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We use basic homotopical methods applied to Lie groups made discrete to prove that the
real Euler class of a circle bundle vanishes if and only if the bundle is flat.

1. Introduction

The fact that flat principal circle bundles are characterized by having zero real Euler
classes has proved important in recent years in understanding whether total spaces of
vector bundles over nonnegatively curved manifolds must support metrics with nonneg-
ative curvature as well (see Theorem 6.3 and the discussion afterwards). Unfortunately,
the proofs of this fact of which we are aware use either sheaf-theoretic arguments that re-
quire a great deal of background somewhat out of the algebraic topological mainstream
(see [4]) or the elaborate differential geometric machinery of Chern-Weil theory (see [7],
e.g.). The purpose of this note is simply to observe that an enlightening topological proof
exists that only relies on the notions of pullback and classifying map, as well the homolog-
ical algebra surrounding these concepts. Moreover, as our proof demonstrates, the Euler
class result is a direct manifestation of the circle’s characterization as the only nontrivial
compact connected Lie group with contractible universal cover. Finally, our proof provides
a prime example of how homotopy theory and its associated algebra can have beautiful
geometric consequences.

2. Topological and homotopical background

Good references for the following are [3, 9, 10]. A principal G-bundle G→ P
p−→ X is a

fibre bundle that arises from a free smooth action of a Lie group G on a smooth manifold
P. That is, the base manifold X is simply the quotient manifold P/G. We will always take
G to be a compact, connected Lie group. We are especially interested in the case where
G= S1, the circle group. For each G, there is a space BG, called the classifying space for G,
which has the fundamental property that its loop space ΩBG is homotopy equivalent to
G. The objects that BG classifies, in fact, are the principal G-bundles. More specifically,
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there is a bijection

{Isomorphism classes of principal G-bundles over X} ∼= [X ,BG], (2.1)

where [X ,BG] denotes the set of homotopy classes of maps from X to BG. If the bundle

G→ P
p−→ X corresponds to a homotopy class represented by a map κ : X → BG, then κ is

called a classifying map for the bundle. Note that a bundle is trivial (i.e., isomorphic to

a product bundle P ∼= G×X
prX−−→ X) exactly when the classifying map is null-homotopic

(i.e., homotopic to a constant map). A section of a principal bundle G→ P
p−→ X is a map

s : X → P such that ps= idX . In Section 3, we will see that the existence of a section means
that the principal bundle is trivial.

When G = S1, something special happens. Namely, the classifying space BS1 is an
Eilenberg-MacLane space K(Z,2), that is, BS1 has second homotopy group π2(BS1)= Z,
and all other πi(BS1)= 0, i �= 2. In fact, BS1 is known to be CP(∞), the infinite complex
projective space. For nice spaces (e.g., manifolds, CW-complexes), Eilenberg-MacLane
spaces classify singular cohomology in the sense that

Hk(X ;A)∼= [X ,K(A,k)
]
, (2.2)

where Hk(X ;A) denotes the cohomology of X with coefficients in the abelian group
A, and [X ,K(A,k)] again denotes the set of homotopy classes of maps from X to the
Eilenberg-MacLane space K(A,k), having πk(K(A,k))= A and πi(K(A,k))= 0 for i �= k.
(Also note that the loop space of an Eilenberg-MacLane space is an Eilenberg-MacLane
space: ΩK(A,n)= K(A,n− 1).) The bijection is given as follows. The universal coefficient
theorem of algebraic topology shows that

Hk
(
K(A,k);A

)=Hom
(
Hk
(
K(A,k);Z

)
,A
)=Hom(A,A). (2.3)

The identity homomorphism id : A→ A then corresponds to a characteristic element
ι ∈ Hk(K(A,k);A). Now, given a map f : X → K(A,k), we can apply the induced ho-
momorphism on cohomology to ι to get f ∗(ι) ∈Hk(X ;A). This is the bijection shown
above.

By combining the discussions above, we see that when G= S1, the isomorphism classes
of principal circle bundles over a manifold X are classified by H2(X ;Z). More specifi-

cally, if κ : X → BS1 classifies a principal S1-bundle S1 → P
p−→ X , then the bundle is, in

fact, classified by κ∗(ι) ∈ H2(X ;Z). The Euler class of the bundle is then defined to be
e = κ∗(ι)∈H2(X ;Z). (The Euler class for principal circle bundles coincides with a more
general definition for oriented vector bundles using the Thom class. This follows from
the fact that circle bundles are the underlying principal bundles of oriented R2-vector
bundles.) Therefore, the Euler class is the essential ingredient in the understanding of
principal circle bundles. Noting that S1 ∼= U(1), we can also identify the Euler class of a
principal S1-bundle with the first Chern class of the associated complex line bundle—and
this is an important reason why the Euler class holds interest for geometers.

An example of a principal bundle to keep in mind is the universal covering projection
X̃ → X . This is a principal π1(X)-bundle with classifying map X → Bπ1(X). Now, when
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G is a discrete group, we know that BG= K(G,1), so Bπ1(X)= K(π1(X),1) and the clas-
sifying map induces an isomorphism of fundamental groups (which can be obtained by
attaching cells to X to kill all higher homotopy groups).

The final bit of algebraic topological background needed is the universal coefficient
theorem. There is a relation among cohomology groups, homology groups, and the Ext
groups (of homological algebra). Namely, we have a split exact sequence (for an abelian
group A)

Ext
(
Hk−1(X ;Z),A

)−→Hk(X ;A)−→Hom
(
Hk(X ;Z),A

)
. (2.4)

An exact sequence of abelian groups (or, indeed, any central extension of an abelian
group) A→ B→ C has a fibration K(A,1)→ K(B,1)→ K(C,1) associated with it which
is a homotopy-analog to a principal bundle. (Indeed, the long exact homotopy sequence
described in Properties 3.1(3) is the original short exact sequence.) Just as for principal
bundles, the fibration has a classifying map K(C,1)→ K(A,2) corresponding to an ele-
ment of H2(K(C,1);A)=H2(C;A). The universal coefficient theorem then gives

Ext(C,A)= Ext
(
H1
(
K(C,1);Z

)
;A
)=H2(C;A), (2.5)

since H2(C;Z)= 0 for a finitely generated abelian group C (see [2], e.g.). This is the usual
extension group which classifies abelian extensions of C by A. Having this foundational
material, we can now consider one of the main subjects of the paper.

3. Pullbacks

There are two types of pullbacks that will be important for us. The topological pullback, or
simply pullback is defined as follows: given two maps f : X → B and g : Y → B, we form
the space

P= {(x, y)∈ X ×Y | f (x)= g(y)
}

(3.1)

and call it the pullback of f and g. The key property of a pullback is that, given h : Z → X
and k : Z → Y with f h = gk, then there exists a (unique) map ω : Z → P making the
following diagram commutative, where f̄ and ḡ are the canonical projections:

Z

k

ω
h

P
ḡ

f̄

X

f

Y g B

(3.2)

The most important homotopical construction for our purposes is the homotopy pull-
back. Given two maps f : X → B and g : Y → B, we form the space

�= {(x,γ, y)∈ X ×BI ×Y | f (x)= γ(0), g(y)= γ(1)
}

(3.3)
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and call it the homotopy pullback of f and g. Many results about homotopy pullbacks may
be found in [5], but we will require only the following.

Properties 3.1. The following properties hold.

(1) Given h : Z → X and k : Z → Y with f h � gk, then there exists a map ω : Z →�
making the following diagram homotopy commutative, where f̄ and ḡ are the canonical
projections:

Z

k

ω
h

�
ḡ

f̄

X

f

Y g B

(3.4)

(2) Replacing any of the spaces or maps by homotopy equivalent ones in the initial
diagram produces the same homotopy pullback up to homotopy.

(3) If X , say, is contractible, then � is the homotopy fibre of the map g : Y → B. For
instance, if we take X = PB = {γ : I → B | γ(0) = b0}, the contractible path space over B
consisting of paths in B starting at a fixed basepoint, and f (γ) = γ(1), then we obtain a

fibration up to homotopy �→ Y
g−→ B. (A fibration is a map which satisfies the homotopy

lifting property (see [9] or [10]), while a fibration up to homotopy means that spaces and
maps may be replaced by homotopically equivalent ones which give an actual fibration.)
We then call � = Fg the homotopy fibre of g. The homotopy lifting property may be

interpreted as the following property. If F
j−→ E

p−→ B is a fibration, then given any map f :
X → E such that p ◦ f is null-homotopic, there exists a “lifting” g : X → F with j ◦ g � f .
(Here, � denotes “homotopic to.”)

(4) By continuing this process of taking homotopy fibres, we obtain a sequence of
spaces (called the Puppe sequence):

··· −→ΩFg −→ΩY
Ωg−−→ΩB −→ Fg −→ Y −→ g B, (3.5)

where any three consecutive spaces form a fibration up to homotopy (with any two con-
secutive maps being null-homotopic). The crucial property of the Puppe sequence is that
it is exact in the sense that, for any space Y , the following sequence of homotopy sets is
exact:

··· −→ [X ,ΩFg
]−→ [X ,ΩY]

Ωg#−−−→ [X ,ΩB]−→ [X ,Fg
]−→ [X ,Y]

g#−−→ [X ,B]. (3.6)
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In particular, if X = S0 (the 0-sphere), then we obtain the long exact sequence of homo-
topy groups associated to a fibration (see [9] or [10]):

··· −→ πk+1(B)−→ πk
(
Fg
)−→ πk(Y)−→ πk(B)−→ πk−1

(
Fg
)−→ ··· −→ π0(B).

(3.7)

The homomorphisms πj+1(B)→ πj(Fg) are called connecting homomorphisms.
The map preceding a sequence of three spaces (as we go from right to left) in the Puppe

sequence is said to classify the sequence because the sequence arises as a homotopy pull-
back of the map. So the homotopy class of the classifying map determines the homotopy
type of the homotopy pullback. For instance, g classifies ΩB→ Fg → Y .

(5) If f : X → B is a fibration, then � has the homotopy type of the ordinary topo-
logical pullback P. Because f : PB → B as above is a fibration for any B, the homotopy
pullback of all classifying maps in our sense is fibrations.

Example 3.2. Suppose G→ P
p−→ X is a principal bundle with classifying map κ : X → BG.

Since ΩBG� G, the Puppe sequence extends to ··· → G→ P→ X → BG with accompa-
nying exact sequence

··· −→ [X ,P]
p#−−→ [X ,X]

κ#−−→ [X ,BG]. (3.8)

Suppose the bundle has a section s : X → P. Then there is an induced map s# : [X ,X]→
[X ,P] with p# ◦ s# = id[X ,X]. Hence,

κ= κ#
(

idX
)= κ#

(
p# ◦ s#

(
idX

))= ((κ#p#)◦ s#
)(

idX
)=∗, (3.9)

since κ ◦ p is null-homotopic. Since the classifying map is null-homotopic, the principal
bundle is trivial. Thus, principal bundles with sections must be trivial bundles.

4. Flat bundles and Lie groups made discrete

A principal G-bundle G→ P → X (with classifying map κ : X → BG) is called flat if the
classifying map factors up to homotopy as

BGd

Bi

X

κ̃

κ
BG

(4.1)

where Gd is the group G (but with the discrete topology), i : Gd → G is the identity map,
and BGd is the classifying space of Gd. Such a factorization has the effect of reducing
the structure group of the bundle to a discrete group, so that any associated vector bun-
dle has a connection with curvature zero. This is what is meant by “flat.” Also, it should
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be mentioned that there is an interesting conjecture concerning the relationship in ho-
mology between BGd and BG; namely, that Bi∗ : H∗(BGd;A)→H∗(BG;A) should be an
isomorphism for all finite A. See [6] for a proof when G is solvable.

Note that since Gd is a discrete group, the classifying space BGd = K(Gd,1) is the
Eilenberg-MacLane space having its single nontrivial homotopy group Gd in degree one.
The following result is the first step in reducing the understanding of Gd to that of its
universal covering group made discrete.

Proposition 4.1. Let G be a connected Lie group, and let π : U → G denote the universal
covering. Then, Ud is a pullback of π along the map i : Gd →G.

Proof. Note first that making U discrete unravels all of the topology linking the fibres of
the universal covering of G. Hence, as a (discrete) space, Ud = Gd ×π1(G). Now, discrete
spaces are characterized by their cardinalities, and the pullback P of π along the map i :
Gd →G clearly has the right cardinality. Therefore, the proof of the result simply consists
of showing that P has the discrete topology.

Now, because π : U → G is a principal π1(G)-bundle, its pullback along i is one also.
Because π : U → G is surjective, there is a set map s : G→U with π ◦ s= idG. But, Gd has
the discrete topology, so s, considered as a map s : Gd →U , is continuous. By Example 3.2,
the principal bundle is trivial, so we obtain P = Gd × π1(G). Hence, P has the discrete
topology and P=Ud. �

Remark 4.2. We can also prove the proposition by letting q : P → Gd and r : P → U be
the continuous projections and considering the inverse images q−1(g)= {(g,x) | π(x) =
g} and r−1(A), where A is an open set in U about x containing no other point in the
fibre above g. These sets are open by continuity and the fact that g ∈ Gd is open. Hence,
q−1(g)∩ r−1(A)= {(g,x)} is open too and, thus, P has the discrete topology. Therefore,
P=Gd ×π1(G)=Ud.

5. The case of the circle group

Let G = S1 with universal cover R, and note that BS1 = K(Z,2), BS1
d = K(S1

d,1), and
BRd = K(Rd,1). Now, consider the following pullback diagram arising as in Proposition
4.1:

Rd
î

R

π

S1
d

i
S1

(5.1)

Of course, the homomorphisms of groups shown are the usual ones making the sequence
Z→R→ S1 exact. Note that the pullback property guarantees that the fibre of Rd → S1

d is
Z included in Rd in the standard way and that the restriction of î to fibres is the identity.
But now we notice an amazing fact. Because R→ S1 is a fibration with R contractible,
by Properties 3.1(3), Rd is the homotopy fibre of S1

d → S1. Therefore, i : S1
d → S1 is the

classifying map for Z→ Rd → S1
d, and the same holds for BS1

d → BS1 in the sequence of
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classifying spaces:

BZ

�

BRd

�

BS1
d

�

BS1

�

K(Z,1) K(Rd,1) K(S1
d,1) K(Z,2)

(5.2)

Remark 5.1. Note that the first two maps are determined by the corresponding homo-
morphisms of groups. The last map also comes from the sequence of discrete groups; it is
the class in Ext(S1

d,Z)⊆H2(S1
d;Z) classifying the central extension Z→Rd → S1

d (see [2]).

Proposition 5.2. There exists a map φ : K(Z,2)→ K(Rd,2), so that the sequence of fibra-
tions (5.2) may be extended to a sequence of fibrations

K(Z,1)−→ K
(
Rd,1

)−→ K
(
S1
d,1
)−→ K(Z,2)

φ−→ K
(
Rd,2

)
. (5.3)

Proof. This is, in fact, a standard result in topology (see [1, Theorem 7.1]), but we give
a proof to illustrate the beautiful connections between topology and algebra outlined in
Section 2.

Let φ correspond to the usual inclusion of the integers into the reals, Z → Rd. Of
course, this is the induced homomorphism of the map at the beginning of the sequence
K(Z,1)→ K(Rd,1) as well. The homomorphism φ also gives a map K(Z,2)→ K(Rd,2)
which is φ on homotopy groups.

To see that we get a fibration on the right end, let F denote the homotopy fibre of φ.
We must show that F → K(Z,2) is precisely the map K(S1

d,1)→ K(Z,2) in the original
fibration sequence corresponding to the group extension Z→ Rd → S1

d as discussed in
Remark 5.1.

The long exact sequence in homotopy associated to the fibration F→K(Z,2)→K(Rd,2)
shows immediately that F � K(S1

d,1) since (because Z→ Rd is injective) the only non-
trivial homotopy group appears in degree one and is a quotient of the standard inclusion
Z→Rd (which defines φ). We now extend to a Puppe sequence (see Properties 3.1(4))

K(Z,1)
Ωφ−−→ K

(
Rd,1

)−→ F = K
(
S1
d,1
)−→ K(Z,2)

φ−→ K
(
Rd,2

)
, (5.4)

where we can see that the homomorphisms corresponding to the first two maps are
the usual ones. The first is just a loop of φ, so that is clear. The second map is just
a realization of the connecting homomorphism π2(K(Rd,2))→ π1(K(S1

d,1)) = F in the
homotopy sequence by spaces K(Rd,1) = ΩK(Rd,2) → K(S1

d,1). Since the connecting
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homomorphism was the usual group projection Rd → S1
d onto the quotient S1

d = Rd/Z,
the second map is the usual one too. The map F → K(Z,2) is a classifying map for the
fibration K(Z,1)→ K(Rd,1)→ F = K(S1

d,1), since the Puppe sequence is constructed by
taking consecutive homotopy fibres. But the fibration is determined by the group exten-
sion Z→Rd → S1

d, since the spaces are Eilenberg-MacLane spaces in degree one. Indeed,
the classifying map corresponds to an element in Ext(S1

d,Z) ⊆ H2(S1
d;Z) classifying the

group extension. But the group extension is the usual one, so the element, and hence the
classifying map F → K(Z,2) are the usual ones as well. �

6. Flat S1-bundles and the Euler class

A principal S1-bundle ξ : S1 → P→ X is classified by a map κ : X → BS1 = K(Z,2). As dis-
cussed in Section 2, this map corresponds to a degree-2 cohomology class by the standard
identification [X ,K(Z,2)]∼=H2(X ;Z). Indeed, there is an element ι∈H2(K(Z,2);Z) cor-
responding to the identity homomorphism id: Z→ Z, and the Euler class e(ξ)∈H2(X ;Z)
has e(ξ) = κ∗(ι). As we have said earlier, e(ξ) characterizes the homotopy class of κ, so
it serves to classify principal S1-bundles over X . A real Euler class e(ξ)Rd is obtained
by simply extending coefficients to H2(X ;Rd). This is equivalent to composing with the
map φ : K(Z,2)→ K(Rd,2) corresponding to the usual inclusion Z→Rd. Again, we have
[X ,K(Rd,2)] ∼=H2(X ;Rd) obtained by pulling back a class ι̂ corresponding to id: Rd →
Rd. (Note that pulling ι̂ back to K(Z,2) gives the class in H2(K(Z,2);Rd) corresponding
to the usual inclusion Z→Rd.) We can now prove the main result using only the standard
fibration and pullback theory presented above.

Theorem 6.1. The real Euler class e(ξ) is zero if and only if ξ is flat.

Proof. With the notation above, consider the following fibration diagram, which we will
use for both parts of the proof (here we write BS1 for K(Z,2) and BS1

d for K(S1
d,1) to relate

back to the definition of flat bundle):

BS1
d

Bi
BS1

φ
K(Rd,2)

X
κ̂

κ (6.1)

Suppose ξ is flat. Then κ̂ exists by definition and we have φκ� φBiκ̂�∗ since φBi�∗.
But φκ represents the real Euler class, so we obtain e(ξ)Rd = 0.

On the other hand, suppose e(ξ)Rd = 0. Then φκ � ∗. But then Properties 3.1(3) al-
lows us to factor κ through the fibre as shown in the diagram: Biκ̃� κ. By definition, this
means that the bundle is flat. �

Of course, when X has finite type, for an integral cohomology class e, we can identify
the conditions that e vanishes when coefficients are extended to the reals and that e is
torsion. Therefore, we have the following corollary.

Corollary 6.2. If X has finite type, then the Euler class e(ξ) is torsion if and only if ξ is flat.



J. Oprea and D. Tanré 3495

We end by noting an interesting result that uses Corollary 6.2. In an attempt to create
new examples of nonnegatively curved manifolds, geometers have considered the ques-
tion of whether total spaces of vector bundles over nonnegatively curved manifolds also
carry metrics of nonnegative sectional curvature. In [8], Özaydin and Walschap gave ex-
amples showing this is not always the case and a fundamental ingredient in their proof is
the following. (Recall that a compact manifold is flat if its sectional curvature is constantly
zero. Also recall that an orientedR2-vector bundle has a circle bundle as underlying prin-
cipal bundle and the Euler class comes from that circle bundle.)

Theorem 6.3 (see [8]). Let ξ : R2 → E→M be an oriented vector bundle, where Mn is a
compact flat manifold. Then, E admits a complete nonnegatively curved metric if and only if
the rational Euler class e(ξ)Q is zero.

Because oriented R2-bundles over T2 are classified (in terms of their associated prin-
cipal circle bundles) by Euler classes e ∈ [T2,BS1]∼=H2(T2;Z)= Z, by Theorem 6.3, only
the zero Euler class gives a total space with nonnegative curvature. But this is simply
T2×R2, the total space of the trivial bundle. All other total spaces cannot carry metrics
of nonnegative curvature. These are the examples of Özaydin and Walschap.
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