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A study of pairs of commutative rings with the same set of prime ideals appears in the
literature. In this paper, we investigate pairs of subrings, not necessarily commutative,
with a common set of proper ideals.

Throughout, all rings are associative with an identity element but not necessarily com-
mutative. During the decade of 1980s, a series of papers appeared in the Canadian Journal
of Mathematics [1, 2] that had investigated pairs of commutative rings with the same set
of prime ideals. In this paper, we consider some generalizations of that study in the non-
commutative setting.

Consider the ring R=HomD(V ,V), where V is a vector space over a division ring D
with dimD(V)= ℵω0 (ω0 is the first limit ordinal). Let K be any subfield of the center of R,
M = { f ∈HomD(V ,V) | dim f (V) < ℵω0}, and S= K +M. Then S and R have the same
set of countably many prime ideals. Further, R and S have the same set of ideals since all
of their proper ideals are prime ideals. (See Blair and Tsutsui [4]). We will first observe
that examples of this nature are limited in the commutative setting. It is an immediate
consequence of Theorem 1 that the only possible pairs of a commutative ring R and its
proper unital subring S with the same set of proper ideals are fields. We will then briefly
investigate pairs of subrings with a common ideal. This investigation will yield the fact
that a pair of rings has the same set of prime ideals if and only if they have the same set of
maximal ideals. Among other things, we consider properties that pass through a pair of
rings with a common set of proper ideals.

Hereafter, we reserve the term subring for a unital subring. Thus, not only a subring
inherits its binary operations from its overring, but also it has the same identity element.
We call subrings R and S of a ring (right-) ideally equal if they have the same set of proper
(right) ideals, that is, I is a proper (right) ideal of R if and only if I is a proper (right) ideal
of S. Two rings R and S are called P- (M-)ideally equal if they have the same set of prime
(maximal) ideals.

Theorem 1. Suppose S⊆ R are rings which are right-ideally equal. Then either S= R or S
and R are division rings.
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Proof. If R and S have two distinct maximal right ideals M and N in common, then R=
M +N = S. Thus, we may assume that M is the unique maximal right ideal of S and R.
If 0 �= a ∈M, then aR = aS, and for each r ∈ R there exists s ∈ S such that ar = as, and
so r − s ∈ rR(a), the right annihilator ideal of a in R. Since rR(a) is a proper right ideal
of R, rR(a)⊆ S and so r − s= s′ for some s′ ∈ S. Thus r = s+ s′ ∈ S and R= S. If no such
nonzero a exists, then M = 0, and S and R are division rings. �

Corollary 2. Let R and S be two distinct subrings of a ring. Then R and S are division
rings if and only if R, S, and R∩ S have the same set of proper right ideals.

Example 3. Let K be a field and let t be an indeterminate. Let T = K(t)[X]/〈X3〉, and set
α= X + 〈X3〉. Then R= K(t)[α2] is a subring of T , and S= K(t−α)[α2] is also a subring
of T . Since t ·α2 = (t−α) ·α2, we have M := Rα2 = Sα2 = K(t)α2, and it is easy to see that
M is the only nonzero ideal in R and S. If R= S, then α∈ R, a contradiction. Hence, R and
S are distinct subrings of the commutative ring T which are ideally equal but they are not
fields. Notice that if char(K)= 0, then Kα2 is an ideal of R∩ S= K +K(t)α2 but it is not
an ideal of R nor S. If char(K)= p > 0, then K(tP)α2 is an ideal of R∩ S= K(tP) +K(t)α2

that is not an ideal of R nor S.

We now prove two propositions on a pair of rings with a common ideal.

Proposition 4. Let R and S be subrings of a ring and suppose that they have a common
ideal I . If P is a prime ideal of R, then P̃ = {a∈ S | IaI ⊆ P} is either S or a prime ideal of S.

Proof. Obviously P̃ is an ideal of S. If I ⊆ P, then it is clear that P̃ = S. Suppose I � P.

Then since P is prime, I · 1 · I = I2 � P. Thus P̃ is a proper ideal of S. Let A, B be two

ideals of S such that AB ⊆ P̃. Then (IAI)(IBI) ⊆ IABI ⊆ IP̃I ⊆ P. Since P is prime, we
have either IAI ⊆ P or IBI ⊆ P. Hence, either A ⊆ P̃ or B ⊆ P̃. Therefore, P̃ is a prime
ideal of S. �

By a primitive ideal P of a ring R we mean R/P has a faithful irreducible right module.

Proposition 5. LetR and S be subrings of a ring having a common ideal I . If P is a primitive
ideal of R, then P̃ = {a∈ S | IaI ⊆ P} is either S or a primitive ideal of S.

Proof. Note first that since a primitive ideal is a prime ideal, P̃ = S if and only if I ⊆
P (as was shown in the proof of Proposition 4). Suppose I � P and let M be a faithful
irreducible right R/P-module. Then, for any nonzero m∈M, 0 �=mI ⊆M, and so mI =
M. This implies that M is an irreducible right S-module.

We claim MP̃ = 0. Since MP̃ =MIP̃ ⊆MI =M, if MP̃ �= 0 then MP̃I =M �= 0. How-
ever, MP̃I =MIP̃I ⊆MP = 0, and thus MP̃ = 0. Hence, M is a right S/P̃-module. Let
a be an element of S satisfying Ma = 0. Then MIaI = 0 and so IaI ⊆ P. Hence a ∈ P̃.
Therefore, M is also a faithful right S/P̃-module. �

We denote the set of prime ideals of a ring R by Spec(R), the set of maximal ideals of
a ring R by Max(R), and the set of primitive ideals of a ring R by Prim(R). The following
theorem shows that two rings R and S are P-ideally equal if and only if they are M-ideally
equal.
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Theorem 6. Let R and S be subrings of a ring. Then the following statements are equivalent:
(a) Max(S)⊇Max(R),
(b) Max(S)⊆Max(R),
(c) Spec(S)= Spec(R),
(d) Prim(S)= Prim(R).

Proof. Since otherwise the result is trivially true, assume that R �= S. Then, if Max(S) ⊇
Max(R), R has a unique maximal ideal M. Let N be another maximal ideal of S. Then
since S =M + N , there exist m ∈M and n ∈ N such that 1 =m + n. But then n = 1−
m ∈ R\M and hence RnR = R. Therefore, M2 =MRM =MRnRM ⊆ N . Since N is a
prime ideal of S, this is a contradiction. Therefore M is a unique maximal ideal of S,
and hence Max(S) =Max(R) = {M}. This shows the equivalence of the statements (a)
and (b). Suppose now that Max(S) =Max(R) = {M} and let P �=M be a prime ideal of
R. Then, by Proposition 4, P̃ = {a ∈ S |MaM ⊆ P} is a prime ideal of S. Since M is the
unique maximal ideal of S, we have P̃ ⊆M, and so P̃ is an ideal of R. Since MP̃M ⊆ P,
we obtain P̃ ⊆ P, and therefore P = P̃ is a prime ideal of S. Since a primitive ideal is
prime, the equivalence of the statements (a), (b), and (d) can be shown similarly by using
Proposition 5. �

Corollary 7. Let R be a ring with unique maximal ideal M and let S=M +Z(R) where
Z(R) is the center of R. Then Spec(S)= Spec(R). In this case, M is also a maximal right and
left ideal of S.

Proof. Clearly, M is an ideal of S. Suppose that M ⊂ I ⊆ S for a right ideal I of S. Then,
there exists z ∈ I with z ∈ Z(R)\M. Hence R = RzR = zR. Thus there exists r ∈ R such
that zr = 1. But then for any x ∈ R, rx = rxzr = zrxr = xr and therefore r ∈ Z(R) ⊆ S.
This shows that M is a maximal ideal and a maximal right ideal of S. Since M is the unique
maximal ideal of R, we have Max(R) ⊆ Max(S), and hence, by Theorem 6, Spec(S) =
Spec(R). �

A ring is called fully idempotent if every ideal of R is idempotent. A ring R is called von
Neumann regular provided that for every x ∈ R there exists y ∈ R such that xyx = x. A
commutative fully idempotent ring is von Neumann regular. However, the class of fully
idempotent rings strictly contains the class of Von Neumann regular rings. The subring
S = xA1(k) + k of a Weyl algebra A1(k) is an example of a fully idempotent ring that is
not a Von Neumann regular ring.

Corollary 8. Let R and S be fully idempotent subrings of a ring. Then R and S are ideally
equal if and only if R and S are P-ideally equal.

Proof. By Theorem 6, if R and S have the same set of prime ideals, then every ideal of R
and S is contained in the unique maximal ideal M. If I �R, then IS = I(IS) ⊆ I(MS) =
IM ⊆ I , and similarly, SI ⊆ I . Hence I� S. �

We are now in a position to give a few examples.

Example 9 (a pair of P-ideally equal rings which are not ideally equal). Let R=Q(
√

3)⊕R
and S=Q(

√
2)⊕R be additive abelian groups with multiplication defined by (a,b)(c,d)=
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(ac,ad+ bc). Then R and S are M-ideally equal rings with the unique maximal ideal M =
0⊕R. Hence R and S are P-ideally equal. Let I = 0⊕Q(

√
2). Then I is an ideal of S but

not of R.

Example 10 (a pair of rings with a nonzero common ideal that are not P-ideally equal). Let
K be a field and let K[x] and K[y] be two polynomial rings over K . Consider the ring
S = K[x]⊕K[y] and its subring R = {(a+ x f (x),a) ∈ S | a ∈ K , f (x) ∈ F[x]}. Then R
and S have common ideal I = {(x f (x),0) | f (x)∈ K[x]}. Clearly P = {(0,0)} is a prime
ideal of R, but it is not a prime ideal of S.

Example 11 (a pair of P-ideally equal rings which are not fully idempotent). Let R̄ be the
ring consisting of countable matrices over R of the form




Am 0
a

a

0
. . .


 , (1)

where a ∈ R and Am is an arbitrary m×m matrix over R, and m is allowed to be any
positive integer. Let S̄= M̄ +F where F is a subfield of the center of R̄, and M̄ is the subset
of R̄ consisting of all countable matrices of the form




Am

0
0

. . .


 , (2)

where Am is an arbitrary m×m matrix overR, and m is allowed to be any positive integer.
Let S = S̄⊕ M̄ and R = R̄⊕ M̄ be additive abelian groups with multiplication de-

fined by (a,b)(c,d) = (ac,ad + bc). Then, S and R are M-ideally equal rings with the
unique common maximal ideal M = {(m1,m2) | m1,m2 ∈ M̄} and hence, they are P-
ideally equal. However, the ideal I = {(0,m) |m∈ M̄} is not idempotent.

For a ring T , let S(T) be the set of all subrings S of T with Spec(S) = Spec(T). Note
that if T has more than one maximal ideal, then S(T)= {T}.
Corollary 12. Let T be a ring with unique maximal ideal M. Then S(T) = {p−1(S) |
S is a simple subring of T/M} where p : T → T/M is the canonical epimorphism.

Proof. If X ∈ S(T), then obviously X = p−1(X/M) and X/M is a simple subring of T/M.
Conversely, suppose that S= X/M is a simple subring of T/M. Then X = p−1(S) is a sub-
ring of T containing M as a maximal ideal. Since M is the unique maximal ideal of T , we
have Max(T)⊆Max(p−1(S)). Hence by Theorem 6, p−1(S)∈ S(T). �
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Let T be a ring with unique maximal ideal M. Then S(T) is a partially ordered set
under set-theoretic inclusion. Notice that S(T/M) is the set of simple subrings of T/M,
and ϕ : S(T)→ S(T/M) defined by ϕ(p−1(S)) = S (where S is a simple subring of T/M)
gives an isomorphism between S(T) and S(T/M) by Corollary 12. Hence, if T/M is com-
mutative, then S(T/M) is a complete lattice, and so is S(T).

Corollary 13. Let R be a ring all of whose ideals are prime. Then S(R) forms a complete
lattice.

Proof. Let M be the maximal ideal of R and let Z(R) be the center of R. Let T =M +Z(R).
By [4, Theorems 1.3 and 4.1] of Blair and Tsutsui, S(R)= S(T) and T/M is a field. Hence
S(T/M) is a complete lattice, and so is S(R). �

We now investigate properties that pass through a pair of rings with a common set of
proper ideals.

For a ring R, let B(R) denote its prime radical and let J(R) denote its Jacobson radical.

Proposition 14. Let R and S be subrings of a ring with a common ideal I .
(a) If R is a semiprime ring and if rS(I)= �S(I)= 0, then S is a semiprime ring.
(b) If R is a semiprimitive ring and if rS(I)= �S(I)= 0, then S is a semiprimitive ring.

Proof. (a) Let P be a prime ideal of R. Then by Proposition 4, IB(S)I ⊆ IP̃I ⊆ P. Hence,
IB(S)I ⊆ B(R)= 0. But then since rS(I)= �S(I)= 0, we have B(S)= 0.

(b) Let P be a primitive ideal of R. Then, by Proposition 5, IJ(S)I ⊆ IP̃I ⊆ P. Hence,
IJ(S)I ⊆ J(R)= 0. But then, since rS(I)= �S(I)= 0, we have J(S)= 0. �

Let R⊆ S be rings with a common ideal I , and let P be a prime ideal of R with I � P.
Then “lying over” holds, that is, there exists a prime ideal Q in S such that Q∩R = P.
(See, e.g., Rowen [6].)

Proposition 15. Let R⊆ S be rings with a common ideal I . If P is a prime ideal of S with
I � P, then P∩R is a prime ideal of R.

Proof. LetA, B be two ideals ofR such thatAB ⊆ P∩R. Then (SA)(ISB)⊆ SAIB ⊆ SAB ⊆
SP = P. Since P is prime, SA⊆ P or ISB ⊆ P.

If SA ⊆ P, then A ⊆ P ∩R. Suppose that ISB ⊆ P. Since I � P and since P is prime,
B ⊆ SB ⊆ P. Hence B ⊆ P∩R. �
Proposition 16. Let R⊆ S be rings with a common ideal I . Then if S is a semiprime ring
and if I is an essential ideal of S, then R is a semiprime ring.

Proof. Let P is be a prime ideal of S. If I ⊆ P, then B(R)∩ I ⊆ P. On the other hand, if
I � P, then by Proposition 15, P∩R is a prime ideal of R, and hence B(R)∩ I ⊆ B(R)⊆
P∩R⊆ P. Therefore, B(R)∩ I ⊆ B(S)= 0. But then, since R⊆ S and I is an essential ideal
of S, we have B(R)= 0. �

Note that the “primitive versions” of Propositions 15 and 16 are also valid.
A fully idempotent ring is in particular, a semiprime ring.

Proposition 17. Let R and S be M-ideally equal rings with the common maximal ideal M.
If R is fully idempotent, then so is S, and in this case they are ideally equal.
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Proof. Let I be a proper ideal of S. Then IR ⊆ RIR = (RIR)2 = RI(RIR) ⊆ RI(RMR) =
RIM ⊆ RI and similarly, RI ⊆ IR. Hence IR= RI is an ideal of R. But then IR= (IR)2 =
I(RIR) ⊆ IM ⊆ I and therefore, I is an ideal of R. This shows that S is fully idempotent
and the second claim now follows by Theorem 6 and Corollary 8. �

Every right ideal of a von Neumann regular is idempotent. A ring all of whose right
ideals are idempotent is called a fully right idempotent ring and it has received some at-
tention in the literature.

Proposition 18. Let R and S be M-ideally equal rings with the common maximal ideal M.
Then if R is fully right idempotent, then so is S, and in this case they are ideally equal.

Proof. Let I be a proper right ideal of S and a ∈ I . If a /∈M, then SaS = S, and hence
a ∈ aS = aSaS ⊆ I2. On the other hand, since R is fully right idempotent, if a ∈M, a ∈
aR= aRaR. Now, since R is in particular fully idempotent, by Proposition 17, RaR is an
ideal of S. Since RaR is the smallest ideal of R containing a and SaS is the smallest ideal of
S containing a, we have SaS= RaR. Hence a∈ aR= aRaR= aSaS⊆ I2. �

The next natural question is whether or not the “regularity” passes through M-ideally
equal rings.

Proposition 19. Let R and S be M-ideally equal rings with the common maximal ideal
M. If R is von Neumann regular, then S is von Neumann regular if and only if S/M is von
Neumann regular.

Proof. If R is von Neumann regular, then M is von Neumann regular as a ring by [5,
Lemma 1.3] of Goodearl. By the same lemma, if M and S/M are both von Neumann
regular, then so is S. �

Example 20. Let W denote the nth Weyl algebra over a field of characteristic zero. It is
well known that W is a simple Noetherian domain, and hence W is an Ore domain. Let
D denote the field of fraction of W . Let R be the set of countable matrices over D of the
form




Am 0
a

a

0
. . .


 , (3)

where a ∈ D and Am ∈Mm(D), the ring of m×m matrices over D, and m is allowed to
be any positive integer. Let S be the same set of matrices except a∈W . Then R and S are
M-ideally equal rings with the maximal ideal M that consists of countable matrices of the
form




Am 0
0

0

0
. . .


 . (4)



Y. Hirano and H. Tsutsui 3267

Any factor ring of a von Neumann regular ring is von Neumann regular, and a Noetherian
von Neumann regular ring is semisimple Artinian. Therefore, S is not a von Neumann
regular ring since S/M �W is a simple Noetherian but not an Artinian ring. The fact that
R is a von Neumann regular ring follows immediately by the definition of a von Neumann
regular ring since Mm(D) is von Neumann regular and 0 �= a∈D is invertible.

The center of a simple ring is a field and there are simple rings that are not right
Noetherian. Thus, in the noncommutative setting, neither the descending nor ascending
chain condition passes through a pair of ideally equal rings.

The most natural generalization of commutative rings is the class of PI-rings, that is,
rings that satisfy a polynomial identity.

Proposition 21. Let R⊂ S be M-ideally equal rings with the common maximal ideal M. If
S satisfies a polynomial identity, then R is right Noetherian if and only if S is right Noetherian
and S/M is finitely generated right R/M-module.

Proof. Let M be the maximal ideal. Since R and S are PI-rings, M is the Jacobson radical
of the two rings. Suppose that R is right Noetherian. Then M is a finitely generated R-
module. Following the proof of [1, Lemma 3.27] of Anderson and Dobbs, one can show
that S is a finitely generated right R-module. S is then right Noetherian and S/M is a
finitely generated right R/M-module.

Conversely, assume that S is right Noetherian and S/M is a finitely generated right
R/M-module. Since R/M is a simple Artinian ring, R/M is a Noetherian right R-module.
Hence, to show that R is right Noetherian, it suffices to show that MR is Noetherian. Let
M1 ⊆M2 ⊆ . . . be an ascending chain of R-submodules of MR. Then M1M ⊆M2M ⊆ . . .
is an ascending chain of S-submodules of MS. Since MS is right Noetherian, there exists a
positive integer n such that MnM =Mn+1M = . . . . Consider next the chain MnS/MnM ⊆
Mn+1S/MnM ⊆ . . . . This is an ascending chain of S-submodules of (M/MnM)S. Thus there
exists a positive integerm> n such that MmS/MnM =Mm+1S/MnM= . . . . SinceMmS/MnM
is a finitely generated right S/M-module and since S/M is a simple Artinian ring, it has
finite length as a right S/M-module. Since S/M is a finitely generated right R/M-module,
MmS/MnM has finite length as a right R/M-module. Since, for each k > m, Mk/MnM is an
R/M-submodule of MmS/MnM, there exists a positive integer t > m such that Mt/MnM =
Mt+1/MnM = . . . . But then Mt =Mt+1 = . . .. �

Example 22. Let R = Q⊕R and S = R⊕R be additive abelian groups with multipli-
cation defined by (a,b)(c,d) = (ac,ad + bc). Then R and S are commutative M-ideally
equal rings with the unique maximal ideal M = 0⊕R. M = 0⊕R is the only nonzero
proper ideal of S and hence S is Noetherian. On the other hand, 0⊕Q ⊂ 0⊕Q(

√
2) ⊂

0⊕Q(
√

2,
√

3) ⊂ 0⊕Q(
√

2,
√

3,
√

5) ⊂ . . . is an ascending chain of ideals in R that does
not terminate.
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