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Received 7 April 2005 and in revised form 20 September 2005

By using the concept of �-convergence defined by Kostyrko et al. in 2001, the �-limit
superior of real sequences was introduced and the inequality �− limsup(Ax) ≤ �−
limsup(x) for all x ∈ �∞ was studied by Demirci in 2001. In this paper, we have char-
acterized a class of �-conservative matrices by studying some new inequalities related to
the �-limit superior.

1. Introduction

Let �∞ and c be the Banach spaces of bounded and convergent sequence x = (xk) with the
usual supremum norm. Let σ be a one-to-one mapping of N, the set of positive integers,
into itself and T : �∞ → �∞ a linear operator defined by Tx = (Txk)= (xσ(k)). An element
φ ∈ �′∞, the conjugate space of �∞, is called an invariant mean or a σ-mean if and only
if (i) φ(x) ≥ 0 when the sequence x = (xk) has xk ≥ 0 for all k, (ii) φ(e) = 1 where e =
(1,1,1, . . .), and (iii) φ(Tx) = φ(x) for all x ∈ �∞. Let M be the set of all σ-means on �∞.
A sublinear functional P on �∞ is said to generate σ-means if φ ∈ �′∞ and φ ≤ P ⇒ φ is
a σ-mean, and to dominate σ-means if φ ≤ P for all φ ∈M, where φ ≤ P means that
φ(x)≤ P(x) for all x ∈ �∞.

It is shown [8] that the sublinear functional

V(x)= sup
n

limsup
p

tpn(x) (1.1)

both generates and dominates σ-means, where

tpn(x)= 1
p+ 1

(
xn + xσ(n) + ···+ xσp(n)

)
, t−1,n(x)= 0. (1.2)

A bounded sequence x is called σ-convergent to s if V(x)=−V(−x)= s. In this case, we
write σ − limx = s. Let Vσ be the set of all σ-convergent sequences. We assume through-
out this paper that σ p(n) �= n for all n ≥ 0 and p ≥ 1, where σ p(n) is the pth iterate of
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σ at n. Thus, a σ-mean extends the limit functional onto c in the sense that φ(x)= limx
for all x ∈ c [9]. Consequently, c ⊂Vσ .

By (iii), it is clear that (Tx− x)∈ Z for x ∈ �∞, where Z is the set of all σ-convergent
sequences with σ-limit zero.

For x ∈ �∞, we write

l(x)= liminf x, L(x)= limsupx, W(x)= inf
z∈Z

L(x+ z). (1.3)

It is known that V(x)=W(x) on �∞ [8].
Let A= (ank) be an infinite matrix of real numbers and x = (xk) a real sequence such

that Ax = (An(x)) = (
∑

k ankxk) exists for each n. Then, the sequence Ax = (An(x)) is
called an A-transform of x. For two sequence spaces E and F, we say that the matrix A
maps E into F if Ax exits and belongs to F for each x ∈ E. By (E,F), we denote the set of
all matrices which map E into F.

A matrix A∈ (c,c) is said to be conservative. It is known [1, page 21] that A is conser-
vative if and only if ‖A‖ = supn

∑
k |ank|<∞, ak = limn ank for each k, and a= limn

∑
k ank.

If A is conservative, the number χ = χ(A)= a−∑k ak called the characteristic of A is of
importance in summability [1, page 46].

Let E be a subset of N. Natural density δ of E is defined by

δ(E)= lim
n

1
n

∣∣{k ≤ n : k ∈ E}∣∣, (1.4)

where the vertical bars indicate the number of elements in the enclosed set. The number
sequence x = (xk) is said to be statistically convergent to the number l if for every ε,
δ{k : |xk − l| ≥ ε} = 0 [4]. In this case, we write st− limx = l.

A matrixA∈ (c,c)reg is said to be regular and it is known [1, page 21] thatA is regular if
and only if ‖A‖ <∞, limn ank = 0 for each k, and limn

∑
k ank = 1. For a given nonnegative

regular matrix A, the number

δA(E)= lim
n

∑
k∈E

ank (1.5)

is said to be the A-density of E ⊆ N [5]. A sequence x = (xk) is said to be A-statistical
convergent to a number s if for every ε > 0, the set {k : |xk − s| ≥ ε} has A-density zero
[5]. In this case, we write stA − limx = s. By stA, we denote the set of all A-statistically
convergent sequences.

Let �= (�i)= (bnk(i)) be a sequence of infinite matrices. Then, a bounded sequence
x is said to be � summable to the value l if

lim
n

�x = lim
n

∑
k

bnk(i)xk = l uniformly in i. (1.6)

The matrix � is regular [11] if and only if ‖�‖ <∞, limn bnk(i)= 0 for all k, uniformly
in i, and limn

∑
k bnk(i) = 1 uniformly in i, where ‖�‖ = supn,i

∑
k |bnk(i)|. For a given

nonnegative regular matrix sequence �, Kolk [6] introduced the �-density of a subset of
N as follows.
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The number

δ�(E)= lim
n

∑
k∈E

bnk(i)= d uniformly in i (1.7)

is said to be �-density of E if it exists. In the cases �= (A) and �= (C,1), the Cesàro ma-
trix, the �-density reduces to the A-density and natural density, respectively. A sequence
x = (xk) is said to be �-statistically convergent [6] to a number s if for every ε > 0, the set
{k : |xk − s| ≥ ε} has �-density zero. The set of all �-statistically convergent sequences is
denoted by st�.

Let X �= ∅. A class S ⊂ 2X of subsets of X is said to be an ideal in X if S satisfies the
conditions (i) ∅∈ S, (ii) Y ∪ Z ∈ S whenever Y ,Z ∈ S, (iii) Y ∈ S and Z ⊆ Y implies
that Z ∈ S. An ideal is called nontrivial if X /∈ S. A nontrivial ideal is called admissible if
{x} ∈ S for each x ∈ X [7].

Let � be a nontrivial ideal in N. A sequence x = (xk) is said to be �-convergent to a
number l if for every ε > 0, {k : |xk − l| > ε} ∈ � [7]. In this case, we write �− limx = l.
It is clear that a �-convergent sequence need not be bounded. Let F�(b) be the set of all
�-convergent and bounded sequences.

Note that in the cases �δ = {E ⊆N : δ(E)= 0}, �δA = {E ⊆N : δA(E)= 0}, and �δ� =
{E ⊆ N : δ�(E) = 0}, the �-convergence is reduced to the statistically convergence, A-
statistically convergence, and �-statistically convergence, respectively.

An admissible ideal � inN is said to satisfy the additive property if for every countable
system {Y1,Y2, . . .} of mutually disjoint sets in �, there exist sets Zj ⊆N ( j = 1,2, . . .) such
that the symmetric differences Yj∆Zj ( j = 1,2, . . .) are finite and

⋃
j Zj ∈� [7].

Demirci [3] has introduced the concepts �-limit superior and inferior. For a real num-
ber sequence x, let Bx and Ax denote the sets {b ∈R : {k : xk > b} /∈ �} and {a∈R : {k :
xk < a} /∈�}, respectively, and also let � be admissible. Then,

�− limsupx =

supBx if Bx �= ∅,

−∞ if Bx =∅,

�− liminf x =

inf Ax if Ax �= ∅,

∞ if Ax =∅.

(1.8)

It is shown [3] that �− limsupx = β if and only if for every ε > 0, {k : xk < β− ε} /∈� and
{k : xk > β+ ε} ∈ �. Also, �− liminf x = α if and only if for every ε > 0, {k : xk < α+ ε} /∈
� and {k : xk < α− ε} ∈�. Recall that a sequence x = (xk) is said to be �-bounded if there
exists an N > 0 such that {k : |xk| > N} ∈�. It is proved in [3] that a �-bounded sequence
x is �-convergent if and only if �− limsupx =�− liminf x.

For all x ∈ �∞, the inequality

�− limsupA(x)≤�− limsup(x) (1.9)

has been studied in [3].
In this paper, we have characterized a class of matrices A∈ (c,F�(b)) by studying some

new inequalities related to the �-limit superior and limit inferior.
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2. The main results

Firstly, we will begin with the following lemma.

Lemma 2.1. A∈ (c,F�(b)) if and only if

sup
n

∑
k

∣∣ank∣∣ <∞, (2.1)

�− lim
n
ank = tk for every k, (2.2)

�− lim
n

∑
k

ank = t. (2.3)

Proof. Assume that A ∈ (c,F�(b)). Then, (2.1) follows from the fact that (c,F�(b)) ⊂
(�∞,�∞). For the necessity of the other conditions it is enough to consider the sequences
(ek) and e, respectively, where (ek) is the sequence whose kth place is 1 and the others are
all zero.

Conversely, suppose that the conditions (2.1)–(2.3) hold. Let x ∈ c and limx = l. Then,
for any given ε > 0, there exists a k0 ∈N such that |xk − l| ≤ ε whenever k ≥ k0. Now, we
can write

Ax =
∑
k

ank
(
xk − l

)
+ l
∑
k

ank. (2.4)

By an easy calculation, one can see that

�− lim
n

∑
k

ank
(
xk − l

)=∑
k

tk
(
xk − l

)
. (2.5)

So, by applying �− limn in (2.4), we get that

�− lim
n
Ax = lt+

∑
k

tk
(
xk − l

)
. (2.6)

This completes the proof. �

In what follows, a matrix A ∈ (c,F�(b)) is said to be �-conservative. In the case A is
�-conservative, the number

K� = K�(A)= t−
∑
k

tk (2.7)

is said to be �-characteristic of A.
To the proof of our main results, we need two lemmas which can be proved by the

same technique used in [2, Lemmas 2.3-2.4 ], respectively.

Lemma 2.2. Let A be �-conservative and λ > 0. Then,

�− limsup
n

∑
k

∣∣ank − tk
∣∣≤ λ (2.8)
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if and only if

�− limsup
n

∑
k

(
ank − tk

)+ ≤ λ+K�

2
,

�− limsup
n

∑
k

(
ank − tk

)− ≤ λ−K�

2
.

(2.9)

Lemma 2.3. Let ‖A‖ <∞ and �− limn |ank| = 0. Then there exists a y ∈ �∞ such that
‖y‖ ≤ 1 and

�− limsup
∑
k

ank yk =�− limsup
∑
k

∣∣ank∣∣. (2.10)

Theorem 2.4. LetA be �-conservative. Then, for some constant λ≥ |K�| and for all x ∈ �∞,

�− limsup
n

∑
k

(
ank − tk

)
xk ≤ λ+K�

2
L(x)− λ−K�

2
l(x) (2.11)

if and only if

�− limsup
n

∑
k

∣∣ank − tk
∣∣≤ λ. (2.12)

Proof. Let (2.11) hold. Define B = (bnk) by bnk = (ank − tk) for all n, k. Then, since A is
�-conservative, the matrix B satisfies the hypothesis of Lemma 2.3. Hence, we have from
(2.11) for a y ∈ �∞ with ‖y‖ ≤ 1 that

�− limsup
n

∑
k

∣∣bnk∣∣=�− limsup
n

∑
k

bnk yk

≤ λ+K�

2
L(y)− λ−K�

2
l(y)

≤
(
λ+K�

2
+
λ−K�

2

)
‖y‖ = λ,

(2.13)

which yields (2.12).
Conversely, let (2.12) hold and x ∈ �∞. Then, for any ε > 0, there exits a k0 ∈N such

that l(x)− ε < xk < L(x) + ε whenever k > k0. Now, we can write
∑
k

(
ank − tk

)
xk =

∑
k≤k0

(
ank − tk

)
xk +

∑
k>k0

(
ank − tk

)+
xk −

∑
k>k0

(
ank − tk

)−
xk. (2.14)

Since A is �-conservative and by Lemma 2.2, we obtain

�− limsup
n

∑
k

(
ank − tk

)
xk ≤

(
L(x) + ε

)(λ+K�

2

)
− (l(x)− ε

)(λ−K�

2

)

= λ+K�

2
L(x)− λ−K�

2
l(x) + λε,

(2.15)

which yields (2.11), since ε is arbitrary. �
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When K� > 0 and λ= K�, we can conclude from Theorem 2.4 the following result.

Theorem 2.5. Let A be �-conservative. Then, for all x ∈ �∞,

�− limsup
n

∑
k

(
ank − tk

)
xk ≤ K�L(x) (2.16)

if and only if

�− lim
n

∑
k

∣∣ank − tk
∣∣≤ K�. (2.17)

In the cases � = �δ� and � = �δA , we respectively have the following results from
Theorem 2.4.

Theorem 2.6. (a) Let A∈ (c,st�∩ �∞). Then, for some constant λ≥ |K�| and for all x ∈
�∞,

st�− limsup
n

∑
k

(
ank − tk

)
xk ≤ λ+K�

2
L(x)− λ−K�

2
l(x) (2.18)

if and only if

st�− limsup
n

∑
k

∣∣ank − tk
∣∣≤ λ. (2.19)

(b) Let A∈ (c,stA∩ �∞). Then, for some constant λ≥ |KA| and for all x ∈ �∞,

stA− limsup
n

∑
k

(
ank − tk

)
xk ≤ λ+KA

2
L(x)− λ−KA

2
l(x) (2.20)

if and only if

stA− limsup
n

∑
k

∣∣ank − tk
∣∣≤ λ. (2.21)

Also, if �=�δ , Theorem 2.4 appears as in [2, Theorem 2.5].

Theorem 2.7. Let A and λ be as in Theorem 2.4. Then, for all x ∈ �∞,

�− limsup
n

∑
k

(
ank − tk

)
xk ≤ λ+K�

2
V(x) +

λ−K�

2
V(−x) (2.22)

if and only if (2.12) holds and

�− lim
n

∑
k

∣∣ank − an,σ(k)− tk + tσ(k)
∣∣= 0. (2.23)

Proof. Let (2.22) hold. Then, since V(x)≤ L(x) and V(−x)≤−l(x) for all x ∈ �∞, (2.12)
follows from Theorem 2.4.
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Define a matrix C = (cnk) by cnk = (bnk − bn,σ(k)) for all n, k, where bnk is defined as
in Theorem 2.4. Then, we have the hypothesis of Lemma 2.3. Now, choose the sequence
y such that yk = 0 for k /∈ σ(N). Then, (yk − yσ(k)) ∈ Z and also, by the same argument
used in [10, Theorem 23], one can easily see that

∑
k

bnk
(
yk − yσ(k)

)=∑
k

cnk yσ(k). (2.24)

Hence, (2.22) implies that

�− limsup
n

∑
k

∣∣cnk∣∣= �− limsup
n

∑
k

cnk yσ(k)

=�− limsup
n

∑
k

bnk
(
yk − yσ(k)

)

≤ λ+K�

2
V
(
yk − yσ(k)

)
+
λ−K�

2
V
(
yσ(k)− yk

)= 0.

(2.25)

This yields (2.23).
Conversely, suppose that (2.12) and (2.23) hold. Then, for any x ∈ �∞, we have (2.24).

Hence, since (xk − xσ(k))∈ Z, (2.23) implies that B ∈ (Z,F�(b)) with �− limBz = 0, (z ∈
Z). We also see from the assumption that (2.11) holds. Thus, by taking infimum over
z ∈ Z in (2.11), we observe that

inf
z∈Z

(
�− limsup

n

∑
k

bnk
(
xk + zk

))≤ λ+K�

2
L(x+ z)− λ−K�

2
l(x+ z)

= λ+K�

2
W(x) +

λ−K�

2
W(−x).

(2.26)

On the other hand, since �− limBz = 0,

inf
z∈Z

(
�− limsup

n

∑
k

bnk
(
xk + zk

))≥�− limsup
n

∑
k

bnkxk + inf
z∈Z

(
�− limsup

n

∑
k

bnkzk

)

= �− limsup
n

∑
k

bnkxk.

(2.27)

Since W(x) = V(x) for all x ∈ �∞, we conclude that (2.22) holds and the proof is com-
pleted. �

When K� > 0 and λ= K�, we have the following result.

Theorem 2.8. Let A be �-conservative. Then, for all x ∈ �∞,

�− limsup
n

∑
k

(
ank − tk

)
xk ≤ K�V(x) (2.28)

if and only if (2.17) and (2.23) hold.
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The following results can be derived from Theorem 2.7 for the special cases � = �δ�

and �=�δA .

Theorem 2.9. (a) Let A∈ (c,st�∩ �∞). Then, for some constant λ≥ |K�| and for all x ∈
�∞,

st�− limsup
n

∑
k

(
ank − tk

)
xk ≤ λ+K�

2
V(x) +

λ−K�

2
V(−x) (2.29)

if and only if (2.19) holds and

st�− lim
n

∑
k

∣∣ank − an,σ(k)− tk + tσ(k)
∣∣= 0. (2.30)

(b) Let A∈ (c,stA∩ �∞). Then, for some constant λ≥ |KA| and for all x ∈ �∞,

stA− limsup
n

∑
k

(
ank − tk

)
xk ≤ λ+KA

2
V(x) +

λ−KA

2
V(−x) (2.31)

if and only if (2.21) holds and

stA− lim
n

∑
k

∣∣ank − an,σ(k)− tk + tσ(k)
∣∣= 0. (2.32)

Further, for �=�δ , Theorem 2.7 is reduced to [2, Theorem 2.7].

Theorem 2.10. Let A and λ be as in Theorem 2.4. Then, for all x ∈ �∞,

�− limsup
n

∑
k

(
ank − tk

)
xk ≤ λ+K�

2
γ(x) +

λ−K�

2
γ(−x) (2.33)

if and only if (2.12) holds and

�− lim
n

∑
k∈E

∣∣ank − tk
∣∣= 0 (2.34)

for every E ∈�, where γ(x)=�− limsupk xk.

Proof. If (2.33) holds, since γ(x)≤ L(x) and γ(−x)≤−l(x), (2.12) follows from Theorem
2.4. To show the necessity of (2.34), for any E ∈ �, let us define a matrix D = (dnk) by
dnk = ank − tk, k ∈ E; otherwise, it equals zero for all n. Then, clearly, D satisfies the con-
ditions of Lemma 2.2, and therefore there exists a y ∈ �∞ such that ‖y‖ ≤ 1 and

�− limsup
n

∑
k

dnk yk =�− limsup
n

∑
k

∣∣dnk∣∣. (2.35)

Now, for the same E, we choose the sequence y as

yk =

1, k ∈ E,

0, k /∈ E.
(2.36)
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Then, since �− lim y = γ(y)= γ(−y)= 0, (2.33) implies that

�− limsup
n

∑
k∈E

∣∣dnk∣∣≤ λ+K�

2
γ(y) +

λ−K�

2
γ(−y)= 0, (2.37)

which yields (2.34).
Conversely, suppose that the conditions of the theorem hold and x ∈ �∞. Let E1 = {k :

xk > γ(x) + ε} and E2 = {k : xk < γ(x)− ε}. Then, since E1,E2 ∈ �, E = E1∩E2 ∈ �. Now,
we can write

∑
k

(
ank − tk

)
xk =

∑
k∈E

(
ank − tk

)
xk +

∑
k /∈E

(
ank − tk

)+
xk −

∑
k /∈E

(
ank − tk

)−
xk. (2.38)

Thus, by (2.34) and Lemma 2.2, (2.33) is obtained since

�− limsup
n

∑
k

(
ank − tk

)
xk ≤ λ+K�

2
γ(x) +

λ−K�

2
γ(−x) + λε (2.39)

and ε is arbitrary. �

When K� > 0 and λ= K�, we have the following result.

Theorem 2.11. Let A be �-conservative. Then, for all x ∈ �∞,

�− limsup
n

∑
k

(
ank − tk

)
xk ≤ K�γ(x) (2.40)

if and only if (2.17) and (2.34) hold.

We can choose �=�δ� and �=�δA in Theorem 2.10 to obtain the following results.

Theorem 2.12. (a) Let A ∈ (c,st� ∩ �∞). Then, for some constant λ ≥ |K�| and for all
x ∈ �∞,

st�− limsup
n

∑
k

(
ank − tk

)
xk ≤ λ+K�

2
γ(x) +

λ−K�

2
γ(−x) (2.41)

if and only if (2.19) holds and

st�− lim
n

∑
k∈E

∣∣ank − tk
∣∣= 0, (2.42)

for every E ∈�.
(b) Let A∈ (c,stA∩ �∞). Then, for some constant λ≥ |KA| and for all x ∈ �∞,

stA− limsup
n

∑
k

(
ank − tk

)
xk ≤ λ+KA

2
γ(x) +

λ−KA

2
γ(−x) (2.43)
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if and only if (2.21) holds and

stA− lim
n

∑
k∈E

∣∣ank − tk
∣∣= 0, (2.44)

for every E ∈�.

Moreover, Theorem 2.10 is a dual case of [2, Theorem 2.6] for �=�δ .
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