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The double zeta function was first studied by Euler in response to a letter from Goldbach
in 1742. One of Euler’s results for this function is a decomposition formula, which ex-
presses the product of two values of the Riemann zeta function as a finite sum of double
zeta values involving binomial coefficients. Here, we establish a q-analog of Euler’s de-
composition formula. More specifically, we show that Euler’s decomposition formula can
be extended to what might be referred to as a “double q-zeta function” in such a way that
Euler’s formula is recovered in the limit as q tends to 1.

1. Introduction

The Riemann zeta function is defined for�(s) > 1 by

ζ(s) :=
∞∑
n=1

1
ns
. (1.1)

Accordingly,

ζ(s, t) :=
∞∑
n=1

1
ns

n−1∑
k=1

1
kt

, �(s) > 1, �(s+ t) > 2, (1.2)

is known as the double zeta function. The sums (1.2), and more generally those of the
form

ζ
(
s1,s2, . . . ,sm

)
:=

∑
k1>k2>···>km>0

m∏
j=1

1

k
sj
j

,
n∑
j=1

�(s j) > n, n= 1,2, . . . ,m, (1.3)

have attracted increasing attention in recent years; see, for example, [3, 4, 5, 7, 8, 9, 10,
12, 14, 19]. The survey articles [6, 15, 22, 23, 25] provide an extensive list of references.
In (1.3) the sum is over all positive integers k1, . . . ,km satisfying the indicated inequalities.
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Note that with positive integer arguments, s1 > 1 is necessary and sufficient for conver-
gence.

The problem of evaluating sums of the form (1.2) for integers s > 1, t > 0 seems to have
been first proposed in a letter from Goldbach to Euler [17] in 1742. (See also [16, 18] and
[1, page 253].) Among other results for (1.2), Euler proved that if s− 1 and t − 1 are
positive integers, then the decomposition formula

ζ(s)ζ(t)=
s−1∑
a=0

(
a+ t− 1
t− 1

)
ζ(t+ a,s− a) +

t−1∑
a=0

(
a+ s− 1
s− 1

)
ζ(s+ a, t− a) (1.4)

holds. A combinatorial proof of Euler’s decomposition formula (1.4) based on the sim-
plex integral representations [3, 4, 5, 6, 7]

ζ(s)=
∫

1>x1>···>xs>0

( s−1∏
i=1

dxi
xi

)
dxs

1− xs
,

ζ(s, t)=
∫

1>x1>···>xs+t>0

( s−1∏
i=1

dxi
xi

)
dxs

1− xs

( s+t−1∏
i=s+1

dxi
xi

)
dxs+t

1− xs+t
,

(1.5)

and the shuffle multiplication rule satisfied by such integrals is given in [4, (10)]. It is
of course well known that (1.4) can also be proved algebraically by summing the partial
fraction decomposition (see [21, page 48] and [20, Lemma 3.1])

1
xs(c− x)t

=
s−1∑
a=0

(
a+ t− 1
t− 1

)
1

xs−act+a
+

t−1∑
a=0

(
a+ s− 1
s− 1

)
1

cs+a(c− x)t−a
(1.6)

over appropriately chosen integers x and c. (See, e.g., [2].)
With the general goal of gaining a more complete understanding of the myriad re-

lations satisfied by the multiple zeta functions (1.3) in mind, a q-analog of (1.3) was
introduced in [11] as

ζ
[
s1,s2, . . . ,sm

]
:=

∑
k1>k2>···>km>0

m∏
j=1

q(s j−1)kj[
kj
]s j
q

, (1.7)

where

[k]q :=
k−1∑
j=0

q j = 1− qk

1− q
, 0 < q < 1. (1.8)

Observe that we now have

ζ
(
s1, . . . ,sm

)= lim
q→1−

ζ
[
s1, . . . ,sm

]
, (1.9)

so that (1.7) represents a generalization of (1.3). The paper [11] considers values of the
multiple q-zeta functions (1.7) and establishes several infinite classes of relations satisfied
by them. See also [13]. Here, we continue this general program of study by establishing a
q-analog of Euler’s decomposition formula (1.4).
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2. Main result

Our q-analog of Euler’s decomposition formula naturally requires only the m = 1 and
m= 2 cases of (1.7); specifically the q-analogs of (1.1) and (1.2) given by

ζ[s]=
∑
n>0

q(s−1)n

[n]sq
, ζ[s, t]=

∑
n>k>0

q(s−1)nq(t−1)k

[n]sq[k]tq
. (2.1)

We also define, for convenience, the sum

ϕ[s] :=
∞∑
n=1

(n− 1)q(s−1)n

[n]sq
=

∞∑
n=1

nq(s−1)n

[n]sq
− ζ[s]. (2.2)

We can now state our main result.

Theorem 2.1. If s− 1 and t− 1 are positive integers, then

ζ[s]ζ[t]=
s−1∑
a=0

s−1−a∑
b=0

(
a+ t− 1
t− 1

)(
t− 1
b

)
(1− q)bζ[t+ a,s− a− b]

+
t−1∑
a=0

t−1−a∑
b=0

(
a+ s− 1
s− 1

)(
s− 1
b

)
(1− q)bζ[s+ a, t− a− b]

−
min(s,t)∑
j=1

(s+ t− j− 1)!
(s− j)!(t− j)!

· (1− q) j

( j− 1)!
ϕ[s+ t− j].

(2.3)

Observe that the limiting case q = 1 of Theorem 2.1 reduces to Euler’s decomposition
formula (1.4).

3. A differential identity

Our proof of Theorem 2.1 relies on the following identity.

Lemma 3.1. Let s and t be positive integers, and let x and y be nonzero real numbers. Then,
for all real q such that x+ y + (q− 1)xy �= 0,

1
xs yt

=
s−1∑
a=0

s−1−a∑
b=0

(
a+ t− 1
t− 1

)(
t− 1
b

)
(1− q)b

(
1 + (q− 1)y

)a(
1 + (q− 1)x

)t−1−b

xs−a−b
(
x+ y + (q− 1)xy

)t+a

+
t−1∑
a=0

t−1−a∑
b=0

(
a+ s− 1
s− 1

)(
s− 1
b

)
(1− q)b

(
1 + (q− 1)x

)a(
1 + (q− 1)y

)s−1−b

yt−a−b
(
x+ y + (q− 1)xy

)s+a

−
min(s,t)∑
j=1

(s+ t− j− 1)!
(s− j)!(t− j)!

· (1− q) j

( j− 1)!
· (1 + (q− 1)y)s− j

(
1 + (q− 1)x

)t− j

(
x+ y + (q− 1)xy

)s+t− j .

(3.1)
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Proof. Apply the partial differential operator

1
(s− 1)!

(
− ∂

∂x

)s−1 1
(t− 1)!

(
− ∂

∂y

)t−1

(3.2)

to both sides of the identity

1
xy
= 1

x+ y + (q− 1)xy

(
1
x

+
1
y

+ q− 1
)
. (3.3)

�

Observe that in the limit as q→ 1, Lemma 3.1 reduces to the identity

1
xs yt

=
s−1∑
a=0

(
a+ t− 1
t− 1

)
1

xs−a(x+ y)t+a
+

t−1∑
a=0

(
a+ s− 1
s− 1

)
1

(x+ y)s+a yt−a
, (3.4)

from which the partial fraction identity (1.6) (proved by induction in [20]) trivially fol-
lows.

4. Proof of Theorem 2.1

First, observe that if s > 1 and t > 1, then from (2.1),

ζ[s]ζ[t]=
∞∑
n=1

∑
u+v=n

q(s−1)u

[u]sq
· q

(t−1)v

[v]tq
, (4.1)

where the inner sum is over all positive integers u and v such that u+ v = n. Next, apply
Lemma 3.1 with x = [u]q, y = [v]q, noting that then

1 + (q− 1)x = qu, 1 + (q− 1)y = qv, x+ y + (q− 1)xy = [u+ v]q. (4.2)

After interchanging the order of summation, there comes

ζ[s]ζ[t]=
s−1∑
a=0

s−1−a∑
b=0

(
a+ t− 1
t− 1

)(
t− 1
b

)
(1− q)bS[s, t,a,b]

+
t−1∑
a=0

t−1−a∑
b=0

(
a+ s− 1
s− 1

)(
s− 1
b

)
(1− q)bS[t,s,a,b]

−
min(s,t)∑
j=1

(s+ t− j− 1)!
(s− j)!(t− j)!

· (1− q) j

( j− 1)!
T[s, t, j],

(4.3)



David M. Bradley 3457

where

S[s, t,a,b]=
∞∑
n=1

∑
u+v=n

q(s−1)uq(t−1)vq(t−1−b)uqav

[u]s−a−bq [u+ v]t+aq
=

∞∑
n=1

∑
u+v=n

q(t+a−1)(u+v)q(s−a−b−1)u

[u+ v]t+aq [u]s−a−bq

=
∞∑
n=1

q(t+a−1)n

[n]t+aq

n−1∑
u=1

q(s−a−b−1)u

[u]s−a−bq
= ζ[t+ a,s− a− b],

T[s, t, j]=
∞∑
n=1

∑
u+v=n

q(s−1)uq(t−1)vq(t− j)uq(s− j)v

[u+ v]
s+t− j
q

=
∞∑
n=1

∑
u+v=n

q(s+t− j−1)(u+v)

[u+ v]
s+t− j
q

= ϕ[s+ t− j].

(4.4)

5. Final remarks

In [24], Zhao gives a much more complicated formula for the product ζ[s]ζ[t]. Zhao’s
formula is derived using the q-shuffle rule [6, 11] satisfied by the Jackson q-integral
analogs of the representations (1.5). Of course from [11], we also have the very simple
q-stuffle formula ζ[s]ζ[t] = ζ[s, t] + ζ[t,s] + ζ[s + t] + (1− q)ζ[s + t − 1] in which s > 1
and t > 1 need not be integers.
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