A CLASS OF \mathscr{I}-CONSERVATIVE MATRICES

CELAL ÇAKAN AND HÜSAMETTİN ÇOŞKUN

Received 7 April 2005 and in revised form 20 September 2005

By using the concept of \mathscr{I}-convergence defined by Kostyrko et al. in 2001, the \mathscr{I}-limit superior of real sequences was introduced and the inequality $\mathscr{I}-\limsup (A x) \leq \mathscr{I}-$ $\lim \sup (x)$ for all $x \in \ell_{\infty}$ was studied by Demirci in 2001. In this paper, we have characterized a class of \mathscr{I}-conservative matrices by studying some new inequalities related to the \mathscr{I}-limit superior.

1. Introduction

Let ℓ_{∞} and c be the Banach spaces of bounded and convergent sequence $x=\left(x_{k}\right)$ with the usual supremum norm. Let σ be a one-to-one mapping of \mathbb{N}, the set of positive integers, into itself and $T: \ell_{\infty} \rightarrow \ell_{\infty}$ a linear operator defined by $T x=\left(T x_{k}\right)=\left(x_{\sigma(k)}\right)$. An element $\phi \in \ell_{\infty}^{\prime}$, the conjugate space of ℓ_{∞}, is called an invariant mean or a σ-mean if and only if (i) $\phi(x) \geq 0$ when the sequence $x=\left(x_{k}\right)$ has $x_{k} \geq 0$ for all k, (ii) $\phi(e)=1$ where $e=$ $(1,1,1, \ldots)$, and (iii) $\phi(T x)=\phi(x)$ for all $x \in \ell_{\infty}$. Let M be the set of all σ-means on ℓ_{∞}. A sublinear functional P on ℓ_{∞} is said to generate σ-means if $\phi \in \ell_{\infty}^{\prime}$ and $\phi \leq P \Rightarrow \phi$ is a σ-mean, and to dominate σ-means if $\phi \leq P$ for all $\phi \in M$, where $\phi \leq P$ means that $\phi(x) \leq P(x)$ for all $x \in \ell_{\infty}$.

It is shown [8] that the sublinear functional

$$
\begin{equation*}
V(x)=\sup _{n} \limsup _{p} \sup _{p n}(x) \tag{1.1}
\end{equation*}
$$

both generates and dominates σ-means, where

$$
\begin{equation*}
t_{p n}(x)=\frac{1}{p+1}\left(x_{n}+x_{\sigma(n)}+\cdots+x_{\sigma^{p}(n)}\right), \quad t_{-1, n}(x)=0 . \tag{1.2}
\end{equation*}
$$

A bounded sequence x is called σ-convergent to s if $V(x)=-V(-x)=s$. In this case, we write $\sigma-\lim x=s$. Let V_{σ} be the set of all σ-convergent sequences. We assume throughout this paper that $\sigma^{p}(n) \neq n$ for all $n \geq 0$ and $p \geq 1$, where $\sigma^{p}(n)$ is the p th iterate of
σ at n. Thus, a σ-mean extends the limit functional onto c in the sense that $\phi(x)=\lim x$ for all $x \in c$ [9]. Consequently, $c \subset V_{\sigma}$.

By (iii), it is clear that $(T x-x) \in Z$ for $x \in \ell_{\infty}$, where Z is the set of all σ-convergent sequences with σ-limit zero.

For $x \in \ell_{\infty}$, we write

$$
\begin{equation*}
l(x)=\liminf x, \quad L(x)=\limsup x, \quad W(x)=\inf _{z \in Z} L(x+z) \tag{1.3}
\end{equation*}
$$

It is known that $V(x)=W(x)$ on ℓ_{∞} [8].
Let $A=\left(a_{n k}\right)$ be an infinite matrix of real numbers and $x=\left(x_{k}\right)$ a real sequence such that $A x=\left(A_{n}(x)\right)=\left(\sum_{k} a_{n k} x_{k}\right)$ exists for each n. Then, the sequence $A x=\left(A_{n}(x)\right)$ is called an A-transform of x. For two sequence spaces E and F, we say that the matrix A maps E into F if $A x$ exits and belongs to F for each $x \in E$. By (E, F), we denote the set of all matrices which map E into F.

A matrix $A \in(c, c)$ is said to be conservative. It is known [1, page 21] that A is conservative if and only if $\|A\|=\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty, a_{k}=\lim _{n} a_{n k}$ for each k, and $a=\lim _{n} \sum_{k} a_{n k}$. If A is conservative, the number $\chi=\chi(A)=a-\sum_{k} a_{k}$ called the characteristic of A is of importance in summability [1, page 46].

Let E be a subset of \mathbb{N}. Natural density δ of E is defined by

$$
\begin{equation*}
\delta(E)=\lim _{n} \frac{1}{n}|\{k \leq n: k \in E\}|, \tag{1.4}
\end{equation*}
$$

where the vertical bars indicate the number of elements in the enclosed set. The number sequence $x=\left(x_{k}\right)$ is said to be statistically convergent to the number l if for every ε, $\delta\left\{k:\left|x_{k}-l\right| \geq \varepsilon\right\}=0$ [4]. In this case, we write $s t-\lim x=l$.

A matrix $A \in(c, c)_{\text {reg }}$ is said to be regular and it is known [1, page 21] that A is regular if and only if $\|A\|<\infty, \lim _{n} a_{n k}=0$ for each k, and $\lim _{n} \sum_{k} a_{n k}=1$. For a given nonnegative regular matrix A, the number

$$
\begin{equation*}
\delta_{A}(E)=\lim _{n} \sum_{k \in E} a_{n k} \tag{1.5}
\end{equation*}
$$

is said to be the A-density of $E \subseteq \mathbb{N}$ [5]. A sequence $x=\left(x_{k}\right)$ is said to be A-statistical convergent to a number s if for every $\varepsilon>0$, the set $\left\{k:\left|x_{k}-s\right| \geq \varepsilon\right\}$ has A-density zero [5]. In this case, we write $s t_{A}-\lim x=s$. By $s t_{A}$, we denote the set of all A-statistically convergent sequences.

Let $\mathscr{B}=\left(\mathscr{B}_{i}\right)=\left(b_{n k}(i)\right)$ be a sequence of infinite matrices. Then, a bounded sequence x is said to be \mathscr{B} summable to the value l if

$$
\begin{equation*}
\lim _{n} \mathscr{B} x=\lim _{n} \sum_{k} b_{n k}(i) x_{k}=l \quad \text { uniformly in } i \tag{1.6}
\end{equation*}
$$

The matrix \mathscr{B} is regular [11] if and only if $\|\mathscr{B}\|<\infty, \lim _{n} b_{n k}(i)=0$ for all k, uniformly in i, and $\lim _{n} \sum_{k} b_{n k}(i)=1$ uniformly in i, where $\|\mathscr{P}\|=\sup _{n, i} \sum_{k}\left|b_{n k}(i)\right|$. For a given nonnegative regular matrix sequence \mathscr{B}, Kolk [6] introduced the \mathscr{B}-density of a subset of \mathbb{N} as follows.

The number

$$
\begin{equation*}
\delta_{\mathscr{B}}(E)=\lim _{n} \sum_{k \in E} b_{n k}(i)=d \quad \text { uniformly in } i \tag{1.7}
\end{equation*}
$$

is said to be \mathscr{B}-density of E if it exists. In the cases $\mathscr{B}=(A)$ and $\mathscr{B}=(C, 1)$, the Cesàro matrix, the \mathscr{B}-density reduces to the A-density and natural density, respectively. A sequence $x=\left(x_{k}\right)$ is said to be \mathscr{B}-statistically convergent [6] to a number s if for every $\varepsilon>0$, the set $\left\{k:\left|x_{k}-s\right| \geq \varepsilon\right\}$ has \mathscr{B}-density zero. The set of all \mathscr{B}-statistically convergent sequences is denoted by s trg $^{\text {. }}$

Let $X \neq \varnothing$. A class $S \subset 2^{X}$ of subsets of X is said to be an ideal in X if S satisfies the conditions (i) $\varnothing \in S$, (ii) $Y \cup Z \in S$ whenever $Y, Z \in S$, (iii) $Y \in S$ and $Z \subseteq Y$ implies that $Z \in S$. An ideal is called nontrivial if $X \notin S$. A nontrivial ideal is called admissible if $\{x\} \in S$ for each $x \in X[7]$.

Let \mathscr{I} be a nontrivial ideal in \mathbb{N}. A sequence $x=\left(x_{k}\right)$ is said to be \mathscr{I}-convergent to a number l if for every $\varepsilon>0,\left\{k:\left|x_{k}-l\right|>\varepsilon\right\} \in \mathscr{I}$ [7]. In this case, we write $\mathscr{I}-\lim x=l$. It is clear that a \mathscr{I}-convergent sequence need not be bounded. Let $F_{\mathscr{y}}(b)$ be the set of all \mathscr{I}-convergent and bounded sequences.

Note that in the cases $\mathscr{I}_{\delta}=\{E \subseteq \mathbb{N}: \delta(E)=0\}, \mathscr{I}_{\delta_{A}}=\left\{E \subseteq \mathbb{N}: \delta_{A}(E)=0\right\}$, and $\mathscr{I}_{\delta_{\mathscr{F}}}=$ $\left\{E \subseteq \mathbb{N}: \delta_{\mathscr{B}}(E)=0\right\}$, the $\mathscr{\Phi}$-convergence is reduced to the statistically convergence, A statistically convergence, and \mathscr{B}-statistically convergence, respectively.

An admissible ideal \mathscr{I} in \mathbb{N} is said to satisfy the additive property if for every countable system $\left\{Y_{1}, Y_{2}, \ldots\right\}$ of mutually disjoint sets in $\mathscr{\mathscr { L }}$, there exist sets $Z_{j} \subseteq \mathbb{N}(j=1,2, \ldots)$ such that the symmetric differences $Y_{j} \Delta Z_{j}(j=1,2, \ldots)$ are finite and $\bigcup_{j} Z_{j} \in \mathscr{I}$ [7].

Demirci [3] has introduced the concepts $\mathscr{\mathscr { S }}$-limit superior and inferior. For a real number sequence x, let B_{x} and A_{x} denote the sets $\left\{b \in \mathbb{R}:\left\{k: x_{k}>b\right\} \notin \mathscr{I}\right\}$ and $\{a \in \mathbb{R}:\{k$: $\left.\left.x_{k}<a\right\} \notin \mathscr{I}\right\}$, respectively, and also let \mathscr{I} be admissible. Then,

$$
\begin{align*}
& \mathscr{I}-\lim \sup x= \begin{cases}\sup B_{x} & \text { if } B_{x} \neq \varnothing, \\
-\infty & \text { if } B_{x}=\varnothing\end{cases} \tag{1.8}\\
& I-\liminf x= \begin{cases}\inf A_{x} & \text { if } A_{x} \neq \varnothing \\
\infty & \text { if } A_{x}=\varnothing\end{cases}
\end{align*}
$$

It is shown [3] that $\mathscr{I}-\limsup x=\beta$ if and only if for every $\varepsilon>0,\left\{k: x_{k}<\beta-\varepsilon\right\} \notin \mathscr{I}$ and $\left\{k: x_{k}>\beta+\varepsilon\right\} \in \mathscr{I}$. Also, $\mathscr{I}-\liminf x=\alpha$ if and only if for every $\varepsilon>0,\left\{k: x_{k}<\alpha+\varepsilon\right\} \notin$ \mathscr{I} and $\left\{k: x_{k}<\alpha-\varepsilon\right\} \in \mathscr{I}$. Recall that a sequence $x=\left(x_{k}\right)$ is said to be \mathscr{I}-bounded if there exists an $N>0$ such that $\left\{k:\left|x_{k}\right|>N\right\} \in \mathscr{I}$. It is proved in [3] that a \mathscr{I}-bounded sequence x is \mathscr{I}-convergent if and only if $\mathscr{I}-\lim \sup x=\mathscr{I}-\liminf x$.

For all $x \in \ell_{\infty}$, the inequality

$$
\begin{equation*}
\mathscr{I}-\lim \sup A(x) \leq \mathscr{I}-\lim \sup (x) \tag{1.9}
\end{equation*}
$$

has been studied in [3].
In this paper, we have characterized a class of matrices $A \in\left(c, F_{\mathscr{y}}(b)\right)$ by studying some new inequalities related to the \mathscr{S}-limit superior and limit inferior.

2. The main results

Firstly, we will begin with the following lemma.
Lemma 2.1. $A \in\left(c, F_{\mathscr{f}}(b)\right)$ if and only if

$$
\begin{gather*}
\sup _{n} \sum_{k}\left|a_{n k}\right|<\infty, \tag{2.1}\\
\mathscr{I}-\lim _{n} a_{n k}=t_{k} \quad \text { for every } k, \tag{2.2}\\
\mathscr{I}-\lim _{n} \sum_{k} a_{n k}=t \tag{2.3}
\end{gather*}
$$

Proof. Assume that $A \in\left(c, F_{\mathcal{F}}(b)\right)$. Then, (2.1) follows from the fact that $\left(c, F_{\mathcal{F}}(b)\right) \subset$ $\left(\ell_{\infty}, \ell_{\infty}\right)$. For the necessity of the other conditions it is enough to consider the sequences $\left(e_{k}\right)$ and e, respectively, where $\left(e_{k}\right)$ is the sequence whose k th place is 1 and the others are all zero.

Conversely, suppose that the conditions (2.1)-(2.3) hold. Let $x \in c$ and $\lim x=l$. Then, for any given $\varepsilon>0$, there exists a $k_{0} \in \mathbb{N}$ such that $\left|x_{k}-l\right| \leq \varepsilon$ whenever $k \geq k_{0}$. Now, we can write

$$
\begin{equation*}
A x=\sum_{k} a_{n k}\left(x_{k}-l\right)+l \sum_{k} a_{n k} . \tag{2.4}
\end{equation*}
$$

By an easy calculation, one can see that

$$
\begin{equation*}
I-\lim _{n} \sum_{k} a_{n k}\left(x_{k}-l\right)=\sum_{k} t_{k}\left(x_{k}-l\right) . \tag{2.5}
\end{equation*}
$$

So, by applying $\mathscr{I}-\lim _{n}$ in (2.4), we get that

$$
\begin{equation*}
\Phi-\lim _{n} A x=l t+\sum_{k} t_{k}\left(x_{k}-l\right) . \tag{2.6}
\end{equation*}
$$

This completes the proof.
In what follows, a matrix $A \in\left(c, F_{\mathscr{I}}(b)\right)$ is said to be \mathscr{I}-conservative. In the case A is I-conservative, the number

$$
\begin{equation*}
K_{\mathscr{I}}=K_{\mathscr{I}}(A)=t-\sum_{k} t_{k} \tag{2.7}
\end{equation*}
$$

is said to be \mathscr{I}-characteristic of A.
To the proof of our main results, we need two lemmas which can be proved by the same technique used in [2, Lemmas 2.3-2.4], respectively.
Lemma 2.2. Let A be Φ-conservative and $\lambda>0$. Then,

$$
\begin{equation*}
\Phi-\limsup _{n} \sum_{k}\left|a_{n k}-t_{k}\right| \leq \lambda \tag{2.8}
\end{equation*}
$$

if and only if

$$
\begin{align*}
& \mathscr{I}-\underset{n}{\limsup } \sum_{k}\left(a_{n k}-t_{k}\right)^{+} \leq \frac{\lambda+K_{\mathscr{I}}}{2}, \\
& \mathscr{I}-\underset{n}{\limsup } \sum_{k}\left(a_{n k}-t_{k}\right)^{-} \leq \frac{\lambda-K_{\mathscr{I}}}{2} . \tag{2.9}
\end{align*}
$$

Lemma 2.3. Let $\|A\|<\infty$ and $\mathscr{I}-\lim _{n}\left|a_{n k}\right|=0$. Then there exists a $y \in \ell_{\infty}$ such that $\|y\| \leq 1$ and

$$
\begin{equation*}
\mathscr{I}-\limsup \sum_{k} a_{n k} y_{k}=\mathscr{I}-\lim \sup \sum_{k}\left|a_{n k}\right| . \tag{2.10}
\end{equation*}
$$

Theorem 2.4. Let A be \mathscr{I}-conservative. Then, for some constant $\lambda \geq\left|K_{\mathscr{g}}\right|$ and for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
\mathscr{I}-\limsup _{n} \sum_{k}\left(a_{n k}-t_{k}\right) x_{k} \leq \frac{\lambda+K_{\mathscr{g}}}{2} L(x)-\frac{\lambda-K_{\mathscr{g}}}{2} l(x) \tag{2.11}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
\Phi-\limsup _{n} \sum_{k}\left|a_{n k}-t_{k}\right| \leq \lambda . \tag{2.12}
\end{equation*}
$$

Proof. Let (2.11) hold. Define $B=\left(b_{n k}\right)$ by $b_{n k}=\left(a_{n k}-t_{k}\right)$ for all n, k. Then, since A is \mathscr{I}-conservative, the matrix B satisfies the hypothesis of Lemma 2.3. Hence, we have from (2.11) for a $y \in \ell_{\infty}$ with $\|y\| \leq 1$ that

$$
\begin{align*}
\mathscr{I}-\underset{n}{\limsup } \sum_{k}\left|b_{n k}\right| & =\mathscr{I}-\limsup _{n} \sum_{k} b_{n k} y_{k} \\
& \leq \frac{\lambda+K_{\mathscr{I}}}{2} L(y)-\frac{\lambda-K_{\mathscr{I}}}{2} l(y) \tag{2.13}\\
& \leq\left(\frac{\lambda+K_{\mathscr{I}}}{2}+\frac{\lambda-K_{\mathscr{I}}}{2}\right)\|y\|=\lambda,
\end{align*}
$$

which yields (2.12).
Conversely, let (2.12) hold and $x \in \ell_{\infty}$. Then, for any $\varepsilon>0$, there exits a $k_{0} \in \mathbb{N}$ such that $l(x)-\varepsilon<x_{k}<L(x)+\varepsilon$ whenever $k>k_{0}$. Now, we can write

$$
\begin{equation*}
\sum_{k}\left(a_{n k}-t_{k}\right) x_{k}=\sum_{k \leq k_{0}}\left(a_{n k}-t_{k}\right) x_{k}+\sum_{k>k_{0}}\left(a_{n k}-t_{k}\right)^{+} x_{k}-\sum_{k>k_{0}}\left(a_{n k}-t_{k}\right)^{-} x_{k} . \tag{2.14}
\end{equation*}
$$

Since A is \mathscr{I}-conservative and by Lemma 2.2, we obtain

$$
\begin{align*}
\mathscr{I}-\limsup _{n} \sum_{k}\left(a_{n k}-t_{k}\right) x_{k} & \leq(L(x)+\varepsilon)\left(\frac{\lambda+K_{\mathscr{g}}}{2}\right)-(l(x)-\varepsilon)\left(\frac{\lambda-K_{\mathscr{F}}}{2}\right) \tag{2.15}\\
& =\frac{\lambda+K_{\mathscr{\mathscr { F }}}}{2} L(x)-\frac{\lambda-K_{\mathscr{I}}}{2} l(x)+\lambda \varepsilon,
\end{align*}
$$

which yields (2.11), since ε is arbitrary.

When $K_{\mathscr{I}}>0$ and $\lambda=K_{\mathscr{I}}$, we can conclude from Theorem 2.4 the following result. Theorem 2.5. Let A be \mathscr{I}-conservative. Then, for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
\mathscr{I}-\limsup \sum_{n}\left(a_{n k}-t_{k}\right) x_{k} \leq K_{\mathscr{J}} L(x) \tag{2.16}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
I-\lim _{n} \sum_{k}\left|a_{n k}-t_{k}\right| \leq K_{\mathscr{F}} . \tag{2.17}
\end{equation*}
$$

In the cases $\mathscr{I}=\mathscr{I}_{\delta_{\mathfrak{B}}}$ and $\mathscr{I}=\mathscr{I}_{\delta_{A}}$, we respectively have the following results from Theorem 2.4.

Theorem 2.6. (a) Let $A \in\left(c, s t_{\mathscr{B}} \cap \ell_{\infty}\right)$. Then, for some constant $\lambda \geq\left|K_{\mathscr{B}}\right|$ and for all $x \in$ ℓ_{∞},

$$
\begin{equation*}
s t \mathscr{B}_{\mathcal{B}}-\limsup _{n} \sum_{k}\left(a_{n k}-t_{k}\right) x_{k} \leq \frac{\lambda+K_{\mathscr{P}}}{2} L(x)-\frac{\lambda-K_{\mathscr{P}}}{2} l(x) \tag{2.18}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
s \operatorname{gog}_{B}-\limsup _{n} \sum_{k}\left|a_{n k}-t_{k}\right| \leq \lambda . \tag{2.19}
\end{equation*}
$$

(b) Let $A \in\left(c, s t_{A} \cap \ell_{\infty}\right)$. Then, for some constant $\lambda \geq\left|K_{A}\right|$ and for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
s t_{A}-\limsup _{n} \sum_{k}\left(a_{n k}-t_{k}\right) x_{k} \leq \frac{\lambda+K_{A}}{2} L(x)-\frac{\lambda-K_{A}}{2} l(x) \tag{2.20}
\end{equation*}
$$

if and only if

$$
\begin{equation*}
s t_{A}-\limsup _{n} \sum_{k}\left|a_{n k}-t_{k}\right| \leq \lambda . \tag{2.21}
\end{equation*}
$$

Also, if $\mathscr{I}=\mathscr{I}_{\delta}$, Theorem 2.4 appears as in [2, Theorem 2.5].
Theorem 2.7. Let A and λ be as in Theorem 2.4. Then, for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
I-\limsup \sum_{n}\left(a_{n k}-t_{k}\right) x_{k} \leq \frac{\lambda+K_{\mathscr{g}}}{2} V(x)+\frac{\lambda-K_{\mathscr{g}}}{2} V(-x) \tag{2.22}
\end{equation*}
$$

if and only if (2.12) holds and

$$
\begin{equation*}
\mathscr{I}-\lim _{n} \sum_{k}\left|a_{n k}-a_{n, \sigma(k)}-t_{k}+t_{\sigma(k)}\right|=0 . \tag{2.23}
\end{equation*}
$$

Proof. Let (2.22) hold. Then, since $V(x) \leq L(x)$ and $V(-x) \leq-l(x)$ for all $x \in \ell_{\infty}$, (2.12) follows from Theorem 2.4.

Define a matrix $C=\left(c_{n k}\right)$ by $c_{n k}=\left(b_{n k}-b_{n, \sigma(k)}\right)$ for all n, k, where $b_{n k}$ is defined as in Theorem 2.4. Then, we have the hypothesis of Lemma 2.3. Now, choose the sequence y such that $y_{k}=0$ for $k \notin \sigma(\mathbb{N})$. Then, $\left(y_{k}-y_{\sigma(k)}\right) \in Z$ and also, by the same argument used in [10, Theorem 23], one can easily see that

$$
\begin{equation*}
\sum_{k} b_{n k}\left(y_{k}-y_{\sigma(k)}\right)=\sum_{k} c_{n k} y_{\sigma(k)} . \tag{2.24}
\end{equation*}
$$

Hence, (2.22) implies that

$$
\begin{align*}
\mathscr{I}-\underset{n}{\limsup } \sum_{k}\left|c_{n k}\right| & =\mathscr{I}-\underset{n}{\limsup } \sum_{k} c_{n k} y_{\sigma(k)} \\
& =\mathscr{I}-\underset{n}{\limsup } \sum_{k} b_{n k}\left(y_{k}-y_{\sigma(k)}\right) \tag{2.25}\\
& \leq \frac{\lambda+K_{\mathscr{I}}}{2} V\left(y_{k}-y_{\sigma(k)}\right)+\frac{\lambda-K_{\mathscr{I}}}{2} V\left(y_{\sigma(k)}-y_{k}\right)=0 .
\end{align*}
$$

This yields (2.23).
Conversely, suppose that (2.12) and (2.23) hold. Then, for any $x \in \ell_{\infty}$, we have (2.24). Hence, since $\left(x_{k}-x_{\sigma(k)}\right) \in Z$, (2.23) implies that $B \in\left(Z, F_{\mathscr{g}}(b)\right)$ with $\mathscr{I}-\lim B z=0,(z \in$ Z). We also see from the assumption that (2.11) holds. Thus, by taking infimum over $z \in Z$ in (2.11), we observe that

$$
\begin{align*}
\inf _{z \in \mathcal{Z}}\left(\mathscr{I}-\limsup _{n} \sum_{k} b_{n k}\left(x_{k}+z_{k}\right)\right) & \leq \frac{\lambda+K_{\mathscr{I}}}{2} L(x+z)-\frac{\lambda-K_{\mathscr{I}}}{2} l(x+z) \tag{2.26}\\
& =\frac{\lambda+K_{\mathscr{g}}}{2} W(x)+\frac{\lambda-K_{\mathscr{I}}}{2} W(-x) .
\end{align*}
$$

On the other hand, since $\mathscr{I}-\lim B z=0$,

$$
\begin{align*}
\inf _{z \in Z}\left(\mathscr{I}-\limsup _{n} \sum_{k} b_{n k}\left(x_{k}+z_{k}\right)\right) & \geq \mathscr{I}-\limsup _{n} \sum_{k} b_{n k} x_{k}+\inf _{z \in Z}\left(\mathscr{I}-\limsup _{n} \sum_{k} b_{n k} z_{k}\right) \\
& =\mathscr{I}-\underset{n}{\limsup } \sum_{k} b_{n k} x_{k} . \tag{2.27}
\end{align*}
$$

Since $W(x)=V(x)$ for all $x \in \ell_{\infty}$, we conclude that (2.22) holds and the proof is completed.

When $K_{\mathscr{I}}>0$ and $\lambda=K_{\mathscr{I}}$, we have the following result.
Theorem 2.8. Let A be \mathscr{I}-conservative. Then, for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
\Phi-\limsup _{n} \sum_{k}\left(a_{n k}-t_{k}\right) x_{k} \leq K_{\mathscr{S}} V(x) \tag{2.28}
\end{equation*}
$$

if and only if (2.17) and (2.23) hold.

The following results can be derived from Theorem 2.7 for the special cases $\mathscr{I}=\mathscr{I}_{\delta_{\mathscr{B}}}$ and $\mathscr{I}=\mathscr{I}_{\delta_{A}}$.

Theorem 2.9. (a) Let $A \in\left(c\right.$, stgß $\left._{\mathscr{B}} \cap \ell_{\infty}\right)$. Then, for some constant $\lambda \geq\left|K_{\mathscr{B}}\right|$ and for all $x \in$ ℓ_{∞},

$$
\begin{equation*}
s t_{\mathscr{B}}-\limsup _{n} \sum_{k}\left(a_{n k}-t_{k}\right) x_{k} \leq \frac{\lambda+K_{\mathscr{F}}}{2} V(x)+\frac{\lambda-K_{\mathscr{F}}}{2} V(-x) \tag{2.29}
\end{equation*}
$$

if and only if (2.19) holds and

$$
\begin{equation*}
s t_{\mathscr{B}}-\lim _{n} \sum_{k}\left|a_{n k}-a_{n, \sigma(k)}-t_{k}+t_{\sigma(k)}\right|=0 . \tag{2.30}
\end{equation*}
$$

(b) Let $A \in\left(c, s t_{A} \cap \ell_{\infty}\right)$. Then, for some constant $\lambda \geq\left|K_{A}\right|$ and for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
s t_{A}-\limsup \sum_{n}\left(a_{n k}-t_{k}\right) x_{k} \leq \frac{\lambda+K_{A}}{2} V(x)+\frac{\lambda-K_{A}}{2} V(-x) \tag{2.31}
\end{equation*}
$$

if and only if (2.21) holds and

$$
\begin{equation*}
s t_{A}-\lim _{n} \sum_{k}\left|a_{n k}-a_{n, \sigma(k)}-t_{k}+t_{\sigma(k)}\right|=0 . \tag{2.32}
\end{equation*}
$$

Further, for $\mathscr{I}=\Phi_{\delta}$, Theorem 2.7 is reduced to [2, Theorem 2.7].
Theorem 2.10. Let A and λ be as in Theorem 2.4. Then, for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
\mathscr{I}-\limsup \sum_{n}\left(a_{n k}-t_{k}\right) x_{k} \leq \frac{\lambda+K_{\mathscr{F}}}{2} \gamma(x)+\frac{\lambda-K_{\mathscr{F}}}{2} \gamma(-x) \tag{2.33}
\end{equation*}
$$

if and only if (2.12) holds and

$$
\begin{equation*}
\mathscr{I}-\lim _{n} \sum_{k \in E}\left|a_{n k}-t_{k}\right|=0 \tag{2.34}
\end{equation*}
$$

for every $E \in \mathscr{I}$, where $\gamma(x)=\mathscr{I}-\limsup { }_{k} x_{k}$.
Proof. If (2.33) holds, since $\gamma(x) \leq L(x)$ and $\gamma(-x) \leq-l(x)$, (2.12) follows from Theorem 2.4. To show the necessity of (2.34), for any $E \in \mathscr{F}$, let us define a matrix $D=\left(d_{n k}\right)$ by $d_{n k}=a_{n k}-t_{k}, k \in E$; otherwise, it equals zero for all n. Then, clearly, D satisfies the conditions of Lemma 2.2, and therefore there exists a $y \in \ell_{\infty}$ such that $\|y\| \leq 1$ and

$$
\begin{equation*}
\mathscr{I}-\limsup \sum_{n} d_{n k} y_{k}=\mathscr{I}-\limsup _{n} \sum_{k}\left|d_{n k}\right| . \tag{2.35}
\end{equation*}
$$

Now, for the same E, we choose the sequence y as

$$
y_{k}= \begin{cases}1, & k \in E \tag{2.36}\\ 0, & k \notin E\end{cases}
$$

Then, since $\mathscr{I}-\lim y=\gamma(y)=\gamma(-y)=0$, (2.33) implies that

$$
\begin{equation*}
\mathscr{I}-\limsup \sum_{n} \sum_{k \in E}\left|d_{n k}\right| \leq \frac{\lambda+K_{\mathscr{g}}}{2} \gamma(y)+\frac{\lambda-K_{\mathscr{I}}}{2} \gamma(-y)=0, \tag{2.37}
\end{equation*}
$$

which yields (2.34).
Conversely, suppose that the conditions of the theorem hold and $x \in \ell_{\infty}$. Let $E_{1}=\{k$: $\left.x_{k}>\gamma(x)+\varepsilon\right\}$ and $E_{2}=\left\{k: x_{k}<\gamma(x)-\varepsilon\right\}$. Then, since $E_{1}, E_{2} \in \mathscr{I}, E=E_{1} \cap E_{2} \in \mathscr{I}$. Now, we can write

$$
\begin{equation*}
\sum_{k}\left(a_{n k}-t_{k}\right) x_{k}=\sum_{k \in E}\left(a_{n k}-t_{k}\right) x_{k}+\sum_{k \notin E}\left(a_{n k}-t_{k}\right)^{+} x_{k}-\sum_{k \notin E}\left(a_{n k}-t_{k}\right)^{-} x_{k} . \tag{2.38}
\end{equation*}
$$

Thus, by (2.34) and Lemma 2.2, (2.33) is obtained since

$$
\begin{equation*}
\mathscr{I}-\lim \sup _{n} \sum_{k}\left(a_{n k}-t_{k}\right) x_{k} \leq \frac{\lambda+K_{\mathscr{g}}}{2} \gamma(x)+\frac{\lambda-K_{\mathscr{I}}}{2} \gamma(-x)+\lambda \varepsilon \tag{2.39}
\end{equation*}
$$

and ε is arbitrary.
When $K_{\mathscr{F}}>0$ and $\lambda=K_{\mathscr{I}}$, we have the following result.
Theorem 2.11. Let A be \mathscr{I}-conservative. Then, for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
I-\limsup _{n} \sum_{k}\left(a_{n k}-t_{k}\right) x_{k} \leq K_{\mathscr{I}} \gamma(x) \tag{2.40}
\end{equation*}
$$

if and only if (2.17) and (2.34) hold.
We can choose $\mathscr{I}=\mathscr{I}_{\delta_{\Re}}$ and $\mathscr{I}=\mathscr{I}_{\delta_{A}}$ in Theorem 2.10 to obtain the following results. Theorem 2.12. (a) Let $A \in\left(c, s\right.$ toß $\left._{B} \cap \ell_{\infty}\right)$. Then, for some constant $\lambda \geq\left|K_{\mathscr{B}}\right|$ and for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
s t_{\mathscr{F}}-\limsup _{n} \sum_{k}\left(a_{n k}-t_{k}\right) x_{k} \leq \frac{\lambda+K_{\mathscr{F}}}{2} \gamma(x)+\frac{\lambda-K_{\mathscr{B}}}{2} \gamma(-x) \tag{2.41}
\end{equation*}
$$

if and only if (2.19) holds and

$$
\begin{equation*}
s t \mathscr{F}_{\beta}-\lim _{n} \sum_{k \in E}\left|a_{n k}-t_{k}\right|=0, \tag{2.42}
\end{equation*}
$$

for every $E \in \mathscr{F}$.
(b) Let $A \in\left(c, s t_{A} \cap \ell_{\infty}\right)$. Then, for some constant $\lambda \geq\left|K_{A}\right|$ and for all $x \in \ell_{\infty}$,

$$
\begin{equation*}
s t_{A}-\limsup _{n} \sum_{k}\left(a_{n k}-t_{k}\right) x_{k} \leq \frac{\lambda+K_{A}}{2} \gamma(x)+\frac{\lambda-K_{A}}{2} \gamma(-x) \tag{2.43}
\end{equation*}
$$

if and only if (2.21) holds and

$$
\begin{equation*}
s t_{A}-\lim _{n} \sum_{k \in E}\left|a_{n k}-t_{k}\right|=0, \tag{2.44}
\end{equation*}
$$

for every $E \in \mathscr{I}$.
Moreover, Theorem 2.10 is a dual case of [2, Theorem 2.6] for $\mathscr{I}=\mathscr{I}_{\delta}$.

Acknowledgment

We wish to thank the referees for valuable suggestions and comments which improved the paper considerably.

References

[1] J. Boos, Classical and Modern Methods in Summability, Oxford Mathematical Monographs, Oxford University Press, Oxford, 2000.
[2] H. Çoşkun and C. Çakan, A class of statistical and σ-conservative matrices, Czechoslovak Math. J. 55(130) (2005), no. 3, 791-801.
[3] K. Demirci, \mathscr{I}-limit superior and limit inferior, Math. Commun. 6 (2001), no. 2, 165-172.
[4] H. Fast, Sur la convergence statistique, Colloq. Math. 2 (1951), 241-244.
[5] A. R. Freedman and J. J. Sember, Densities and summability, Pacific J. Math. 95 (1981), no. 2, 293-305.
[6] E. Kolk, Inclusion relations between the statistical convergence and strong summability, Acta Comment. Univ. Tartu. Math. (1998), no. 2, 39-54.
[7] P. Kostyrko, T. Šalát, and W. Wilczyński, \mathscr{I}-convergence, Real Anal. Exchange 26 (2001), no. 2, 669-685.
[8] S. Mishra, B. Satapathy, and N. Rath, Invariant means and σ-core, J. Indian Math. Soc. (N.S.) 60 (1994), no. 1-4, 151-158.
[9] M. Mursaleen, On some new invariant matrix methods of summability, Quart. J. Math. Oxford Ser. (2) 34 (1983), no. 133, 77-86.
[10] R. A. Raimi, Invariant means and invariant matrix methods of summability, Duke Math. J. 30 (1963), no. 1, 81-94.
[11] M. Stieglitz, Eine Verallgemeinerung des Begriffs der Fastkonvergenz, Math. Japon. 18 (1973), 53-70.

Celal Çakan: Faculty of Education, Inönü University, 44280 Malatya, Turkey
E-mail address: ccakan@inonu.edu.tr
Hüsamettin Çoşkun: Faculty of Education, Inönü University, 44280 Malatya, Turkey
E-mail address: hcoskun@inonu.edu.tr

