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Consider independent and identically distributed random variables {Xu, 1 <k < m,
n = 1} from the Pareto distribution. We randomly select two adjacent order statistics
from each row, X,y and X,+1), where 1 < i < m — 1. Then, we test to see whether or
not strong and weak laws of large numbers with nonzero limits for weighted sums of the
random variables X,(i+1)/Xn(;) exist, where we place a prior distribution on the selection
of each of these possible pairs of order statistics.

1. Introduction

In this paper, we observe weighted sums of ratios of order statistics taken from small sam-
ples. We look at m observations from the Pareto distribution, that is, f(x) = px ?'I(x >
1), where p > 0. Then, we observe two adjacent order statistics from our sample, that
is, Xy < X(is1) for 1 <i <m — 1. Next, we obtain the random variable R; = X(i+1/X(),
i=1,...,m— 1, which is the ratio of our adjacent order statistics. The density of R; is

f(r) = plm—i)yr P=D-1(r = 1), (1.1)

We will derive this and show how the distributions of these random variables are related.
The joint density of the original i.i.d. Pareto random variables Xj,..., X, is

F Xt rdm) = p P T 2 1) - T (o = 1), (1.2)
hence the density of the corresponding order statistics X(1),...,X(m) is
p-1 -p-1

f(x(l),...,x(m)) = pmm!x(_l) T X I(1<x0) <x2) <+ < X(m))- (1.3)
Next, we obtain the joint density of X(1),R;,...,Rn—1. In order to do that, we need the
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inverse transformation, which is

Xy =X,
Xy =XmR1, (1.4)
X3) = X1)RiRo,

through
Xm) =XmRiRy - - - Ry-1. (1.5)

So, in order to obtain this density, we need the Jacobian, which is the determinant of the
matrix

aX(l) 8x<1) 8x(1) o aX(l)
oxqy  On or, Ofm-1
ax(z) ax(z) ax(z) . ax(z)
aX(l) 81’1 81’2 arm,l
aX(3) BX(3) aX(3) . aX(3) (1 6)
aX(l) 81'1 81'2 arm_1 ’ ’
aX(m) aX(m) ax(m) o ax(m)
oxqy  on or, Ofm-1
which is the lower triangular matrix
1 0 0 B 0
71 X(1) 0 0
rr xX(1)r2 X e 0 ) (1.7)
s Tm-1 X2 Tm-1 XMNT3-*Tm-1 =~ X1 """ Tm-2
1,m-2,m-3,m—4

Thus the Jacobian is x(j) r{" "ry" 713" - 1y
So, the joint density of X(1),R1,...,Rm—1 is

—p-1 —p-1 - -p-1
F )y rieestmr) = pPrmix ™ (xyr) T (xynr) P ()

-xﬁ)’lr{”_zrzm_S- R
. I(l SX(1) =X =X < =Xt rm—l)

—pm—1_—p(m—-1)-1_—p(m-2)-1 -2p—1 _—p-1
=p"mlx,)" 1 ) " Tm-2 Tl

Axy = D)I(rn=1)I(rp=21) - I(ry-1 = 1).
(1.8)
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This shows that the random variables X(1),Rs,...,R,,—; are independent and that the den-
sity of our smallest order statistic is

—pm—1
o (k) = pmx " I (x) = 1), (1.9)
while the density of the ratio of the ith adjacent order statistic R;, i = 1,...,m — 1 is
foi(r) = p(m = D)r P07 (r 2 1), (1.10)

We repeat this procedure n times, assuming independence between sets of data, ob-
taining the sequence {R, = Ry, n = 1}. Notice that we have dropped the subscript i, but
the density of R,; does depend on i. Hence, we first start out with n independent sets of
m 1.i.d. Pareto random variables. We then order these m Pareto random variables within
each set. Next, we obtain the m — 1 ratios of the adjacent order statistics. Finally, we select
one of these as our random variable Y. Repeating this n times, we obtain the sequence
{Y,, n=1}. We do that via our preset prior distribution {IT;,...,IT,_;}, where II; = 0
and Z;’l‘ll I1; = 1. The random variable Y, is one of the R,,;, i = 1,...,m — 1, chosen via this
prior distribution. In other words, P{Y, = R,;} =1, for i = 1,2,...,m — 1. It is very im-
portant to identify which is our largest acceptable pair of order statistics since the largest
order statistic does dominate the partial sums. Hence, we define v = max{k : IIx > 0}. We
need to do this in case IT,,_; = 0.

Our goal is to determine whether or not there exist positive constants a, and by
such that Zle a,Y,/by converges to a nonzero constant in some sense, where {Y,, n >
1} are ii.d. copies of Y. Another important observation is that when p(m —v) =1,
we have EY = co. These are called exact laws of large numbers since they create a fair
game situation, where the a,Y, represents the amount a player wins on the nth play of
some game and by — by_; represents the corresponding fair entrance fee for the partici-
pant.

In Adler [1], just one order statistic from the Pareto was observed, while in Adler [2],
ratios of order statistics were examined. Here we look at the case of randomly selecting
one of these adjacent ratios. As usual, we define Igx = log (max{e,x}) and Ig, x = Ig(Igx).
We use throughout the paper the constant C as a generic real number that is not neces-
sarily the same in each appearance.

2. Exact strong laws when p(m —v) = 1

In this situation, we can get an exact strong law, but only if we select our coefficients and
norming sequences properly. We use as our weights a, = (Ign)?~2/n, but we could set
a, = S(n)/n, where S(-) is any slowly varying function. Note that if we do change a,,, then
we must also revise b,, and consequently ¢, = b,/a,,.
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THEOREM 2.1. If p(m —v) = 1, then for all 5 >0,
S ((gn)f/m)y, _ 1L,

I\ljl{lgo (IgN)? = ? almost surely. 2.1

Proof. Let a, = (Ign)f=2/n, b, = (Ign)?, and ¢, = b,/a, = n(Ign)*. We use the usual par-
tition

1 1 &
b—z —z [YI(1<Y,<c,) —EY,I(1<Y,<c,)]
anl N n=1
(2.2)
1 N
- ZanYIY > Cy) b—ZanEYnI(ISYnSCn).
Ny N p=1

The first term vanishes almost surely by the Khintchine-Kolmogorov convergence the-
orem, see [3, page 113], and Kronecker’s lemma since

1
2—2 YnSCH)

I
M
=
M
:N| —
&3]
5
—
>d
3
IA
o

|
M=
=
i M e

PO=0) gy

o oD G 1

v e e (2.3)
SCXZ7 dr

i1 n=1CnJ1

0 1 Cn
SCZ—2J dr

nle” 1

o1
<C> —

n=1 Cn

o1
=CZ < 00
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The second term vanishes, with probability one, by the Borel-Cantelli lemma since

ipy'>w ZIIZPH2>%}

n=1 i=1 n=1

0 3]

= ZH,- Z p(m— i)y Plm=i-14,

DY IS
iij PO=D=2gy (2.4)
DY

(2.5)

= HiI np(m - i)r‘P(”_i)_ldr+HyI np(m —)rdr
, 1 1

~IL,p(m—v)lgc, ~I1,1gn

since

y—1 n ) v=1 ¢, n
Z Hi[ p(m—i)r P 0"1gr < C Z I r P ldr < CJ r~P=dr = O(1). (2.6)
i=1 1 i1 1
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Thus

S @mEY,I(1=Y, <c,) T35 (gn)f/n
by (IgN)?

I,
— =, 2.7
B (2.7)

which completes the proof. O

3. Exact weak laws when p(m —v) =1

We investigate the behavior of our random variables {Y,, n = 1}, where we slightly in-
crease the coefficient of Y,,. Instead of a, being a power of logarithm times n~!, we now
allow a, to be n to any power larger than negative one. In this case, there is no way to
obtain an exact strong law (see Section 4), but we are able to obtain exact weak laws.

TaEOREM 3.1. If p(m —») = 1 and o > —1, then

Zgzl nth(n) Y, P IT,
No+IL(N)IgN a+1

(3.1)

for any slowly varying function L(-).

Proof. This proof is a consequence of the degenerate convergence theorem, see [3, page
356]. Here, we set a, = n*L(n) and by = N*"'L(N)IgN. Thus, for all € > 0, we have

M=
el
—~
=
\Y

m
S
Z
e
Il
M=
=
M=
el
—~
)
S
|
m
S
=
e

n=1 an an
v N 00
=>Mip(m—i) > J roPm=D=14y
i=1 n=1" €bn/a
v N 00
=p> Mi(m—i) ) J b= =p=i=lgy
i=1 n=1" €bn/an
v N .~
= pZHi(m —1i) Z J rP0=0-2g,
i=1 n—1"€bn/ay (3.2)

n*L(n)
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Similarly,

N a b v N
ZVar(iY,J(l <Y, < a—)) =>1L )
n=1 i

v N
<C> > a2 poPlm=D+1 gy
Sambn
v N a2 bN/a,,
= CZ Z 2 pmp(m=)=pr=i)+1 4,
i=1n=1 bN 1
(3.3)
v N aZ bn/ay
—cy S —;J PO gy
i=1n=1 bN 1
N 2 bN/a,, N
a a
<C 2 dr<C) —
;;1 by h g‘l by
N of
—cy 77("> . <
o NHL(N)IgN — IgN
As for our truncated expectation, we have
bn by
EY,I(1<Y, < ZHERI 1<R,<—
an i=1 an
4 bN/a,, i
Z ip(m—1i) J rPm=i) gy
v bN/a,, .
= p S Ii(m— i) L P pm=)—p(r=i) (3.4)

=pZHi(m—i)j P01,

bN/an

v=1 hN/an
=pZHi(m—i)J PO=D=1gr 411, I rldr.

The last term is the dominant term since

N r—1 /a

an N
2 e 2 n=p

n=1"N =]

" -p=i)-1 ST 1 <
r PO ldr < C —J rPldr<C> &+ —0,
Zl hN 1 ngl bN

(3.5)
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while

(3.6)
LS nL(n) g [N L(N) Ig N/ (n*L(n)) ]
B NetIL(N)IgN

I, ij:l n“L(n)[(a+1)1gN +1gL(N) +1g,N — algn —1gL(n)]
B NeHL(N)IgN '

The important terms are

SonL(m)(a+ DIgN — (a+1) S0 n®L(n)
NetL(N)IgN B Ne+1L(N)

—1,
(3.7)
SN neL(n)(—algn) B _ochj:ln“L(n)lgn o«
NeHL(N)IgN ~ NetlIL(N)IgN a+1’

while the other three terms vanish as N — co. For completeness, we will verify these
claims:
1 nL(m)IgL(N) _ ClgL(N)
N« 1L(N)IgN IgN ’

Zﬂlzl n*L(n)lg, N P Clg,N
Net1L(N)IgN IlgN

— 0, (3.8)

Zgzln“L(n)lgL(n) CN*"L(N)IgL(N) _ ClgL(N)

NeIL(N)IgN <~ NeIL(N)gN  ~  IgN
Therefore,
SN a.EY,I(1 <Y, <by/a,) ( a ) 11,
n —1,(1- ) = —, .
by Y a+1 a+1 (3.9)
which completes this proof. O

4. Further almost sure behavior when p(m —v) =1

Using our exact weak law, we are able to obtain a generalized law of the iterated logarithm.
This shows that under the hypotheses of Theorem 4.1, exact strong laws do not exist
when a, = n*L(n), « > —1, where L(-) is a slowly varying function. Hence, the coefficients
selected in Theorem 2.1 are the only permissible ones that will allow us to obtain an exact
strong law, that is, a, = S(n)/n for some slowly varying function S(-), where we used
logarithms as our function S(-).
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THEOREM 4.1. If p(m—v) = 1 and o > —1, then

Z lnL( )Y Hv

hl{]rL 10r01f IL(N)IgN — at1 almost surely,
24
lim sup M = oo almost surely,

Neow NOHIL(N)IgN

for any slowly varying function L(-).

Proof. From Theorem 3.1, we have

SN L)Y, _ 11,
liminf &2
minf Ve () IgN = a1

almost surely.

3435

(4.1)

(4.2)

Set a, = n®L(n), b, = n**'L(n)lIgn, and ¢, = b,/a, = nlgn. In order to obtain the oppo-

site inequality, we use the following partition:

N
1 1
— > ayY, = e > a, Y, I(1<Y, <n)

n=1 n=1
1 N

. > auY (1Y, <n)—EY,I(1<Y,<n)]
N p=1

N

+ bi > a,EY,I(1 <Y, <n).
N

n=1

The first term goes to zero, almost surely, since b, is essentially increasing and

o) v o)
> GPEYH(1<Y,<n) <> > ¢,?ERZI(1 <R, <n)

n=1 i=1n=1

ic Irl”"
K

(4.3)

(4.4)
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As for the second term, we once again focus on the last term, our two largest permis-
sible order statistics,

EY,I(1<Y,<n)=>ILEY,I(1<Y, <n)
i=1

= Zl’[,f p(m— i)rPlm=igy
i=1 1

i n
=p > Ii(m— z)J pp(m=v)=pv=i) 7,
1 1

i=

(4.5)
= pZHi(m— i)J rmPO=D-1g,
i=1 1

y—

1 n n
=pZHi(m—i)J r*P(”*i)*ldr+va(m—v)J r~ldr
1

i=1 1
~11L,1gn
since

r—1 n v=1 .n n
p > Ti(m— i)J rPO-=lgy CZJ P ldr < CJ r P ldr=0(1).  (46)
1 o 1

i=1

Thus,
liminfM > liminf 227:1 anEY,I(1 = Y < 1)
N—oo N " N-o bN
= iy T 2 nL(m) Ign (4.7)
N—o No1L(N)IgN
— HV
T a+l’

establishing our almost sure lower limit.
As for the upper limit, let M > 0, then

00 Vv 00
> P{Y, >Mc,} = > II; > P{R, > Mc,}
n=1 i=1 n=1

0

= ZHi Z p(m— i)J rPm=0-174,

i=1 n=1 M,
v oo o)
L3S pn i [ e
i=y  n=1 M,

[

p(m—v) J popm="-14,

Mc,
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=TI, Z J r=2dr
n=1Mcn

I, « 1

M ; Cn
I, « 1

M ; nlgn

= 00

This implies that
HYH
limsup —— b, = oo almost surely,
n—oo

which in turn allows us to conclude that

N
. —10nY,
limsup 21 @nY = oo almost surely,
N—-oo bN

which completes this proof.

5. Typical strong laws when p(m —v) > 1

3437

(4.8)

(4.9)

(4.10)

When p(m —») > 1, we have EY < oo, hence all kinds of strong laws exist. In this case,
{ay, n>=1} and {b,, n > 1} can be any pair of positive sequences as long as b, 1 oo,
ij:l a,/by — L, where L # 0, and the condition involving ¢, = b,/a, in each theorem is
satisfied. If L = 0, then these limit theorems still hold, however the limit is zero, which is

not that interesting.

This section is broken down into three cases, each has different conditions as to

whether the strong law exists. The calculation of EY follows in the ensuing lemma.

LemMA 5.1. If p(m —v) > 1, then

pILi(m —1i)
EY=) ——.
,le( i)-1

Proof. The proof is rather trivial, since p(m —v) > 1, we have

Vv

EY:ZHIERn:szI(m—I)J‘wrip(m l Z pH _1)
i-1 i=1 ! =i pm =) -1

which completes the proof of the lemma.

(5.1)

(5.2)
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In all three ensuing theorems, we use the partition
1 1 Y
_Z“”Y”:b_z [Y,I(1<Y,<c,) —EY (1 <Y,<c,)]
LN
b—z anYul (Y, > cy) (5.3)

+ a,EY,I(1<Y, <c,),

|-
MZ I

n=1

where the selection of a,, by, and ¢, = b,/a, must satisfy the assumption of each theo-
rem. These three hypotheses are slightly different and are dependent on how large a first
moment the random variable Y possesses. The difference in the these theorems is the
condition involving the sequence {c,, n > 1}.

p(m—v)

THEOREM 5.2. If 1< p(m—v)<2and >, jcn < oo, then
N
. IT;(
lim M Z PMZY - ost surely. (5.4)
N—oo i p — l)
Proof. The first term in our partition goes to zero, with probability one, since
0 1 y 0 1 ,
Z—Z Ynscn)=ZH,Z—2ERI( <R, <cy)
n=1%n i=1 n=1 Cn
4 0 1 Cn
<C> > C—ZL rPm=itlgy
i=1n=1n
o 1
SC2g | rrmdr (55)
n=1"n
) C—p(m—v)+2
n
<C> =
n=1 n

As for the second term,

iP{Ym >cpb = > 11

(5.6)
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N
Then, from our lemma and >’,_, a, ~ Lby, we have

SN a.EY,I(1 <
by

Y, <

_’LZ

p(m—z

which completes this proof.

THEOREM 5.3. If p(m—v) =2 and Y.;> | lg(cy)/c% < oo, then

lan

; I,
Z ZP

zlp

lim

almost surely.
N—-oo

—1)—1

Proof. The first term goes to zero, almost surely, since

D

:N|’—‘

< zzj P14y
<C i[ rPm=-14,
= ZI r=3dr
<C§:i

- nzlcgl
scilign«w.
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(5.7)

(5.8)

(5.9)

(5.10)
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As in the last proof, the calculation for the truncated mean is exactly the same, which

leads us to the same limit.

THEOREM 5.4. If p(m—v)>2and >, c,? < o, then

lim
N—oo

zN a v
M Z almost surely.
— p(m— 1) - 1

Proof. The first term goes to zero, with probability one, since

)

1 n=1

b

ER2I(1 <R, <c,)

IS
sml’—‘

:N|’—‘
I/\
M=

I/\
:N"—‘

p(m— v+1dr

J p(m— z)+1dr

I/\
H[\/]<
TiMe

:N"—‘

<C Z J 7p(m v)+1dr

nl”
<CZ—<oo

As for the second term,

> P{Y, >cul ZHZP{R > Cn}
n=1

< Ci i Joo popm=0=17,

O

(5.11)

(5.12)

(5.13)
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Then as in the last two theorems,

Sha@EY,I(1<Y, <c) Li pILi(m — i)

; > 5.14
by Spm—i)—1 (5-14)

which completes this proof. O

Clearly, in all of these three theorems, the situation of a, = 1 and b, = n = ¢, is easily
satisfied. Whenever p(m —v) > 1, we have tremendous freedom in selecting our con-
stants. That is certainly not true when p(m —») = 1.
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