows us to identify points on the approximate surface with points on the true
surface in a one-to-one, well-behaved manner. Subsequent authors, for example, Kalik
and Wendland [10], Kalik et al. [9], and Brodzik [3] have recognized and exploited the
faster convergence granted by this correspondence to build surface triangulation algo-
rithms with good convergence properties. These authors, like Nédélec, rely upon the true
surface being sufficiently smooth to give this correspondence without investigating just
what the smoothness requirements on the true surface are. Because the role of surface
differentiability in the convergence of mesh-based approximation lies at the heart of this
paper, we will examine these requirements. To understand more fully the smoothness
requirements on M which give this faster convergence, we present the following claim.

Claim 5.1. Consider a surface M, consisting of chart maps Φi : Ti �→M, Ti ⊂ R2, M ⊂ R3.
Consider also a series of triangulated surfaces Mh, built from Ti and polynomial interpolants
of Φi, converging to M as h goes to 0. The accelerated convergence of the metric determinant
of Mh to the metric determinant of M in Nédélec’s framework holds when M is a G1-surface
(i.e., tangent plane continuous) with the maps Φi having L∞-bounded second derivatives
and the chart sets Ti are polygonal.

Sketch of proof. In [14] where Nédélec presents his proof of the accelerated convergence,
he invokes the map Ψ from Mh to M such that for each x on M, Ψ−1(x) is the point of
Mh intersecting the unit normal to M at x. The correspondence of Mh to M under Ψ
represents the key to Nédélec’s proof. More specifically, Nédélec’s proof depends on the
following key assumptions:

(i) Ψ as a well-defined bijection;
(ii) the map V =Φ−1

i ·Ψ and its first derivatives are Lipschitz-continuous.
To ensure that Ψ is a well-defined bijection, we require the surface to have polygonal

chart sets and a continuous normal vector across chart boundaries (i.e., M must be G1-
continuous). A discontinuity in the normal vector would either omit points of M from
the range of Ψ or cause Ψ to be ambiguous (i.e., a distribution rather than a function).
Similarly, if the sets Ti are not polygonal, then these sets must be approximated with
polygonal sets to construct Mh and in this approximation, the one-to-one correspon-
dence between points of M and points of Mh will likely be lost.

We prove that the second requirement holds. Consider the functionU(r̂, x̂):Mh×Ti �→
R2, where (U(r̂, x̂))i = (r̂ −Φ(x̂)) · ∂Φ/∂xi. The set {(r̂, x̂) :U(r̂, x̂)= 0} defines the r̂ and
x̂ such that V(r̂) = x̂. Through the implicit function theorem, our understanding of U
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will give rise to our understanding of V . Thus, we now examine the derivatives of U to
show that U satisfies the requirements of the implicit function theorem.

Note that as a degree-one polynomial, U is differentiable with respect to r̂. And be-
cause Φ is twice differentiable with respect to x̂, U is differentiable with respect to x̂. For
fixed r̂, consider the 2-by-2 differential D(r̂, x̂) with respect to the components xi of x̂.
Observe that

Dij = ∂
(
U(r̂, x̂)

)
i

∂xj
=−∂Φ

∂xi
· ∂Φ
∂xj

+
(
r̂−Φ(x̂)

) · ∂2Φ

∂xi∂xj
. (5.3)

Thus,

Dij =−gi j +
(
r̂−Φ(x̂)

) · ∂2Φ

∂xi∂xj
. (5.4)

So,

det(D)=D11D22−D2
12

= g11g22− g2
12− g11

(
r̂−Φ(x̂)

) · ∂2Φ

∂x2
2
− g22

(
r̂−Φ(x̂)

) · ∂2Φ

∂x2
1

+

((
r̂−Φ(x̂)

) · ∂2Φ

∂x2
2

)((
r̂−Φ(x̂)

) · ∂2Φ

∂x2
1

)
+ 2g12

(
r̂−Φ(x̂)

) · ∂2Φ

∂x1∂x2

−
((
r̂−Φ(x̂)

) · ∂2Φ

∂x1∂x2

)2

.

(5.5)

Therefore, if the first and second derivatives of Φ are bounded, we have

det(D)≥ det(g)−C1|r̂−Φ|−C2|r̂−Φ|2 (5.6)

(and a comparable inequality if det(g) < 0). Thus, if the metric is nonsingular and Mh is
close to M (i.e., |r̂−Φ| is small), D will be nonsingular.

Thus, in the neighborhood of a point (r̂0, x̂0) such that U(r̂0, x̂0)= 0, the requirements
of the implicit function theorem are satisfied. We know that V exists and that V is con-
tinuously differentiable. We will examine the derivatives of V to determine when V and
its derivatives are Lipschitz.

For the points (r̂,V(r̂)), U = 0. Differentiating this equation produces ∂U/∂ri +
(∂U/∂x1)(∂V1/∂ri) + (∂U/∂x2)(∂V2/∂ri)= 0 (here, ∂U/∂ri refers only to the derivative of
U with respect to its components in r̂, not to the appearance of ri in V(r̂)). Solving for
∂V/∂ri produces (∂V/∂ri)(r̂) = −D(r̂,V(r̂))−1(∂U/∂ri)(r̂,V(r̂)). We may conclude that
the first derivatives of V are bounded from the boundedness of the derivatives of Φ and,
therefore, V is Lipschitz. Further, if−D(r̂,V(r̂))−1(∂U/∂ri)(r̂,V(r̂)) is Lipschitz, then the
derivatives of V will be Lipschitz. The lower bound on det(D) produces an upper bound
on det(D−1). Thus, since the entries of D are bounded and det(D−1) is bounded, D−1 is
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bounded. And since ∂U/∂ri is linear in r̂, it is Lipschitz. Thus, the derivatives of V are
Lipschitz. �

We now have a clearer picture of when the accelerated convergence of Nédélec’s frame-
work occurs. We can now ask if a weakened version of this convergence holds when the
second derivatives of the chart maps do not lie in L∞.

6. The extension of Nédélec’s framework to Wk,1-surfaces

To start, we consider surfaces whose chart maps have bounded first derivatives, and sec-
ond derivatives which have singularities but are bounded in L1-norm.

Theorem 6.1. Let α : C �→ R3, let α∈W2,1(C) be a chart map on a polygonal set C. Suppose
that in C, D2α has a singularity given by the curve ϕ(x, y)= 0, where ϕ is an affine function
of x and y. Now, suppose that there exists b, 0 < b < 1, such that ϕbD2α∈ L∞(C), but for ε >
0, ϕb−εD2α /∈ L∞(C). Then, using the standard piecewise linear interpolation framework,
the approximate metric determinant will converge to the true metric determinant at rate of
at least O(h2−b).

Proof. We consider the set N of all triangles which share a point with the set {|ϕ| ≤ h/2},∫
C

∣∣g − gh∣∣= ∫
N

∣∣g − gh∣∣+
∫
Nc

∣∣g − gh∣∣. (6.1)

On N , we do not have the Nédélec framework. We do, however, have the estimate
which comes from viewing the components of g as dot products of first derivatives of α.
Thus, ∫

N

∣∣g − gh∣∣dydx ≤ Kh∫
N

∣∣D2α
∣∣dydx. (6.2)

Since |D2α| ≤ K/|ϕ|b almost everywhere, we have∫
N

∣∣g − gh∣∣dydx ≤ Kh∫
N

1
|ϕ|b dy dx. (6.3)

Recall that the values which ϕ may take in N are of O(h), and the maximum length
of the level curves of ϕ is independent of h. Therefore, mN =O(h). Additionally, we may
parametrize N by ϕ and a variable z along the normal line ϕ= 0,

∫
N

∣∣g − gh∣∣dydx ≤ Kh∫
z

(∫ h
0

1
|ϕ|b dϕ

)
dz ≤ KO(h2−b). (6.4)

We now turn to Nc. Since, by definition, all points in this set lie a distance of at least
O(h) away from any singular point, we know that |ϕ|b ≥ chb. Thus, |D2α| ≤ K/hb. Hence,
on Nc, we have L∞-bounded, second derivatives of the chart map and we may use the
Nédélec framework. Thus, ∫

Nc

∣∣g − gh∣∣≤ Kh2
∫
Nc

∣∣D2α
∣∣. (6.5)
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Using the bound on |D2α|, we have

∫
Nc

∣∣g − gh∣∣≤ Kh2
(

1
hb

)(
mNc

)≤ Kh2−b(mC). (6.6)

Combining our estimates for N and Nc completes the proof. �

The above theorem generalizes to the following.

Theorem 6.2. In the statement of the previous theorem, let α∈Wk,1(C) and replace D2α
with Dkα. Use piecewise polynomials of degree l to approximate α. Then, the approximate
metric determinant will converge at a rate of at least O(hl+1−b), where l+ 1≤ k. (Set a max-
imum of k − 1 for l because surface differentiability limits the effectiveness of quadrature
precision. If α /∈Wr,1(C), r > k, using polynomials of degree higher than k− 1 will not ac-
celerate convergence.)

7. Numerical results

This section provides numerical results from experiments to verify the predictions of the
foregoing theorems. Consider an approximation of

∫
1 across a two-chart surface. Each

chart set is the square [0,1]× [0,1]. The first chart map is σ1(x, y)= (xs + x, y,xs + x). The
second chart map is σ2(x, y)= ((xs + x)(ey−1), y− 1,(xs + x)(ey−1)). This surface does not
have continuous first derivatives across the mutual edge y = 0 in chart 1, and y = 1 in
chart 2, but does have a continuous tangent plane (i.e., the surface is G1-smooth). For a
positive integer s, the chart maps have bounded second derivatives. For 1 < s < 2, the chart
maps lie in W2,1, as the chart maps have unbounded second derivatives. Likewise, for
2 < s < 3, the chart maps lie in W3,1, as the chart maps have unbounded third derivatives.
The singularities of these derivatives behave like xs−2 for 1 < s < 2, and xs−3 for 2 < s < 3,
and occur on the line x = 0 in each chart.

Since the chart sets will be triangulated exactly, only one term in the convergence es-
timate from [16] will form an obstacle to convergence: the metric determinant term.
For s ≥ 3, because the surface is G1-continuous and has bounded second derivatives,
Nédélec’s framework applies and we expectO(hl+1) convergence where piecewise polyno-
mials of degree l approximate the chart maps. For 1 < s < 2, the modified Nédélec frame-
work for W2,1-functions applies and we expect O(hl−1+s) convergence where l ≤ 1. For
2 < s < 3, the modified Nédélec framework for W3,1-functions applies and we expect
O(hs) convergence for l ≥ 2, and O(h2) convergence if l = 1.

Table 7.1 lists the error ratios for different values of s, obtained on uniform triangu-
lations of [0,1]× [0,1], along with the relevant prediction of the error ratio. Here, the
degree l of the approximating polynomials is reflected in the quadrature precision, which
will be l+ 1. The ratios compare the error at h= 0.031250 to the error at h= 0.015625.

8. Conclusion

In definingWk,p-manifolds andWk,p-surfaces and examining the role of these definitions
in approximation, this paper, like [16], seeks to provide a unifying formalism to the many
ad hoc approaches employed in mesh-based approximation on manifolds and surfaces.
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Table 7.1. Approximation of
∫

1 on G1-surfaces.

s Error ratio Predicted ratio Quadrature precision

1.1 2.1399 2.1435 2

1.2 2.2908 2.2974 2

1.3 2.4502 2.4623 2

1.5 2.7904 2.8284 2

2.2 3.8063 4.0 2

2.6 3.9749 4.0 2

3.0 4.0001 4.0 2

1.1 2.1435 2.1435 3

1.2 2.2974 2.2974 3

1.3 2.4622 2.4623 3

1.5 2.8283 2.8284 3

2.2 4.5934 4.5948 3

2.6 6.0477 6.0629 3

3.0 15.9992 8.0 3

1.1 2.1449 2.1435 4

1.2 2.2990 2.2974 4

1.3 2.4642 2.4623 4

1.5 2.8312 2.8284 4

2.2 4.6048 4.5948 4

2.6 6.0899 6.0629 4

3.0 16.0031 16.0 4

The hope is that this formalism will prove useful to biological and physical applications,
where approximating solutions to evolution equations may require modeling functions
on highly curved surfaces.
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