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By using the concept of $-convergence defined by Kostyrko et al. in 2001, the $-limit
superior of real sequences was introduced and the inequality $ — limsup(Ax) < $ —
limsup(x) for all x € ¢, was studied by Demirci in 2001. In this paper, we have char-
acterized a class of $-conservative matrices by studying some new inequalities related to
the $-limit superior.

1. Introduction

Let €« and ¢ be the Banach spaces of bounded and convergent sequence x = (xx) with the
usual supremum norm. Let o be a one-to-one mapping of N, the set of positive integers,
into itself and T : €« — €o a linear operator defined by Tx = (Txx) = (x5(k)). An element
¢ € £, the conjugate space of £, is called an invariant mean or a o-mean if and only
if (i) ¢(x) = 0 when the sequence x = (x) has x > 0 for all k, (ii) ¢(e) = 1 where e =
(1,1,1,...), and (iil) ¢(Tx) = ¢(x) for all x € €e. Let M be the set of all 0-means on €.
A sublinear functional P on £ is said to generate o-means if ¢ € £, and ¢ <P = ¢ is
a o-mean, and to dominate o-means if ¢ < P for all ¢ € M, where ¢ < P means that
¢(x) < P(x) for all x € €.
It is shown [8] that the sublinear functional

V(x) = suplimsup t,,(x) (1.1)
n p
both generates and dominates o-means, where

T (xn +tXo(n) t 0" +-x01’(n))7 t—l,n(x) =0. (1.2)

tpn(x) = p+1

A bounded sequence x is called o-convergent to s if V(x) = —V(—x) = s. In this case, we
write 0 — limx = s. Let V,; be the set of all o-convergent sequences. We assume through-
out this paper that 6?(n) # n for all n > 0 and p > 1, where ?(n) is the pth iterate of

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:21 (2005) 34433452
DOI: 10.1155/IJMMS.2005.3443


http://dx.doi.org/10.1155/S0161171205504101

3444 A class of $-conservative matrices

o at n. Thus, a 0-mean extends the limit functional onto c¢ in the sense that ¢(x) = limx
for all x € ¢ [9]. Consequently, ¢ C V.

By (iii), it is clear that (Tx — x) € Z for x € €«, where Z is the set of all o-convergent
sequences with ¢-limit zero.

For x € £, we write

I(x) = liminf x, L(x) = limsupx, W(x) = ingL(x+z). (1.3)
ze

It is known that V(x) = W(x) on £ [8].

Let A = (aqx) be an infinite matrix of real numbers and x = (xx) a real sequence such
that Ax = (A,(x)) = (X rankxk) exists for each n. Then, the sequence Ax = (A,(x)) is
called an A-transform of x. For two sequence spaces E and F, we say that the matrix A
maps E into F if Ax exits and belongs to F for each x € E. By (E, F), we denote the set of
all matrices which map E into F.

A matrix A € (¢, c) is said to be conservative. It is known [1, page 21] that A is conser-
vative ifand only if [|A]| = sup, >k lauk| < 00, ax = lim, a for each k, and a = lim, >’ auk.
If A is conservative, the number y = y(A) = a — >y ax called the characteristic of A is of
importance in summability [1, page 46].

Let E be a subset of N. Natural density § of E is defined by

5(E)=1i}ln%|{k5n:keE}|, (1.4)

where the vertical bars indicate the number of elements in the enclosed set. The number
sequence x = (xi) is said to be statistically convergent to the number [ if for every ¢,
0{k:|xx — 1| = &} =0 [4]. In this case, we write st — limx = [.

A matrix A € (c,¢)reg is said to be regular and it is known [ 1, page 21] that A is regular if
and only if ||A]| < o0, lim, a,x = 0 for each k, and lim,, > ;. a,x = 1. For a given nonnegative
regular matrix A, the number

Sa(E) =1lim > a (1.5)

keE

is said to be the A-density of E = N [5]. A sequence x = (xi) is said to be A-statistical
convergent to a number s if for every ¢ > 0, the set {k: [xx —s| = ¢} has A-density zero
[5]. In this case, we write sty — limx = s. By st4, we denote the set of all A-statistically
convergent sequences.

Let B = (B;) = (buk(i)) be a sequence of infinite matrices. Then, a bounded sequence
x is said to be 9B summable to the value [ if

lizn%x = limz buk(i)xx =1 uniformly in 4. (1.6)
k

The matrix % is regular [11] if and only if [|B]| < co, lim, b,k (i) = 0 for all k, uniformly
in i, and lim, > by (i) = 1 uniformly in i, where Bl = sup,; >k [buk(i)|. For a given
nonnegative regular matrix sequence %, Kolk [6] introduced the %-density of a subset of
N as follows.
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The number

Oq(E) = li’r1n Z buk(i) =d uniformly in i (1.7)
keE

is said to be B-density of E if it exists. In the cases B = (A) and B = (C, 1), the Cesaro ma-
trix, the RB-density reduces to the A-density and natural density, respectively. A sequence
x = (xx) is said to be RB-statistically convergent [6] to a number s if for every € > 0, the set
{k: |xx —s| = e} has B-density zero. The set of all %B-statistically convergent sequences is
denoted by stg.

Let X # @. A class S C 2% of subsets of X is said to be an ideal in X if S satisfies the
conditions (i) @ € S, (ii) YU Z € S whenever Y,Z € S, (iii) Y € S and Z < Y implies
that Z € S. An ideal is called nontrivial if X ¢ S. A nontrivial ideal is called admissible if
{x} € Sforeachx € X [7].

Let $ be a nontrivial ideal in N. A sequence x = (xi) is said to be $-convergent to a
number [ if for every ¢ >0, {k: |xx —I| > ¢} € $ [7]. In this case, we write $ — limx = [.
It is clear that a $-convergent sequence need not be bounded. Let Fg(b) be the set of all
$-convergent and bounded sequences.

Note that in the cases $5 = {E < N:0(E) =0}, $5, = {E = N:84(E) =0}, and 95, =
{E = N:3z(E) = 0}, the $-convergence is reduced to the statistically convergence, A-
statistically convergence, and %B-statistically convergence, respectively.

An admissible ideal $ in N is said to satisfy the additive property if for every countable
system {Y1,Y,...} of mutually disjoint sets in $, there exist sets Z; = N (j = 1,2,...) such
that the symmetric differences Y;AZ; (j = 1,2,...) are finite and Uj Z;ie 9 [7].

Demirci [3] has introduced the concepts $-limit superior and inferior. For a real num-
ber sequence x, let By and A, denote the sets {b e R: {k:xx >b} € $} and {a e R: {k:
Xk < a} & 9}, respectively, and also let § be admissible. Then,

supB, if B # Q,
— 0 if B, = &,

infA, ifA,#Q,
() ifA, = Q.

9 —limsupx = <|
(1.8)
$ —liminfx = <|

It is shown [3] that $ — limsupx = S ifand only if for every e >0, {k: xx < S — ¢} ¢ $ and
{k:xp>p+e} € 9. Also, $ —liminfx = aif and only if for every e > 0, {k:xp < a+e} &
$ and {k:xx < a — e} € $. Recall that a sequence x = (xx) is said to be $-bounded if there
existsan N >0 such that {k: [xx| > N} € $.Itis proved in [3] that a $-bounded sequence
x is $-convergent if and only if $ — limsupx = $ — liminfx.

For all x € £, the inequality

$ —limsupA(x) < $ — limsup(x) (1.9)

has been studied in [3].
In this paper, we have characterized a class of matrices A € (¢, F¢(b)) by studying some
new inequalities related to the $-limit superior and limit inferior.
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2. The main results
Firstly, we will begin with the following lemma.

LeEmMA 2.1. A € (¢,Fg(b)) if and only if

sup >’ [an| < oo, (2.1)
nok
$ —limau = tx  foreveryk, (2.2)
$—lim > au =t. (2.3)
k

Proof. Assume that A € (¢,Fg(b)). Then, (2.1) follows from the fact that (¢,Fg(b)) C
(€w,?s). For the necessity of the other conditions it is enough to consider the sequences
(ex) and e, respectively, where (ex) is the sequence whose kth place is 1 and the others are
all zero.

Conversely, suppose that the conditions (2.1)—(2.3) hold. Let x € cand limx = [. Then,
for any given ¢ > 0, there exists a kg € N such that |x; — [| < e whenever k > k;. Now, we
can write

Ax = Zunk (xx = 1) +lZank. (2.4)
k k

By an easy calculation, one can see that
K —lirIanank(xk 1) => (e —1). (2.5)
k k

So, by applying $ — lim, in (2.4), we get that

g — li;lnAx =It+ Ztk(xk —1). (2.6)
k

This completes the proof. O

In what follows, a matrix A € (¢,Fg(b)) is said to be $-conservative. In the case A is
$-conservative, the number

Ky =Kg(A)=t-> t (2.7)
k

is said to be $-characteristic of A.
To the proof of our main results, we need two lemmas which can be proved by the
same technique used in [2, Lemmas 2.3-2.4 ], respectively.

LeEMMA 2.2. Let A be $-conservative and A > 0. Then,

J - limsupz |am —te] <A (2.8)
nok
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if and only if
9 - limsupz (am —te)" < “%,
nok
(2.9)
g — limsupz (amk —tx) < )L_TKy.

n k

LemMA 2.3. Let [|All < 00 and $ — lim, |auk| = 0. Then there exists a y € €« such that
lyll <1 and

$ —limsup > amyr = F —limsup > |am|. (2.10)
k K

THEOREM 2.4. Let A be $-conservative. Then, for some constant A = |Kg| and for all x € €,

9 - limsupz (ank — te)xx < A+2K‘¢ L(x) - )L_Tml(x) (2.11)
nok
if and only if
9 — limsupz [am —te| <A (2.12)
n k

Proof. Let (2.11) hold. Define B = (byk) by bux = (ank — tx) for all n, k. Then, since A is
$-conservative, the matrix B satisfies the hypothesis of Lemma 2.3. Hence, we have from
(2.11) for a y € €., with [|y]l < 1 that

$ —limsup > | by | = —limsup > by yx
mk nok
- A+ Ky
2

A+ Ky A—Ky) B
S(T + ==Lyl = A,

_A—Kyl
2

L(y) () (2.13)

which yields (2.12).
Conversely, let (2.12) hold and x € €. Then, for any ¢ > 0, there exits a ky € N such
that [(x) — € < xx < L(x) + € whenever k > ky. Now, we can write

Sam—t)xe =D (e —t)xe+ D (@nk—te) xe— > (@ —t) Xk (2.14)

k k<ky k>ko k>ko

Since A is $-conservative and by Lemma 2.2, we obtain

$ —limsup > (an — ti)xx < (L(x) +e) (%) - (I(x) —¢) (’\_TKJ)
P2 (2.15)

=A?@umflzmum+m,

which yields (2.11), since ¢ is arbitrary. g
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When Ky >0 and A = Ky, we can conclude from Theorem 2.4 the following result.

THEOREM 2.5. Let A be $-conservative. Then, for all x € €,

9 — limsupz (ank — tr)xx < KgL(x) (2.16)
nok

if and only if

9—11}1;12 |an — t| < Ksy. (2.17)
k

In the cases $ = 95, and $ = $;,, we respectively have the following results from
Theorem 2.4.

THEOREM 2.6. (a) Let A € (¢,stg N €w). Then, for some constant A = |Kg| and for all x €
eOO)

A+K% _)L—Kgg,

stgy — limsupz (ank — tr)xp < 5 L(x) 5 I(x) (2.18)
"k
if and only if
st —limsup > |am — t| < A. (2.19)

k

(b) Let A € (¢,sta N €w). Then, for some constant A = | K4 | and for all x € €,

sty — limsupz (Ank — tr)xx < A +2KAL(x) A _ZKA I(x) (2.20)
nog
if and only if
sty — limsupz |k —te| <A (2.21)

k
Also, if $ = 95, Theorem 2.4 appears as in [2, Theorem 2.5].

THEOREM 2.7. Let A and A be as in Theorem 2.4. Then, for all x € £,

A +2K§ Vix)+ )%V(—x) (2.22)

9 - limsupz (ank — te)xx <
nok

if and only if (2.12) holds and

$ - liznz | Ank — Ano(k) — tk T to(k) | =0. (2.23)
k

Proof. Let (2.22) hold. Then, since V(x) < L(x) and V(—x) < —I(x) for all x € £, (2.12)
follows from Theorem 2.4.
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Define a matrix C = (cak) by ¢k = (buk — buo(ky) for all n, k, where by is defined as
in Theorem 2.4. Then, we have the hypothesis of Lemma 2.3. Now, choose the sequence
y such that yx = 0 for k & o(N). Then, (yx — yox)) € Z and also, by the same argument
used in [10, Theorem 23], one can easily see that

D buk (k= Yotk)) = 2. Cak Yo(k)- (2.24)
P P

Hence, (2.22) implies that
9 —Tlimsup > [cax| = $ —limsup > e yorr)
n k n k

=9 - limsupz bak (Vk — Yotk)) (2.25)
n k

A+ K A—K
LV (5 — yot) + 5 2

<

V(Yotk) = yx) = 0.

This yields (2.23).

Conversely, suppose that (2.12) and (2.23) hold. Then, for any x € €, we have (2.24).
Hence, since (xx — X4(k)) € Z, (2.23) implies that B € (Z,Fy(b)) with $ —limBz =0, (z €
Z). We also see from the assumption that (2.11) holds. Thus, by taking infimum over
z € Z in (2.11), we observe that

ing (55 - limsuprnk(xk +zk)> < A+ Ky Lx+z)— A=Ky I(x+2z)
< "k (2.26)
- A—+2K9 W(x) + A—_zKy W(-x).

On the other hand, since $ —limBz = 0,
;Ielg (9 - limnsup % bk (xx + zk)) >9 - limnsup % bukxi + ;relg (9 - limnsup % bnkzk>
=9 —limsup Z bk Xr.
nok
(2.27)

Since W(x) = V(x) for all x € ¢, we conclude that (2.22) holds and the proof is com-
pleted. O

When Ky >0 and A = Ky, we have the following result.

THEOREM 2.8. Let A be $-conservative. Then, for all x € £,

9 - limsupz (ank — tr)xx < Kg V(x) (2.28)
nok

if and only if (2.17) and (2.23) hold.
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The following results can be derived from Theorem 2.7 for the special cases $ = g,
and $ = 9s,.

THEOREM 2.9. (a) Let A € (¢,stg N €w). Then, for some constant A = |Kg| and for all x €
eOQ)

stgy — limsupz (ank — te)xx < A +2K% V(x)+ A _ZK% V(—x) (2.29)

n k

if and only if (2.19) holds and
stg — li,EnZ | Ank — Ano(k) — Ltk + tok) | =0. (2.30)

k

(b) Let A € (¢,sta N €w). Then, for some constant A > |K4| and for all x € €,

sty — limsupz (ank — tx)xx < A +2KA V(x)+ A_TKAV(—x) (2.31)
nok
if and only if (2.21) holds and
sty — li’IPZ | @k — Anok) = tr + toiy | = 0. (2.32)
k

Further, for $ = 94, Theorem 2.7 is reduced to [2, Theorem 2.7].
THEOREM 2.10. Let A and A be as in Theorem 2.4. Then, for all x € £,

9 - limsupz (ank — te)xx < A +2K§ y(x) + )%I@y(—x) (2.33)

"k

if and only if (2.12) holds and
9711’912 |apk —tx| =0 (2.34)

keE
for every E € $, where y(x) = $ — limsup; xx.

Proof. 1f (2.33) holds, since y(x) < L(x) and y(—x) < —I(x), (2.12) follows from Theorem
2.4. To show the necessity of (2.34), for any E € $, let us define a matrix D = (d,x) by
duk = auk — tr, k € E; otherwise, it equals zero for all n. Then, clearly, D satisfies the con-
ditions of Lemma 2.2, and therefore there exists a y € €« such that || y[| < 1 and

(- limsupZdnkyk =9 - limsupz | dux | (2.35)
nk nok

Now, for the same E, we choose the sequence y as

L k € E, (236)
Vo, ke¢E '
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Then, since $ —limy = y(y) = y(—y) =0, (2.33) implies that

2K9 y(=y) =0, (2.37)

y(y)+

$ —limsup > |du| <

n keE

A+ Ky A—
2

which yields (2.34).

Conversely, suppose that the conditions of the theorem hold and x € €«. Let E; = {k:
Xk > p(x) + ¢} and E; = {k: xx < y(x) — €}. Then, since Ey,E, € $, E = E; N E; € $. Now,
we can write

D@k —te)xk = > (ame — te)xx+ > (@nk— 1) 2k — > (@nk — te) Xk (2.38)

k keE k¢E k&E

Thus, by (2.34) and Lemma 2.2, (2.33) is obtained since

9 — limsupz (Ank — tr)xx < A +2K‘¢ y(x) + A _ZKy
nok

p(—=x) +Ae (2.39)

and ¢ is arbitrary. O
When Ky >0 and A = Ky, we have the following result.
THEOREM 2.11. Let A be $-conservative. Then, for all x € €w,

9 - limsupz (ank — te)xx < Kgy(x) (2.40)
nok

if and only if (2.17) and (2.34) hold.
We can choose $ = $4,, and $ = $;, in Theorem 2.10 to obtain the following results.

THEOREM 2.12. (a) Let A € (¢,stg N €w). Then, for some constant A > |Kg| and for all
X € b,

stgy — limsupz (ank — te)xx < My(x) + #y(—x) (2.41)
nok
if and only if (2.19) holds and
sty —1lim > |au —ti| =0, (2.42)

keE

foreveryE € 9.
(b) Let A € (¢,sta N €x). Then, for some constant A = |Ka| and for all x € €,

A=Ky

A+K
Sy + 7

2

sty — limsupz (ank — tr)xx < y(—x) (2.43)

n k
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if and only if (2.21) holds and

sta—lim > |au —ti| =0, (2.44)
" keE

foreveryE € 9.

Moreover, Theorem 2.10 is a dual case of [2, Theorem 2.6] for $ = $s.
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