
EXISTENCE OF SOLUTIONS FOR A FAMILY OF
POLYHARMONIC AND BIHARMONIC EQUATIONS

M. HESAARAKI AND B. RAESSI

Received 17 April 2005 and in revised form 28 September 2005

We consider a family of polyharmonic problems of the form (−∆)mu = g(x,u) in Ω,
Dαu = 0 on ∂Ω, where Ω ⊂ Rn is a bounded domain, g(x,·) ∈ L∞(Ω), and |α| < m. By
using the fibering method, we obtain some results about the existence of solution and
its multiplicity under certain assumptions on g. We also consider a family of biharmonic
problems of the form ∆2u+ (∆ϕ+ |∇ϕ|2)∆u+ 2∇ϕ ·∇∆u = g(x,u), where ϕ ∈ C2(Ω),
and Ω, g, and the boundary condition are the same as above. For this problem, we prove
the existence and multiplicity of solutions too.

1. Introduction

In this paper, we consider the following polyharmonic problem:

(−∆)mu= g(x,u), in Ω, (1.1)

Dαu= 0, on ∂Ω, (1.2)

where Ω ⊂ Rn is a bounded domain, g(x,u) =∑εjg j(x)|u|pj−1u + h(x), with 0 ≤ gj ∈
L∞(Ω), εj ∈ {0,1,−1}, 1 < p1 < p2<··· < pl < (n + 2m)/(n − 2m), |α| < m, and h ∈
(Hm

0 (Ω))∗.
This problem has been studied before by many authors for special cases as follows.
(1) It is well known that for m = 1, g(x,u) = |u|p−1u, the problem (1.1)-(1.2) has a

solution if 1 < p < (n+ 2)/(n− 2) and does not have any solution if (n+ 2)/(n− 2) < p.
The usual approaches to prove the existence or nonexistence of solutions in this case
are mountain-pass lemma and Pohozaev identity, respectively; see [4, Sections 8.5.2 and
9.4.2]. Moreover, for the critical Sobolev exponents case, that is, p = (n+2)/(n−2), Brézis
and Nirenberg, by considering g = f +u(n+2)/(n−2), have proved that, if f ≡ 0, the problem
has no solution in a starlike domain. They have also proved the existence of solutions for
some cases of f � 0, [3].

(2) For Ω=Rn, g(x,u)= |u|p−1u, and p = (n+ 2m)/(n− 2m), Bartsch, Schneider, and
Weth have established that (1.1) has a sequence of nodal finite-energy solutions, which is
unbounded in Dm,2(Rn), see [2].
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(3) Let B be the unit ball in Rn and Ω= B, moreover, suppose that g(x,u) satisfies the
following hypotheses.

(H1) The function g is nonnegative, Borel measurable function on B× (0,∞), which is
continuous and nonincreasing with respect to the second variable.

(H2) For each c > 0, the function x �→ g(x,c(1− |x|)m)/(1− |x|)m−1 is in Km,n, where
Km,n is a set of Borel measurable functions, such as ϕ, which are defined on B,
and satisfy the condition

lim
α→0

(
sup
x∈B

∫
B
⋂
B(x,α)

(
1−|y|
1−|x|

)m
Gm,n(x, y)

∣∣ϕ(y)
∣∣dy)= 0. (1.3)

Here Gm,n is the green function of (−∆)m on the unit ball B.
(H3) For each c > 0, g(·,c) is positive on a set of positive measures.
Under the above assumption, Mâagli et al. in [10] have proved the following theorem.

Theorem 1.1. Assume that (H1)–(H3) hold, then the problem (1.1)-(1.2) has a positive
continuous solution. Moreover, there exist two positive constants a and b such that for each
x ∈ B,

a
(
1−|x|)m ≤ u(x)≤ b(1−|x|)m−1

. (1.4)

(4) Grunau in [5] studied the growth conditions that imply the existence of a strong
solution for the following type of problems:

Lu+ g(x,u)= f (x), in Ω,

Dαu= 0, on ∂Ω,
(1.5)

where |α| < m, L = (−∆)m, and u �→ g(·,u) exceeds the controllable growth rate
u(n+2m)/(n−2m). Recently in [6] this result has been extended to

L=
(
−

n∑
i, j=1

ai j
∂2

∂xi∂xj

)m
+

∑
|α|≤2m−1

bα(x)Dα, (1.6)

with ai j ∈R,
∑n

i, j=1 ai jξiξ j ≥ c|ξ|2, bα ∈ C|α|,γ(Ω), and L is assumed to be coercive which

means that for some c > 0 and all u∈Wm,2
0 (Ω)

⋂
C2m(Ω), one has∫

Ω
uLudx ≥ c‖u‖2

Wm,2(Ω). (1.7)

By assuming that g and Ω are sufficiently smooth, Grunau and Sweers in [6] proved the
following theorem.

Theorem 1.2. Fix n≥ 2m and suppose that g satisfies the sign condition, ug(·,u)≥ 0, for
all u∈R, and the one-sided growth condition

g(x,u)≥−c(1 + |u|σ), (1.8)
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with

σ = 1 if 6m< n,

σ <
4m

n− 2m
if 2m< n < 6m,

σ <∞ if n= 2m,

(1.9)

then for every f ∈ Cα(Ω), the problem (1.5) has a solution u∈ C2m,α(Ω)
⋂
Wm,2

0 (Ω).

Remark 1.3. For the following two-sided growth condition (instead of (1.8)),

g(x,u)≥−c(1 + |u|τ) for u≤ 0,

g(x,u)≤ c(1 + |u|τ) for u≥ 0,
(1.10)

with τ ≤ (n+ 2m)/(n− 2m), the existence of a weak solution inWm,2
0 (Ω) follows from the

coercivity of L. Moreover, for τ < (n+ 2m)/(n− 2m), a linear argument, bootstrapping
between Sobolev imbedding and regularity theory, see [1], shows existence of a strong
solution u∈ C2m(Ω) as well as regularity of any weak solution. Luckhaus [9] also proved
for general elliptic operators that all solutions of (1.5) are classic, that is, u ∈ C2m(Ω),
whenever (1.10) holds with τ ≤ (n+ 2m)/(n− 2m).

Remark 1.4. For m = 1, no controllable growth conditions are needed. Here the max-
imum principle together with the sign condition for g gives an L∞ bound to start the
bootstrapping. For m = 2, Tomi in [20] obtained a classical solution by using the maxi-
mum principle for an auxiliary function like a(∆u)2 +G(u), where G′ = g and a∈R.

Remark 1.5. These approaches do not work for general higher-order elliptic equations
with zero Dirichlet boundary conditions. Not only no maximum principle on general
domains exists, but also the restriction to a level set defines a new nonzero Dirichlet prob-
lem. By exploiting the Green function estimates on balls, a local maximum principle can
however be proved.

This paper is organized as follows. In Section 2, we consider the equation

(−∆)mu= f (x)|u|p−1u, (1.11)

with the boundary condition (1.2) and f ∈ L∞(Ω). We prove the existence of infinitely
many solutions. In Section 3, we consider the equation

(−∆)mu= ε f (x)|u|p−1u+ δg(x)|u|q−1u+h(x), (1.12)

with the boundary condition (1.2) and 0 ≤ f , g ∈ L∞(Ω). Then we prove that for small
values of ‖h‖∗, this problem has at least one solution or three solutions depend on ε,δ ∈
{1,−1}. In Section 4, we consider the biharmonic equation

∆2u+
(
∆ϕ+ |∇ϕ|2)∆u+ 2∇ϕ ·∇∆u= ε f (x)|u|p−1u+ δg(x)|u|q−1u+h(x), (1.13)

with the boundary condition (1.2), for |α| < 4, ϕ∈ C2(Ω), and f , g, h, ε, δ as above. We
prove the existence of one solution or multiple solutions.
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2. A special case

Let Ω be a bounded domain in Rn and n,m∈N. In this section and the next one, we let

p∗ :=

n+ 2m
n− 2m

, for n > 2m,

∞, for n≤ 2m.
(2.1)

Let H :=Hm(Ω) and H0 :=Hm
0 (Ω) be the Sobolev spaces, where H0 is equipped with the

scalar product

(u,v) :=


∫
Ω
∆m/2u ·∆m/2v, m even,∫

Ω
∇∆(m−1)/2u ·∇∆(m−1)/2v, m odd.

(2.2)

Consider the problem

(−∆)mu= f (x)|u|p−1u, in Ω,

Dαu= 0, on ∂Ω,
(2.3)

where 1 < p < p∗, f ∈ L∞(Ω), f = f1− f2, fi ≥ 0, and f1 is not identically zero. The Euler
functional of (2.3) is given by

I[u] := 1
2

(u,u)− 1
p+ 1

∫
Ω
f (x)|u|p+1dx, (2.4)

where (·,·) is the scalar product on H0, which is defined by (2.2). It is known that a con-
ditional critical point of I corresponds to a weak solution of the boundary-value problem
(2.3). Let us split the function u∈H0 as follows:

u= rv(x), r ∈R\{0}, v ∈ Γ, (2.5)

where Γ= {v ∈H0 :
∫
Ω f (x)|v|p+1dx > 0, (v,v)= 1}. Now if we substitute from (2.5) into

(2.4), then we obtain

E(r,v) := I[rv]= r2

2
− |r|

p+1

p+ 1

∫
Ω
f |v|p+1dx. (2.6)

Following the fibering method suggested in [12, 13, 14], we obtain

I′[u]= 0⇐⇒
E′r(r,v)= 0,

E′v(r,v)= 0,
(2.7)

where E′v(r,v) is the derivative of E(r,v) in the tangential direction on the boundary of
the unit sphere in H0. The equation E′r(r,v) = 0 plays the same role as the bifurcation
equation in the classical approach. Therefore, it is referred to as the bifurcation equation
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in the fibering method as well. In this case, the bifurcation equation acquires the form
r− r|r|p−1

∫
Ω f |v|p+1dx = 0. This equation has three roots:

r1(v)= 0, r2(v)=−r3(v)=
(∫

Ω
f |v|p+1dx

)−2/(p−1)

. (2.8)

The nontrivial roots give rise to the functional

E(v) := E(ri(v),v
)= (1

2
− 1
p+ 1

)(∫
Ω
f |v|p+1dx

)−2/(p−1)

, i= 2,3. (2.9)

If we set Ẽ(v)= ∫Ω f |v|p+1dx, then we see that Ẽ(v) and E(v) have the same conditional
critical points. Moreover, Ẽ(v) is strictly positive and is bounded from above for all v ∈ Γ.
In order to see this notice that for 0 ≤ p < p∗, the embeddings H0(Ω) ⊂ Lp+1(Ω) are
compact continuous and there exists a c > 0 such that

‖u‖p+1 ≤ c‖u‖H0 , (2.10)

thus

0 < Ẽ(v)=
∫
Ω
f |v|p+1dx ≤ ‖ f ‖∞cp+1 <∞. (2.11)

Now we arrive to the following theorem.

Theorem 2.1. The problem (2.3) has at least one weak solution. In other words, there exists
a point v0 ∈H0, which is a maximum point for the problem

M = sup
{
Ẽ(v) | v ∈ Γ

}
. (2.12)

Proof. Let {vi} ⊂ Γ be a maximizing sequence for M, that is, vi ∈ Γ and Ẽ(vi)→M. From
compactness of the embedding H0 ⊂ Lp+1(Ω), for 1 < p < p∗, and boundedness of {vi}
in H0, that is, (vi,vi)= 1, and by weak continuity of the functional u �→ ∫

Ω f (x)|u|p+1dx,
it follows that there exists a subsequence {vij} of {vi} and v0 ∈H0 such that vij is weakly
convergent to v0 in H0, and strongly convergent to the same v0 in Lp+1(Ω). Thus

Ẽ
(
vij
)−→ Ẽ

(
v0
)=M > 0. (2.13)

We claim that v0 �= 0. Indeed, if v0 = 0, then Ẽ(v0) = 0, which contradicts with M > 0.
Now it remains to show that v0 ∈ Γ. By lower semicontinuity of the norm, we have(

v0,v0
)≤ liminf

(
vij ,vij

)= 1. (2.14)

If we suppose 0<(v0,v0)<1, then for a suitable k > 1, (kv0,kv0)= 1 and Ẽ(kv0)= kp+1M >
M, which contradicts with the definition of M. The proof of the theorem is completed.

�

Remark 2.2. For v0 as above, we have |v0| ∈ Γ and also Ẽ(|v0|)= Ẽ(v0)=M0. Therefore,
we have u0(x)= (

∫
Ω f |v0|p+1dx)−2/(p−1)|v0(x)|, as a positive solution of (2.3).
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Remark 2.3. Notice that Lyusternik-Shnirelman theory can be applied to the functional
Ẽ(v) on the unit sphere in H0. According to this theory, Ẽ(v) has countably many al-
ternating conditional critical points v1,v2, . . . ,vk, . . . such that ‖v‖H0 = 1 and Ẽ(vk) → 0
as k→∞. Therefore, the problem (2.3) has countably many alternating solutions {uk}:
uk(x)=±(

∫
Ω f |vk|p+1dx)−2/(p−1)vk(x).

3. The general case

Consider the problem

(−∆)mu= ε f (x)|u|p−1u+h(x), in Ω,

Dαu= 0, on ∂Ω,
(3.1)

where 1 < p < p∗, ε∈ {1,−1}, h∈H∗
0 (dual space of H0), and f ∈ L∞(Ω) with f ≥ 0.

The above problem for the case m = 1 has been studied before for existence of solu-
tions by many authors. Tarantello in [19] considered the problem for ε f (x)= 1, then he
showed that for the limiting exponent p = (n+ 2)/(n− 2), the problem has two solutions
in H1

0 (Ω), if f ∈H−1(Ω) and f � 0.
In [8], Li and Liu considered the above problem for m = 1 and |ε| small, then they

proved the existence of multiple solutions for the problem under some reasonable as-
sumptions.

In [18], also Rădulescu and Smets considered the problem with critical exponent and
a small inhomogeneous term. Under some conditions, two solutions are found.

In the following theorem and Theorem 3.4, we consider the above problem for the
existence of solution, if m≥ 1.

Theorem 3.1. The problem (3.1) has at least three solutions for ε = 1 and sufficiently small
‖h‖∗. This problem has one solution for ε =−1 and every h in H∗

0 .

Proof. The Euler functional of this problem is given by

I[u] := 1
2

(u,u)− ε

p+ 1

∫
Ω
f (x)|u|p+1dx−

∫
Ω
hudx. (3.2)

Let u= rv(x), r ∈ R\{0}, v ∈ Γ, where Γ= {v ∈H0 | (v,v)= 1} and as before we define
E(r,v) := I[rv]. Then u= rv is a critical point of I , if E′r = E′v = 0. But

E′r = r− εr|r|p−1
∫
Ω
f |v|p+1dx−

∫
Ω
hvdx. (3.3)

Now let ψ(r)= r− εr|r|p−1
∫
Ω f |v|p+1dx. Here we consider two different cases as follows.

Case 1 (ε = 1). In this case, the graph of ψ looks like the graph of y = x− x3. Thus the
equation E′r = 0 has three zeros ri(v), i= 1,2,3, if h satisfies∣∣∣∣∫

Ω
hvdx

∣∣∣∣≤ localmaxψ(r), (3.4)

for all v ∈ Γ, that is, ‖h‖∗ ≤ (1/c) localmaxψ(r), where c is a constant defined in (2.10).
Suppose that r2(v) > 0 and r3(v) < 0 are the local maximum points of E(r,v), and r1(v) is
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its local minimum point. Notice that r1(v)
∫
Ωhvdx ≥ 0. Let

Ei(v) :=
∣∣ri(v)

∣∣2

2
−
∣∣ri(v)

∣∣p+1

p+ 1
·
∫
Ω
f |v|p+1dx− ri(v) ·

∫
Ω
hvdx, i= 1,2,3. (3.5)

We know that ri(v), i = 1,2,3, are weakly continuous functionals. From (3.3) we have
|ri(v)|≤c(‖ f ‖∞,‖h‖∗) for v ∈ Γ, and from (3.5) we have |Ei(v)|≤c(‖ f ‖∞,‖h‖∗). More-
over, E1(v)≤ 0. In order to complete the proof in this case, we have the following lemma.

Lemma 3.2. There exists vi0 ∈H0, which minimizes the value of Ei(v) on Γ, for i= 1,2,3.

Proof. Let

mi = inf
{
Ei(v) | v ∈ Γ

}
, (3.6)

and {vil} ⊂ Γ, be a minimizing sequence for Ei(v). As we see in the proof of Theorem 3.1,
{vil} is bounded in H0. Therefore, there exists a subsequence {vil j} of {vil} and vi0 ∈ H0

such that vil j ⇀ vi0 weakly inH0 and vil j → vi0 strongly in Lp+1(Ω), for 1 < p < p∗. Hence, by

continuity of ri(v) we must have ri(vil j )→ ri(vi0) and Ei(vil j )→ Ei(vi0)=mi. Now we show

that vi0 �= 0. Suppose vi0 = 0. Then Ei(vi0)= r2
i (vi0)/2≥ 0, which is a contradiction to mi <

0. It remains to show that vi0 ∈ Γ, that is, (vi0,vi0)= 1. Notice that by lower semicontinuity
of the norm we have (vi0,vi0) ≤ liminf(vil j ,v

i
l j

) = 1. Suppose that we have 0 < (vi0,vi0) < 1.

Let λ0 = (vi0,vi0)−1 > 1. For 0 < λ < λ0, we consider the function Ei(ri(λvi0),λvi0). For this
function, we can write

dEi
dλ

=
(
ri
(
λvi0

)− ri(λvi0)∣∣ri(λvi0)∣∣p−1
∫
Ω
f
∣∣λvi0∣∣p+1

dx−
∫
Ω
h
(
λvi0

)
dx
)
· dri
dλ

− 1
λ

(
ri
(
λvi0

)∣∣ri(λvi0)∣∣p−1
∫
Ω
f
∣∣λvi0∣∣p+1

dx+ ri
(
λvi0

)∫
Ω
h
(
λvi0

)
dx
)

=−1
λ

(
ri
(
λvi0

))2
< 0.

(3.7)

Therefore, Ei is a decreasing function of λ. Hence, we must have Ei(ri(λ0v
i
0),λ0v

i
0)<Ei(ri(v

i
0),

vi0), which is a contradiction to the definition of mi. By considering the above lemma, the
proof in Case 1 is complete. �

Case 2 (ε = −1). In this case, the graph of ψ looks like y = x + x3, it follows that the
equation E′r = 0 has exactly one root r(v), for every h in H∗

0 . Let E(v)= E(r(v),v). Notice
that E(v)≤ 0 and E is bounded from below. Now by using some arguments similar to the
proof of Lemma 3.2, we can prove the following lemma, which completes the proof in
Case 2.

Lemma 3.3. If

m := inf
{
E(v) | v ∈ Γ

}
, (3.8)

then there is v0 ∈ Γ, which minimizes m. The proof of Theorem 3.1 is completed. �
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Now consider the problem

(−∆)mu= ε f (x)|u|p−1u+ δg(x)|u|q−1u+h(x), in Ω,

Dαu= 0, on ∂Ω,
(3.9)

where 1 < p < q < p∗, ε,δ ∈ {1,−1}, f ,g ≥ 0, and h ∈ H∗
0 (Ω). We have the following

theorem about this problem.

Theorem 3.4. The problem (3.9) has
(1) one solution for every h and ε = δ =−1,
(2) three solutions for sufficiently small ‖h‖∗ and ε = δ = 1,
(3) three solutions for sufficiently small ‖h‖∗ and ε =−δ = 1.

Proof. The Euler functional for this problem is given by

I[u] := 1
2

(u,u)− ε

p+ 1

∫
Ω
f (x)|u|p+1dx− δ

q+ 1

∫
Ω
g(x)|u|q+1dx−

∫
Ω
hudx. (3.10)

As before we let u= rv(x), r ∈R\{0}, v ∈ Γ, where Γ= {u∈H0 | (u,u)= 1}. Let

E(r,v) := I[rv]= r2

2
− ε|r|p+1

p+ 1

∫
Ω
f |v|p+1dx− δ|r|q+1

q+ 1

∫
Ω
g|v|q+1dx− r

∫
Ω
hvdx,

ψ(r,v)= d

dr
E(r,v) +

∫
Ω
hvdx

= r− εr|r|p−1
∫
Ω
f |v|p+1dx− δr|r|q−1

∫
Ω
g|v|q+1dx.

(3.11)

Again we consider three cases as follows.
Case 1 (ε = δ =−1). In this case,

ψ(r,v)= r + r|r|p−1
∫
Ω
f |v|p+1dx+ r|r|q−1

∫
Ω
g|v|q+1dx, (3.12)

and dψ/dr ≥ 0, then for every h ∈ H∗
0 and v ∈ Γ, the equation E′r(r,v) = 0 has exactly

one root r(v). Moreover, for fixed v, the graph of E(r,v) looks like the graph of y = x(x−
2r(v)). Then E(v)= E(r(v),v)≤ 0. Now as before r(v) and E(v) are continuous functions
of v, and E(v) is bounded from below for v ∈ Γ. Thus E has a minimizer v0 ∈ H0. As
before, by considering the lower semicontinuity of the norm, the zero Dirichlet boundary
condition, and an argument similar to the proof of Lemma 3.2, we must have v0 ∈ Γ and
u= r(v0)v0 is a solution of the problem (3.9).
Case 2 (ε = δ = 1). In this case,

ψ(r,v)= r− r|r|p−1
∫
Ω
f |v|p+1dx− r|r|q−1

∫
Ω
g|v|q+1dx, (3.13)

and the graphs of ψ(r,v) and E(r,v), for fixed v ∈ Γ, look like the graphs of y = x− x3

and y = x2− x4− r(v)x, respectively. Now, for ‖h‖∗ < (1/c) localmaxψ(r), the equation
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ψ(r,v)= ∫Ωhvdx has exactly three solutions ri(v), i= 1,2,3, where c is the constant which
is defined by (2.10). Let Ei(v) = E(ri(v),v), then ri(v) and Ei(v) are weakly continuous
functions. Notice that Ei(v) is a bounded functional for v ∈ Γ. Thus the problem mi =
inf{Ei(v) | v ∈ Γ} has a minimizer vi0 ∈ Γ. Therefore, we have three solutions ui(x) =
ri(vi0)vi0(x) for the problem (3.9).
Case 3 (ε =−δ = 1). In this case,

ψ(r,v)= r + r|r|p−1
∫
Ω
f |v|p+1dx− r|r|q−1

∫
Ω
g|v|q+1dx, (3.14)

and the graphs of ψ(r,v) and E(r,v), for fixed v ∈ Γ, look like the graphs of y = x+ x2− x3

and y = x2 + |x|3 − x4 − ax, respectively. Therefore, the equation E′r = 0, for sufficiently
small values of ‖h‖∗, has exactly three roots and the problem (3.9) has three solutions in
this case too. �

Remark 3.5. Let p = 1, q = (n+ 2m)/(n− 2m), f ≡ λ, g ≡ 1, ε = δ = 1, h ≡ 0, then for
Ω= B, the unit ball in Rn, (3.9) reduced to the problem

(−∆)mu= λu+ |u|q−1u, in B,

Dαu= 0, on ∂B.
(3.15)

Due to the criticality of exponent q, a nontrivial solution to (3.15) may exist at most for
λ > 0, ifm= 1 [11], and for λ≥ 0, ifm> 1 [16]. We define after Pucci and Serrin [17] that
the dimension n is called critical (with respect to the boundary-value problem (3.15)) if
and only if there is a positive bound Λ > 0 such that a necessary condition for existence
of a nontrivial radial solution to (3.15) is λ > Λ. Pucci and Serrin [17] showed that for
anym, the dimension n= 2m+ 1 is critical and moreover that n= 5,6,7 are critical in the
fourth-order problem, m= 2. They conjectured the following.

Conjecture of Pucci and Serrin. The critical dimensions for the boundary-value problem
(3.15) are precisely n= 2m+ 1, . . . ,4m+ 1.

Remark 3.6. Consider the following polyharmonic problem:

(−∆)mu= g(x,u), in Ω,

Dαu= 0, on ∂Ω,
(3.16)

where Ω ⊂ Rn is a bounded domain, g(x,u) =∑εjg j(x)|u|pj−1u + h(x), with 0 ≤ gj ∈
L∞(Ω), εj ∈ {0,1,−1}, 1 < p1 < p2<··· < pl < p∗, |α| <m, and h∈ (Hm

0 (Ω))∗. Let

I[u] := 1
2

(u,u)−
l∑
j=1

εj
p j + 1

∫
Ω
gj|u|pj+1dx−

∫
Ω
hudx, (3.17)

and let E(r,v) := I[rv] and ψ(r,v)= (d/dr)E(r,v) +
∫
Ωhvdx, where v ∈ Γ. Similar to the

above cases, we can show that for every v ∈ Γ and h∈H∗
0 , with sufficiently small norm,

the equation E′r = 0 has at least one nonzero root. Therefore, the problem (3.16) has at
least one solution.
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4. Biharmonic problem

Let Ω be a bounded smooth domain in Rn. In this section, we let q∗ = (n+ 4)/(n− 4) if
n > 4 and q∗ =∞ otherwise. Let us now turn to the biharmonic problem

∆2u+
(
∆ϕ+ |∇ϕ|2)∆u+ 2∇ϕ ·∇∆u= f (x)|u|p−1u, in Ω,

Dαu= 0, on ∂Ω,
(4.1)

where 1 < p < q∗, |α| < 4, and ϕ ∈ C2(Ω). For this problem, we prove the existence of
weak solution under the following assumptions:

(A1) f ∈ L∞(Ω),
(A2) f + :=max{ f (x),0} is not identically zero.

Let K :=H2
0 (Ω) be equipped with the scalar product (u,v)K := ∫Ω∆u∆vρdx, with ρ(x) :=

eϕ(x). Then the induced norm on K is ‖u‖K = (
∫
Ω |∆u|2ρdx)1/2. Notice that K is com-

pactly embedded in L
p+1
ρ (Ω), where

‖u‖Lp+1
ρ
=
(∫

Ω
|u|p+1ρdx

)1/(p+1)

. (4.2)

Now we have the following theorem.

Theorem 4.1. Assume that (A1)-(A2) hold and 1 < p < q∗, then there exists a nonnegative
(nontrivial) solution of (4.1).

Proof. The Euler functional of (4.1) is given by

I[u] := 1
2

∫
Ω
|∆u|2ρdx− 1

p+ 1

∫
Ω
f (x)|u|p+1ρdx, (4.3)

that is, the conditional critical points of I are weak solutions of (4.1):

lim
I[u+ tv]− I[u]

t
=
∫
Ω
∆u∆vρdx−

∫
Ω
f (x)|u|p−1uvρdx

=
∫
Ω
∆(ρ∆u)vdx−

∫
Ω
f (x)|u|p−1uvρdx

=
∫
Ω

(
∆2u+

(
∆ϕ+ |∇ϕ|2)∆u+ 2∇ϕ ·∇∆u− f (x)|u|p−1u

)
vρdx.

(4.4)

Now let

u= rv(x), r ∈R\{0}, v ∈ Γ, (4.5)

where Γ= {v ∈ K :
∫
Ω f (x)|v|p+1ρdx > 0, (v,v)K = 1}, that is, we take the fibering func-

tional H(v)= ‖v‖2
K =

∫
Ω |∆v|2ρdx. Let

E(r,v) := I[rv]= r2

2

∫
Ω
|∆v|2ρdx− |r|

p+1

p+ 1

∫
Ω
f |v|p+1ρdx. (4.6)
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If we substitute from (4.5) into (4.6), we obtain

E(r,v)= r2

2
− |r|

p+1

p+ 1

∫
Ω
f |v|p+1ρdx. (4.7)

Now the bifurcation equation E′r(r,v) = 0 takes the form r − r|r|p−1
∫
Ω f |v|p+1ρdx = 0.

The nontrivial roots of this equation are

r1(v)=−r2(v)=
(∫

Ω
f |v|p+1ρdx

)−2/(p−1)

. (4.8)

Thus we define the functional Ẽ as

Ẽ(v) := E(ri(v),v
)= (1

2
− 1
p+ 1

)(∫
Ω
f |v|p+1ρdx

)−2/(p−1)

, i= 1,2, (4.9)

and we let Ê(v) := ∫Ω f |v|p+1ρdx. It is clear that the conditional critical points of the Ẽ
and Ê are the same. In order to find the conditional critical points of Ê, we will use the
following lemmas.

Lemma 4.2. Let

M0 := sup
{
Ê(v) | v ∈ Γ

}
, (4.10)

then 0 <M0 <∞ and every maximizing sequence of (4.10) is bounded in K .

Proof. From (A2) we know thatM0 > 0. For the second inequality, let 0 < ρ0 :=min{ρ(x) |
x ∈Ω}. Thus, for all v ∈ Γ, we have

∣∣Ê(v)
∣∣= ∣∣∣∣∫

Ω
f |v|p+1ρdx

∣∣∣∣≤ ‖ f ‖∞‖ρ‖∞‖v‖p+1
p+1

≤ cρp+1
0 ‖∆v‖p+1

2 ≤ c
(∫

Ω
|∆v|2ρdx

)p+1

= c,
(4.11)

where c is a constant. This means that Ê(v) is bounded from above on Γ and M <∞. �

Lemma 4.3. There exists a minimizer 0≤ v ∈ K for (4.10).

Proof. Let {vn} be a maximizing sequence for (4.10). Then, from boundedness of {vn}
in K and compactness of the embedding K ⊂ L

p+1
ρ (Ω), we can suppose that there exists

v ∈ K such that {vn} converges weakly to v. Since the norm is lower semicontinuous, we
have H(v) ≤ liminf ‖vn‖K = 1. Since Ê is continuous, Ê(vn)→ Ê(v) =M0. If H(v) = 0,
then v = 0 and Ê(v) = 0, which is a contradiction. We also show that H(v) = 1. If not,
then we must have 0 <H(v) < 1. Hence, for suitable k > 1 H(kv)= 1 and

Ê(kv)= kp+1Ê(v)= kp+1M0 >M0, (4.12)

which is a contradiction to (4.10). Finally, we have v ∈ K and

H
(|v|)=H(v)= 1, Ê

(|v|)= Ê(v)=M0, (4.13)
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therefore we can take v ≥ 0. Now, let u= r(v)v, where

r(v)=
(∫

Ω
f |v|p+1ρdx

)−2/(p−1)

> 0. (4.14)

Then u is a nonnegative nontrivial weak solution of (4.1). �

�

Remark 4.4. Notice that here again Lyusternik-Shnirelman theory can be applied to the
functional Ê(v) on the unit sphere in K0. According to this theory, Ê(v) has countably
many alternating conditional critical points v1,v2, . . . ,vk, . . . such that ‖v‖K0 = 1 and
Ẽ(vk) → 0 as k →∞. Therefore, the problem (4.1) has countably many alternating so-
lutions {uk}: uk(x)=±(

∫
Ω f |vk|p+1ρdx)−2/(p−1)vk(x).

Remark 4.5. Consider the equation

∆2u+
(
∆ϕ+ |∇ϕ|2)∆u+ 2∇ϕ ·∇∆u= ε f (x)|u|p−1u+ δg(x)|u|q−1u+h(x), (4.15)

with

Dαu= 0, on ∂Ω, (4.16)

where |α| < 4, 1 < p < q < q∗, h∈ K∗, 0≤ f , g ∈ L∞(Ω), 0 < b0 ≤ g(x). For the problem
(4.15)-(4.16), we can apply the techniques presented in the proof of Theorem 3.4 to the
functional

I[u] := 1
2

∫
Ω
|∆u|2ρdx− ε

p+ 1

∫
Ω
f (x)|u|p+1ρdx

− δ

q+ 1

∫
Ω
g(x)|u|q+1ρdx−

∫
Ω
huρdx,

(4.17)

and arrive to the following theorem.

Theorem 4.6. Under the above condition, the following results hold.
(1) If ε = δ =−1, then for every h∈ K∗, (4.15)-(4.16) has one weak solution.
(2) If ε= δ = 1, then for sufficiently small ‖h‖∗, (4.15)-(4.16) has three weak solutions.
(3) If ε =−δ = 1, then for sufficiently small ‖h‖∗, (4.15)-(4.16) has three weak solutions.
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[15] S. I. Pohozaev and L. Véron, Multiple positive solutions of some quasilinear Neumann problems,
Appl. Anal. 74 (2000), no. 3-4, 363–391.

[16] P. Pucci and J. Serrin, A general variational identity, Indiana Univ. Math. J. 35 (1986), no. 3,
681–703.

[17] , Critical exponents and critical dimensions for polyharmonic operators, J. Math. Pures
Appl. (9) 69 (1990), no. 1, 55–83.
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