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Let ck :=∑k
j=0(−1) j

(
k
j

)
(1/ζ(2 j + 2)). We prove that the Riemann hypothesis is equiva-

lent to ck � k−3/4+ε for all ε > 0; furthermore, we prove that ck � k−3/4 implies that the
zeros of ζ(s) are simple. This is closely related to M. Riesz’s criterion which states that the
Riemann hypothesis is equivalent to

∑∞
k=1((−1)k+1xk/(k− 1)!ζ(2k))� x1/4+ε as x→ +∞,

for all ε > 0.

1. Introduction and preliminaries

The main theorem of this note is the following theorem.

Theorem 1.1. Let

ck :=
k∑
j=0

(−1) j
(
k

j

)
1

ζ(2 j + 2)
; (1.1)

then the Riemann hypothesis is true if and only if

ck � k−3/4+ε, ∀ε > 0. (1.2)

Furthermore, if ck � k−3/4, then the zeros of ζ(s) are simple.

The proof of this theorem is given in Section 3.

Remark 1.2. It will be seen below that unconditionally

ck � k−1/2, (1.3)

and, on the other hand, that

ck �� k−3/4−δ (∀δ > 0). (1.4)

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:21 (2005) 3527–3537
DOI: 10.1155/IJMMS.2005.3527

http://dx.doi.org/10.1155/S0161171205506161


3528 Criterion for Riemann hypothesis

Remark 1.3. It is quite obvious how one can trivially modify the proof of the theorem to
obtain a more general result.

Theorem 1.4. A necessary and sufficient condition for ζ(s) �= 0 in the half-plane �(s) >
2(1−α) is

ck � k−α+ε (∀ε > 0). (1.5)

However, we will eschew such gratuitous generalizing at this stage.
Necessary and sufficient conditions for the Riemann hypothesis depending only on

values of ζ(s) at positive integers have been known for a long time, for example those
of Riesz [7] and Hardy and Littlewood [3]. Riesz’s criterion, for example, states that the
Riemann hypothesis is true if and only if

∞∑
k=1

(−1)k+1xk

(k− 1)!ζ(2k)
=O

(
x1/4+ε) (x −→ +∞). (1.6)

We believe our condition is new and it is definitely simpler, as it only involves finite ratio-
nal combinations of the values ζ(2h), and seems well posed for numerical calculations.
This work however did not originate as an attempt to simplify Riesz’s criterion. It arose
rather as a consequence of our note [1] on Maslanka’s expression of the Riemann zeta
function [4, 5] in the form

(s− 1)ζ(s)=
∞∑
k=0

AkPk

(
s

2

)
, (1.7)

where

Ak =
k∑
j=0

(−1) j
(
k

j

)
(2 j + 1)ζ(2 j + 2), (1.8)

and the Pk(s) are the Pochhammer polynomials

Pk(s) :=
k∏

r=1

(
1− s

r

)
, (1.9)

which will appear prominently in the proof of Theorem 1.1. The necessary elementary
facts about these polynomials are proved in Section 2.

In Section 4, we prove an unconditional exact formula for the coefficients ck, stated in
the following theorem, where we denote

Rk(ω) := Res
(

1
ζ(s)Pk(s/2)

; s= ω
)
. (1.10)



Luis Báez-Duarte 3529

20000 40000 60000 80000
k

0.0015

0.00125

0.001

0.00075

0.0005

0.00025

k3
/4
c k

Figure 1.1

Theorem 1.5 (explicit formula). For sufficiently large k,

−2kck−1 = lim
ν→∞

∑
|�ρ|<Tν

Rk(ρ) + o(1), (1.11)

where {Tν}∞ν=0 is a certain sequence satisfying ν < Tν < ν + 1, and the ρ denote complex zeta
zeros. If simple zeros are assumed, then the above series becomes

−2kck−1 = lim
ν→∞

∑
|�ρ|<Tν

1
ζ ′(ρ)Pk(ρ/2)

+ o(1). (1.12)

Remark 1.6. The o(1) can be written explicitly in terms of the trivial zeros −2,−4, . . .
of ζ(s). This representation is the initial step to prove this conjecture that the condition
ck � k−3/4 is both a necessary and sufficient condition for the Riemann hypothesis with
simple zeros. The sufficiency is indeed true as will be seen below.

Some extended numerical computations of the ck were kindly carried out for the au-
thor by K. Maslanka (personal communication). They seem to indicate good agreement
with even ck � k−3/4. In fact, one sees ckk3/4 increase monotonically at first and then be-
gin to oscillate around zero, where the wavelength fits well with the imaginary part of the
first critical zero of ζ(s), see Figure 1.1.

2. Elementary properties of the Pochhammer polynomials

We begin with

(−1)k



s

2
− 1

k


= Pk

(
s

2

)
, (2.1)

which is essentially a matter of notation.
The proofs of the following lemmas are rather standard, but we give them here for the

sake of completeness.
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The kth-degree polynomial Pk(s) grows like sk for large |s|; more precisely, we can state
the following lemma.

Lemma 2.1.

∣∣Pk(s)
∣∣ > |s|k

k!2k
(|s| > 2k

)
. (2.2)

Proof. The condition |s| > 2k implies that |1− r/s| > 1/2 for r = 1,2, . . . ,k, thus

∣∣Pk(s)
∣∣= k∏

r=1

∣∣∣∣ r− s

r

∣∣∣∣= |s|kk!

k∏
r=1

∣∣∣∣1− r

s

∣∣∣∣ > |s|k
k!2k

. (2.3)

�

The following is the fundamental limit relation connecting the Pochhammer polyno-
mials to the gamma function.

Lemma 2.2. Uniformly on compact sets,

lim
k→∞

Pk(s)ks = 1
Γ(1− s)

. (2.4)

Proof. From
∑k

r=1(1/r)= γ+ logk+O(1/k) and the infinite product for the gamma func-
tion, we obtain

Pk(s)ks = esO(1/k)e−γs
k∏

r=1

(
1− s

r

)
es/r −→ 1

−sΓ(−s) =
1

Γ(1− s)
, (2.5)

the convergence being uniform on compact sets of the plane. �

An immediate corollary of Lemma 2.2 is the following lemma.

Lemma 2.3. For every compact set H ⊂ C, there is a positive constant CH , not depending on
k, such that

∣∣Pk(s)
∣∣≤ CHk

−�(s) (s∈A, k = 1,2, . . .). (2.6)

Proof. Write the uniform limit (2.4) as

∣∣∣∣Pk(s)ks− 1
Γ(1− s)

∣∣∣∣≤ εH(k)−→ 0 (s∈H , k = 1,2, . . .); (2.7)

therefore

∣∣Pk(s)
∣∣≤ ( 1∣∣Γ(1− s)

∣∣ + εH(k)
)
k−�(s). (2.8)

�
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Lemma 2.4. For�(s) < 0,

1∣∣Pk(s)
∣∣ >

1∣∣Pk+1(s)
∣∣ (k ≥ 1),

1∣∣Pk(s)
∣∣ −→ 0 (k −→∞).

(2.9)

Proof. Lemma 2.2 clearly implies that

1∣∣Pk(s)
∣∣ −→ 0 (�(s) < 0), (2.10)

and for�s < 0, the trivial inequality |w| ≥ |�w| yields

∣∣∣∣Pk+1(s)
Pk(s)

∣∣∣∣=
∣∣∣∣1− s

k+ 1

∣∣∣∣≥ 1− �(s)
k+ 1

> 1, (2.11)

so the sequence 1/Pk(s) is strictly decreasing. �

The next lemma establishes an interesting connection between the partial fraction de-
composition of 1/Pk(s) and the iterated forward difference operator involved in definition
(1.1).

Lemma 2.5.

1
Pk(s)

=
k∑
j=1

(−1) j
(
k

j

)
j

s− j
, k ≥ 1. (2.12)

The proof of this lemma is an elementary exercise in computing

Res
(

1
Pk(s)

; s= j
)
= (−1) j

(
k

j

)
j, j = 1,2, . . . ,k. (2.13)

3. Proof of the main theorem (Theorem 1.1)

3.1. Proof of sufficiency. The sufficiency of the condition (1.5) follows from writing
1/ζ(s) as a series of Pochhammer polynomials. We state it as a separate proposition as
we believe it deserves special attention.

Proposition 3.1. If ck � k−3/4+1/2ε for any ε > 0, then

1
ζ(s)

=
∞∑
k=0

ckPk

(
s

2

)
, �(s) >

1
2

, (3.1)

where the series converges uniformly on compact subsets of the half-plane. A fortiori, ζ(s)
does not vanish for�(s) > 1/2.

Remark 3.2. Since it will be shown that actually ck � k−1/2, it follows rather trivially
that the representation (3.1) for 1/ζ(s) is unconditionally valid at least in the half-plane
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�(s) > 1. On the other hand, as announced in (1.4), Proposition 3.1 shows that

ck �� k−3/4−δ (∀δ > 0), (3.2)

since the contrary statement would imply by (3.1) that ζ(s) has no zeros on the critical
line.

We need a lemma before proving Proposition 3.1.

Lemma 3.3. Define

qk :=
∞∑
n=1

1
n2

(
1− 1

n2

)k
, (3.3)

then

qk � k−1/2. (3.4)

Proof. The contribution of the terms with n >
√
k is trivially� k−1/2, whereas the contri-

bution of the remaining terms is

∑
n≤√k

1
n2

(
1− 1

n2

)k
�
∫∞

1
e−k/x

2 dx

x2
= k−1/2

2

∫∞
0
e−uu−1/2du� k−1/2. (3.5)

�

Proof of Proposition 3.1. First, note that

ck =
k∑
j=0

(−1) j
(
k

j

)
1

ζ(2 j + 2)

=
k∑
j=0

(−1) j
(
k

j

) ∞∑
n=1

µ(n)
n2 j+2

=
∞∑
n=1

µ(n)
n2

k∑
j=0

(−1) j
(
k

j

)
1
n2 j

=
∞∑
n=1

µ(n)
n2

(
1− 1

n2

)k
.

(3.6)

For�(s) > 1, we have

1
ζ(s)

=
∞∑
n=1

µ(n)
ns

=
∞∑
n=1

µ(n)
n2

(
1
n2

)s/2−1

=
∞∑
n=1

µ(n)
n2

(
1−

(
1− 1

n2

))s/2−1

=
∞∑
n=1

µ(n)
n2

∞∑
k=0

(−1)k


 s

2
− 1

k


(1− 1

n2

)k

=
∞∑
n=1

µ(n)
n2

∞∑
k=0

Pk

(
s

2

)(
1− 1

n2

)k
.

(3.7)
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These summations can be interchanged because letting

S=
∞∑
n=1

∞∑
k=0

1
n2

∣∣∣∣Pk
(
s

2

)∣∣∣∣
(

1− 1
n2

)k
, (3.8)

we see from Lemmas 2.3 and 3.3 that

S=
∞∑
k=0

∣∣∣∣Pk
(
s

2

)∣∣∣∣
∞∑
n=1

1
n2

(
1− 1

n2

)k

=
∞∑
k=0

∣∣∣∣Pk
(
s

2

)∣∣∣∣qk �
∞∑
k=1

k−�(s)/2−1/2 <∞.

(3.9)

Thus, we proceed to interchange summations in (3.7), taking into account (3.6), to ob-
tain, unconditionally for�(s) > 1,

1
ζ(s)

=
∞∑
k=0

Pk

(
s

2

) ∞∑
n=1

µ(n)
n2

(
1− 1

n2

)k
=

∞∑
k=0

ckPk

(
s

2

)
. (3.10)

But Lemma 2.3, together with the hypothesis ck � k−3/4+(1/2)ε, implies that the above
series converges uniformly on compacts of the half-plane�(s) > 1/2 + ε. Thus, the series
extends 1/ζ(s) analytically to the half-plane �(s) > 1/2. We have thus proved the validity
of (3.1). �

Finally, we prove the assertion on simple zeros in the main theorem (Theorem 1.1).
Assume that ck � k−3/4. Take any fixed s= 1/2 + iβ on the critical line and 0 < h≤ δ for a
fixed, finite δ > 0. By (3.1),

∣∣∣∣ 1
ζ(s+h)

∣∣∣∣≤ ∣∣c0
∣∣+

∞∑
k=1

O
(
k−3/4)∣∣∣∣Pk

(
s+h

2

)∣∣∣∣. (3.11)

Now it is clear that

α1 = sup
0≤h≤δ

1∣∣Γ(3/4 +h/2− i(β/2)
)∣∣ <∞. (3.12)

But by Lemma 2.2, there is a constant α2 > 0 such that

∞∑
k=1

k−3/4
∣∣∣∣Pk

(
s+h

2

)∣∣∣∣≤ α2

∞∑
k=1

k−1−h/2∣∣Γ(3/4 +h/2− i(β/2)
)∣∣ ≤ α1α2ζ

(
1 +

h

2

)
� 1

h
. (3.13)

Applying this in (3.11), we obtain

∣∣∣∣ 1
ζ(s+h)

∣∣∣∣� 1
h
. (3.14)

This shows that if ζ(s)= 0, then s can only be a simple zero.
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3.2. Necessity of the condition

Proof of the necessity of the condition. Assume now that the Riemann hypothesis is true.
If, as usual, we write

M(x) :=
∑
n≤x

µ(n), (3.15)

we then have

M(x)� x1/2+2ε (∀ε > 0), (3.16)

which, actually, is well known to be equivalent to the Riemann hypothesis (see, e.g., [8,
Theorem 14.25(C)]).

We can transform the second expression for ck in (3.6) summing it by parts to obtain

ck =−
∫∞

1
M(x)

d

dx

(
1
x2

(
1− 1

x2

)k)
dx

= 2
∫ 1

0
M
(

1
x

)(
1− x2)k−1(

x− (k+ 1)x3)dx.
(3.17)

Therefore,

∣∣ck∣∣≤ 2(k+ 1)
∫ 1

0

∣∣∣∣M
(

1
x

)∣∣∣∣x3(1− x2)k−1
dx+ 2

∫ 1

0

∣∣∣∣M
(

1
x

)∣∣∣∣x(1− x2)k−1
kdx,

(3.18)

but (on the Riemann hypothesis)

M
(

1
x

)
� x−1/2−2ε (x ↓ 0), (3.19)

so that

ck � k
∫ 1

0
x5/2−2ε(1− x2)k−1dx+

∫ 1

0
x1/2−2ε(1− x2)k−1dx. (3.20)

On the other hand, for �(λ) > −1, a classical beta integral result (see, e.g., [2, Section
9.3]) gives

∫ 1

0
xλ
(
1− x2)k−1

dx = 1
2
Γ
(

1
2

(λ+ 1)
)

Γ(k)
Γ
(
k+ (1/2)(λ+ 1)

) � k−1/2−λ/2, (3.21)

where the last estimate follows from Stirling’s formula for the logarithm of the gamma
function; hence (3.20) becomes

ck � k−3/4+ε. (3.22)

�
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4. An exact formula for ck

The ck have a nice exact expression as an integral in the complex plane, as shown by the
following proposition.

Proposition 4.1.

−2kck−1 = 1
2πi

∫ a+i∞

a−i∞
ds

ζ(s)Pk(s/2)
(k ≥ 2, 1 < a < 2), (4.1)

where the integral is absolutely convergent. The path of integration is the line �(s)= a tra-
versed in the upward direction.

Proof. Note first that for any σ > 1,

1∣∣ζ(s)
∣∣ =

∣∣∣∣∣
∞∑
n=1

µ(n)
ns

∣∣∣∣∣≤
∞∑
n=1

1
nσ
= ζ(σ). (4.2)

By Lemma 2.1, we may move the path of integration to a vertical line with any abscissa
b > 2k. Calculating the residues with the help of Lemma 2.5, we get

1
2πi

∫ a+i∞

a−i∞
ds

ζ(s)Pk(s/2)
=

k∑
j=1

(−1) j
(
k

j

)
2 j

ζ(2 j)
+

1
2πi

∫ b+i∞

b−i∞
ds

ζ(s)Pk(s/2)
, (4.3)

but

−2k
k−1∑
j=0

(−1) j
(
k− 1
j

)
1

ζ(2 j + 2)
=−2kck−1. (4.4)

For fixed k, let b→ +∞. By Lemma 2.1, this yields

1
2πi

∫ b+i∞

b−i∞
ds

ζ(s)Pk(s/2)
−→ 0 (b −→∞), (4.5)

so that (4.1) follows. �

Proof of the explicit formula (Theorem 1.5). We intend now to move the path of integra-
tion in (4.1) to the left of the critical strip. As this procedure is a little more delicate than
that of the previous lemma, we will proceed in more detail. We begin with a fixed but ar-
bitrary k ≥max(4,A), for some fixed A > 0 to be determined later in the proof, so that, of
course, to begin with Proposition 4.1 can be applied. For any Tν > 0, consider the integral

I(k,ν) := 1
2πi

∫
Lν

ds

ζ(s)Pk(s/2)
, (4.6)

where Lν is the rectangle {3/2− iTν,3/2 + iTν,−1 + iTν,−1− iTν} traversed in the positive
direction. By the residue theorem, we have

I(k,ν)=
∑

|�ρ|<Tν

Res
(

1
ζ(s)Pk(s/2)

; s= ρ
)

, (4.7)
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where the finite sum runs over the zeros ρ of the zeta function in the interior of the rec-
tangle Lν. The choice of the Tν is dictated by Theorem 9.7 in Titchmarsh’s monograph
[8], where it is attributed to Valiron et al., independently. As a consequence of this uncon-
ditional theorem for some constant A > 0, there is a sequence Tν with ν < Tν < ν + 1 such
that

1∣∣ζ(σ + iTν
)∣∣ < TA

ν (−1≤ σ ≤ 2). (4.8)

This estimate, together with Lemma 2.1, implies that the contribution of the horizontal
rungs in I(k,ν) tends to zero as ν→∞.

On the other hand, it is clear that as ν→∞, the integral on the right-hand vertical side
of Lν tends to the absolutely convergent integral on the right-hand side of (4.1), thus to
−2kck−1.

Likewise, to see that the contribution of the left-hand side of the rectangle Lν converges
as ν→∞ to

Jk :=− 1
2πi

∫ −1+i∞

−1−i∞
ds

ζ(s)Pk(s/2)
, (4.9)

it suffices to show that this integral is absolutely convergent. To prove this, note that the
functional align implies that

1∣∣ζ(−1 + it)
∣∣ = 1∣∣21−itπ−2−it cos(iπt/2)Γ(2− it)ζ(2− it)

∣∣
� 1

eπt/2 + e−πt/2
1∣∣Γ(2− it)

∣∣ �|t|3/2,

(4.10)

where we used again (4.2) in writing |ζ(2− it)−1| ≤ ζ(2), and the well-known estimates
for the gamma function on vertical strips (see, e.g., formula (21.52) in Rademacher’s
treatise [6]). Now (4.10) and the trivial bound (2.2) yield the absolute integrability of
(4.9).

We have thus proved that the limit as ν→∞ of I(k,ν) exists, arriving at

−2kck−1 = lim
ν→∞

∑
|�ρ|<Tν

Res
(

1
ζ(s)Pk(s/2)

; s= ρ
)

+ Jk, (4.11)

where the limit of the summation has also been shown to exist. But Jk → 0 as k→∞ by the
monotone convergence theorem on account of Lemma 2.4. This completes the proof of
(1.11) of Theorem 1.5, which immediately implies (1.12) under the assumption of simple
zeros. �
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