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We present a formula that turns power series into series of functions. This formula serves
two purposes: first, it helps to evaluate some power series in a closed form; second, it
transforms certain power series into asymptotic series. For example, we find the asymp-
totic expansions for λ > 0 of the incomplete gamma function γ(λ,x) and of the Lerch
transcendent Φ(x,s,λ). In one particular case, our formula reduces to a series transfor-
mation formula which appears in the works of Ramanujan and is related to the exponen-
tial (or Bell) polynomials. Another particular case, based on the geometric series, gives
rise to a new class of polynomials called geometric polynomials.

1. Introduction

In this paper we present and discuss the following formula:

∞∑
n=0

g(n)(0)
n!

f (n)xn =
∞∑
n=0

f (n)(0)
n!

n∑
k=0

{
n
k

}
xkg(k)(x), (1.1)

where f , g are appropriate functions and {nk} are the Stirling numbers of second kind
({nk} is the number of partitions of a set of n elements into k disjoint nonempty subsets,
[14, 35]).

An important feature of this formula is the fact that when f is a polynomial, the right-
hand side is a finite sum and therefore (1.1) evaluates the left-hand side in a closed form.
As shown in Section 5, formula (1.1) has also one other interesting feature: it transforms
certain convergent series into asymptotic series. The main results in Section 5 include
the asymptotic expansions in λ of the incomplete gamma function γ(λ,x) and the Lerch
transcendent Φ(x,s,λ).

Sections 2 and 3 have a review character: we look at two special cases of (1.1) accom-
panied by historical notes. A sufficient condition for the validity of the formula is given
in Section 4, where we prove (1.1) in a more general form, with the summation on the
left-side going from −∞ to +∞. Finally, Section 6 contains some examples of series eval-
uation.
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2. Exponential polynomials

If we set g(x)= ex in (1.1), the formula becomes

∞∑
n=0

f (n)
n!

xn = ex
∞∑
n=0

f (n)(0)
n!

φn(x), (2.1)

where

φn(x)=
n∑

k=0

{
n
k

}
xk (2.2)

are the exponential polynomials. We refer to (2.1) as the exponential transformation for-
mula (ETF). An equivalent definition for the exponential polynomials is

φn(x)= e−x(xD)nex, n= 0,1, . . . , (2.3)

with (xD) f (x)= x f ′(x) (see (4.2) in Section 4). This equation can be written in the form

φn(x)ex = (xD)nex =
∞∑
k=0

kn

k!
xk. (2.4)

One has

φ0(x)= 1,

φ1(x)= x,

φ2(x)= x+ x2,

φ3(x)= x+ 3x2 + x3,

(2.5)

and so forth. All coefficients {nk} are positive integers.
The polynomials φn form a basis in the linear space of all polynomials. Formula (2.2)

shows how this basis is expressed in terms of the standard basis 1,x,x2, . . . ,xn, . . . . Solving
for xk in (2.2) and writing the standard basis in terms of the exponential polynomials one
finds that

1= φ0, x = φ1, x2 =−φ1 +φ2, x3 = 2φ1− 3φ2 +φ3, etc. (2.6)

In general,

xn =
n∑

k=0

(−1)n−k
[
n
k

]
φk, (2.7)

where [nk ]≥ 0 are the absolute Stirling numbers of the first kind. In particular

[
k
0

]
= 0, (k > 0);

[
k
1

]
= (k− 1)!;

[
k
k

]
= 1. (2.8)

More information on Stirling numbers can be found in [8, 14, 20, 34, 35].
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Apparently, exponential polynomials were studied and used for the first time by Ra-
manujan in his notebooks [4, Chapter 3], but these results were not published in his
lifetime. The first publications dealing with exponential polynomials in details originate
from Bell [2, 3] (φn are also known as the single variable Bell polynomials) and Touchard
[27, 28] (see the comments on [4, page 48] and also [8, page 133] and [24, 33]). There is
a short note on these polynomials in Hardy’s paper [15, 16, page 87]. The integers

bn = φn(1)=
n∑

k=0

{
n
k

}
(2.9)

are known as Bell or exponential numbers [2], [4, page 52], [10, 6.1], and [9, 22, 25, 31].
They give the number of ways a set of n elements can be partitioned into nonempty
disjoint subsets.

Formula (2.1) can also be found in the works of Ramanujan [4, page 58], who pre-
sented several interesting applications (see [4, Entry 10, its proof and the following ex-
amples, pages 57–65]).

It is easy to find the exponential generating function for the polynomials φn; just set
f (x)= ext in (2.1) to get

ex(et−1) =
∞∑
n=0

φn(x)
tn

n!
. (2.10)

The name “exponential polynomials” shows their close tie to the exponential function. A
natural question is to find the ordinary generating function:

h(x, t)=
∞∑
n=0

φn(x)tn. (2.11)

This question is addressed in Section 5, see (5.2) and (5.15).

3. Geometric polynomials and the geometric transformation formula

We want to find now a transformation formula like (2.1), but without the factorials. For
this purpose we choose for (1.1) the function

g(x)= 1
1− x

,
(|x| < 1

)
, (3.1)

in which case g(n)(0)/n!= 1 (for all n). We get

∞∑
k=0

f (k)xk = 1
1− x

∞∑
n=0

f (n)(0)
n!

ωn

(
x

1− x

)
, (3.2)

where ωn are the polynomials

ωn(x)=
n∑

k=0

{
n
k

}
k!xk, (3.3)



3852 A series transformation formula and related polynomials

with the inversion law [14, Problem 12, page 310]:

xn = 1
n!

n∑
k=0

(−1)n−k
[
n
k

]
ωk(x). (3.4)

One has

ω0(x)= 1, ω1(x)= x, ω2(x)= 2x2 + x, ω3(x)= 6x3 + 6x2 + x, etc. (3.5)

The numbers

ωn(1)=
n∑

k=0

{
n
k

}
k! (3.6)

are known as the preferential arrangement numbers. Their combinatorial interpretation
can be found in [9] and [22, 1.15].

Taking f (x)= xm, m= 0,1,2, . . . in (3.2) with the agreement 00 = 1, one comes to the
equation

∞∑
k=0

kmxk = 1
1− x

ωm

(
x

1− x

)
, (3.7)

analogous to (2.4). Keeping in mind that (xD)mxk = kmxk, we can view this as the rule

(xD)m
{

1
1− x

}
= 1

1− x
ωm

(
x

1− x

)
, m= 0,1,2, . . . , (3.8)

which explains the action of (xD)m on the rational function 1/(1− x) in the same way
(2.4) explains the action of this operator on ex. We call the polynomials ωn geometric
polynomials, because their relation to the geometric series

∞∑
k=0

xk = 1
1− x

, |x| < 1, (3.9)

is similar to the relation of φn to the exponential series

∞∑
k=0

xk

k!
= ex. (3.10)

Correspondingly, we call (3.2) the geometric transformation formula (GTF). The expo-
nential and geometric polynomials are connected by the relation

ωn(z)=
∫∞

0
φn(zλ)e−λdλ, (3.11)

which is verified immediately by using (2.2). One can derive now properties of ωn from
those of φn. For instance, the exponential generating function for ωn can be found by
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writing (2.10) in the form

exλ(et−1) =
∞∑
n=0

φn(xλ)
tn

n!
, (3.12)

then multiplying both sides by e−λ and integrating for λ from zero to infinity. In view of
(3.11) this gives

∫∞
0
e−λ(1−x(et−1))dλ=

∞∑
n=0

ωn(x)
tn

n!
, (3.13)

and therefore, the generating function for ωn is

1
1− x

(
et − 1

) = ∞∑
n=0

ωn(x)
tn

n!
. (3.14)

For every x, the left side in (3.14) is an analytic function of t in some neighborhood of
zero and the right side is its convergent Taylor series in this neighborhood. Note that
(3.14) gives immediately ωn(−1)= (−1)n.

A straightforward application of (3.7) follows from the observation that for every |x| <
1 and every integer m≥ 0,

∞∑
k=1

(
1m + 2m + ···+ km

)
xk = 1

1− x

∞∑
k=1

kmxk. (3.15)

(To prove this, multiply the left side by 1− x and simplify.) Therefore,

∞∑
k=1

(
1m + 2m + ···+ km

)
xk = 1(

1− x
)2 ωm

(
x

1− x

)
. (3.16)

The summation of the series in (3.7) has a rich history, see [4, Chapter 5], [13, equation
(4.10)], [14, equation (7.46), page 351], [19, 21], and [26, page 85]. There are numerous
variations and extensions. The paper of Hsu and Shiue [17], for instance, provides some
interesting examples and a good list of references.

The series in (3.7) can be summed also in terms of the Eulerian polynomials Am(x), [8,
page 243] and [21, 32]. Namely,

∞∑
k=0

kmxk = 1
(1− x)m+1

Am(x). (3.17)

Comparing this to (3.7) we find the relation between An and ωn:

An(x)= (1− x)nωn

(
x

1− x

)
. (3.18)
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Therefore, the GTF (3.2) can be written also in terms of the Eulerian polynomials:

∞∑
k=0

f (k)xk =
∞∑
n=0

f (n)(0)
n!

An(x)
(1− x)n+1

. (3.19)

One has the representation

An(x)=
n∑

k=0

〈
n
k

�
xn−k, (3.20)

where
〈n
k

〉
are the Eulerian numbers. A good reference for these numbers is [14]. (The

Eulerian numbers A(n,k) discussed in [8] differ slightly in the second index: A(n,k) =〈 n
k−1

〉
.)

Together (3.18) and (3.20) provide the following relation between Eulerian and Stir-
ling numbers:

n∑
k=1

〈
n
k

�
xn−k = (1− x)n

n∑
k=0

{
n
k

}
k!
(

x

1− x

)k
. (3.21)

(In particular, when x = 1/2 this gives a solution to problem 11 007 in the American
Mathematical Monthly [36]).

We want to mention here also a recent paper by Wang and Hsu [30], who present one
interesting Euler-Maclaurin type summation formula with a remainder, involving certain
Eulerian fractions.

Throughout this paper, we prefer to use the geometric polynomials ωn instead of the
Eulerian polynomials, as ωn participate in a more symmetric manner in most formulas
and the Stirling numbers forming their coefficients appear to be more popular than the
Eulerian numbers.

Formula (3.2) has a nice natural extension: taking

g(x)=
∞∑
k=0

(
−r
k

)
(−1)kxk = 1

(1− x)r
(3.22)

(Re(r) > 0, |x| < 1), one obtains from (1.1) the generalized GTF:

∞∑
k=0

(−1)k
(
−r
k

)
f (k)xk = 1

(1− x)r

∞∑
n=0

f (n)(0)
n!

ωn,r

(
x

1− x

)
, (3.23)

where we call the polynomials

ωn,r(z)= 1
Γ(r)

n∑
k=0

{
n
k

}
Γ(k+ r)zk, (3.24)

the general geometric polynomials. Formula (3.11) extends to

ωn,r(z)= 1
Γ(r)

∫∞
0
λr−1φn(zλ)e−λdλ, (3.25)



Khristo N. Boyadzhiev 3855

and (3.8) extends in a symmetrical manner:

(xD)m
{

1
(1− x)r

}
= 1

(1− x)r
ωm,r

(
x

1− x

)
, m= 0,1,2, . . . . (3.26)

When f (z)= zm in (3.23) one obtains also the following extension of (3.7):

∞∑
k=0

(−1)k
(
−r
k

)
kmxk = 1

(1− x)r
ωm,r

(
x

1− x

)
, (3.27)

or

∞∑
k=0

(
−r
k

)
kmxk = 1

(1 + x)r
ωm,r

( −x
1 + x

)
. (3.28)

Now back to (3.2), setting there x =−1 and taking into account the interesting identity
[14, Problem 6.76, page 317]

ωn

(−1
2

)
=

n∑
k=0

{
n
k

}
(−1)k

k!
2k
= 2

n+ 1

(
1− 2n+1)Bn+1 (3.29)

(Bk are the Bernoulli numbers), we come to the formula

∞∑
k=0

(−1)k f (k)=
∞∑
n=0

f (n)(0)
(n+ 1)!

(
1− 2n+1)Bn+1. (3.30)

This formula can be used for evaluation of convergent alternating series or for Abel sum-
mation of divergent series. For instance, if f (z)= zm, m= 0,1,2, . . . , we come to the Abel
sum:

∞∑
k=0

(−1)kkm = 1− 2m+1

m+ 1
Bm+1 (3.31)

(counting 00 = 1), which was essentially discovered by Euler (see [1, pages 1080-1081]).

4. A sufficient condition for the validity of the transformation formula

We will use again the equation

(xD)mxn = nmxn, (4.1)

true for all nonnegative integers m and all n. We also need the representation

(xD)mg(x)=
m∑
k=0

{
m
k

}
xkg(k)(x), (4.2)
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for any m-times differentiable function g (see, e.g., [24, page 218]). This is easily proved
by induction with the help of the relation

{
m+ 1
k

}
= k

{
m
k

}
+
{

m
k− 1

}
, (4.3)

which follows immediately from the combinatorial interpretation of {mk } (see [14, page
266]).

The series transformation formula will be proved now in a slightly more general form
than (1.1). Suppose we have two functions defined by power series

f (x)=
∞∑
n=0

anx
n, g(x)=

+∞∑
n=−∞

cnx
n. (4.4)

Theorem 4.1. Let f (x) be an entire function and g(x) be analytic on the annulus K =
{z,r < |z| < R}, where 0≤ r < R. If the series

+∞∑
n=−∞

cn f (n)xn (4.5)

converges absolutely on K , then

+∞∑
n=−∞

cn f (n)xn =
∞∑

m=0

am

m∑
k=0

{
m
k

}
xkg(k)(x) (4.6)

holds for all x ∈ K .

Proof. In view of (4.1), (4.2) can be written as

+∞∑
n=−∞

cnn
mxn =

m∑
k=0

{
m
k

}
xkg(k)(x), (4.7)

for every integer m≥ 0. We multiply both sides by am and sum for m from zero to infinity

∞∑
m=0

∞∑
n=−∞

cnamn
mxn =

∞∑
m=0

am

m∑
k=0

{
m
k

}
xkg(k)(x). (4.8)

Reversing the order of summation in the double series on the left gives (4.6). Changing
the order of summation is legitimate, because (4.5) is absolutely convergent. �

We want to point out that the condition on f to be entire is crucial for the above proof
(as we use its series (4.4) for x = n, that is,

f (n)=
∞∑

m=0

amn
m (4.9)

and the integer n can be arbitrarily large). It becomes clear in the next section that this
condition cannot be relaxed.
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Remark 4.2. Instead of the operator (xD) we can use the more general operator (xD+ λ),
λ∈ C, which has the property

(xD+ λ)mxn = (n+ λ)mxn, (4.10)

to prove in the same manner the more general formula

∞∑
n=0

g(n)(0)
n!

f (n+ λ)xn =
∞∑
n=0

f (n)(0)
n!

n∑
m=0

(
n

m

)
λn−m

m∑
k=0

{
m
k

}
xkg(k)(x). (4.11)

At the same time, replacing f (x) by f (x+ λ) in (1.1) brings to the formula

∞∑
n=0

g(n)(0)
n!

f (n+ λ)xn =
∞∑
n=0

f (n)(λ)
n!

n∑
k=0

{
n
k

}
xkg(k)(x), (4.12)

with the same left-hand side.

Remark 4.3. With the notations (4.2) and (4.4), the series transformation formula can be
written in the short form

+∞∑
n=−∞

cn f (n)xn =
∞∑

m=0

an(xD)ng(x), (4.13)

which is f (xD)g(x) evaluated in two different ways.
The importance of the operator (xD) for summation of series was understood by

Schwatt, who used this operator in his book [26, Chapter 5]; see also the recent article
by Knopf [19]. Interesting notes on transformation of formal series can be found in [8,
page 221]. A formula similar to (3.2) with f a polynomial and using finite differences
instead of (xD) was presented by Klippert in [18].

5. Asymptotic series

We have proved formula (1.1) under the condition that f is entire. What if the function
f is not entire? Applying the ETF (2.1) to the analytic function

f (z)= 1
z+ λ

, (5.1)

with a simple pole at −λ, we find for all x and all λ > 0:

∞∑
n=0

xn

n!(n+ λ)
= ex

∞∑
n=0

(−1)nφn(x)
λn+1

. (5.2)

Looking at this equation more carefully we notice that the first series, as a function of λ, is
analytic with poles at λ=−n, n= 0,1, . . . . At the same time, the second series, if conver-
gent for some λ, would represent an analytic function of λ in a neighborhood of infinity,
so the equality cannot hold. We will see, however, that (5.2) is in fact an asymptotic ex-
pansion.
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A function F(λ) has the asymptotic expansion (convergent or divergent) for λ > 0 of
the form

F(λ)∼
∞∑
k=0

ak
λk+s

, (5.3)

where Re(s)≥ 0, if

F(λ)=
n−1∑
k=0

ak
λk+s

+Rn, with
∣∣Rn

∣∣≤ cn
λn+s+1

, (5.4)

(cf. [23]). In order to prove that (5.2) is an asymptotic expansion, we first write the series
on the left side in (5.2) as a Laplace integral:

∞∑
n=0

xn

n!(n+ λ)
=

∞∑
n=0

xn

n!

∫∞
0
e−nte−λtdt =

∫∞
0
exe

−t
e−λtdt. (5.5)

Next, by repeatedly applying d/dt to the representation

exe
t =

∞∑
k=0

xkekt

k!
(5.6)

we obtain from (2.4) the following rule for differentiation of the iterated exponential:

(
d

dt

)n
exe

t = φn
(
xet
)
exe

t
. (5.7)

Taylor’s formula centered at t = 0 gives, for any n∈N,

exe
−t =

n∑
k=0

(−1)ktk

k!
φk(x)ex +

(−1)n+1tn+1

(n+ 1)!
φn+1

(
xeθ

)
exe

θ
, (5.8)

where θ is between −t and 0 and therefore θ ≤ 0 when t ≥ 0. From here, with λ > 0:

∫∞
0
exe

−t
e−λtdt =

n∑
k=0

(−1)k

λk+1
φk(x)ex +Rn(x,λ). (5.9)

An estimate for the remainder Rn(x,λ) now follows easily. Indeed, the polynomial φn+1

has positive coefficients and we can write

∣∣φn+1
(
xeθ

)
exe

θ∣∣≤ φn+1
(|x|)e|x| (5.10)

(note that eθ ≤ 1). This way

∣∣Rn(x,λ)
∣∣≤ φn+1

(|x|)e|x|
(n+ 1)!

∫∞
0
tn+1e−λtdt = φn+1

(|x|)e|x|
λn+2

. (5.11)
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(If x < 0, then exe
θ ≤ 1 and e|x| can be dropped.) We conclude that the integral in (5.5) is

approximated by the finite sum

n∑
k=0

(−1)k

λk+1
φk(x) (5.12)

with error Rn(x,λ) such that for every x and every n∈N one has, according to (5.11),

Rn(x,λ)−→ 0, when λ−→∞. (5.13)

The incomplete gamma function. The (lower) incomplete gamma function γ(λ,x) (Reλ >
0, x ≥ 0, see [23]) is defined by

γ(λ,x)=
∫ x

0
uλ−1e−udu. (5.14)

Proposition 5.1. The following asymptotic expansion holds for λ > 0:

γ(λ,x)∼ xλe−x
∞∑
n=0

(−1)n

λn+1
φn(−x). (5.15)

Proof. Setting e−t = u and changing x to −x we obtain from (5.5)

∫∞
0
e−xe

−t
e−λtdt =

∫ 1

0
uλ−1e−xudu=

∞∑
n=0

(−1)nxn

n!(n+ λ)
. (5.16)

At the same time, the change of variable u→ xu gives

γ(λ,x)=
∫ x

0
uλ−1e−udu= xλ

∫ 1

0
uλ−1e−xudu (5.17)

and (5.15) follows from (5.2). The proposition is proved. �

Our example naturally leads to a general theorem. First, we point out a simple and
useful fact.

Lemma 5.2. For any function g(z) analytic in a neighborhood of zero and for any nonnega-
tive integer n one has

(
d

dt

)n
g
(
xet
)∣∣

t=0 = (xD)ng(x), (5.18)

that is, the following Taylor expansion in the variable t is true:

g
(
xet
)= ∞∑

n=0

tn

n!
(xD)ng(x). (5.19)

The proof requires just a simple computation and is left to the reader.



3860 A series transformation formula and related polynomials

Theorem 5.3. Let g(z) be analytic in a disk K centered at the origin. Then for every x ∈ K
and Re(s) > 0, we have the asymptotic expansion in λ > 0:

∞∑
n=0

g(n)(0)
n!

xn

(n+ λ)s
∼

∞∑
n=0

(
−s
n

)
gn(x)
λn+s

, (5.20)

where

gn(x)= (xD)ng(x)=
n∑

k=0

{
n
k

}
xkg(k)(x). (5.21)

Further, if these functions have the property |gk(x)| ≤ gk(|x|), then the remainder has the
estimate

∣∣Rn

∣∣≤
∣∣∣∣∣
(
−s
n

)∣∣∣∣∣gn+1
(|x|)

λn+s+1
. (5.22)

Proof. In order to strictly prove this asymptotic expansion we start by writing Taylor’s
formula of order n ∈ N for the function g(xe−t) of the variable t. We get, according to
Lemma 5.2,

g
(
xe−t

)= n∑
k=0

(−1)ktk

k!
gk(x) +

(−1)n+1tn+1

(n+ 1)!
gn+1

(
xeθ

)
, (5.23a)

where θ is between 0 and −t. At the same time we have

g
(
xe−t

)= ∞∑
n=0

g(n)(0)
n!

xne−nt, (5.23b)

which is the Taylor series representation in the variable xe−t. We multiply (5.23a) and
(5.23b) by ts−1e−λt/Γ(s) and integrate for t from zero to infinity. Using the representation

Γ(s)a−s =
∫∞

0
ts−1e−atdt, (a > 0), (5.24)

we come to the left side in (5.20):

1
Γ(s)

∫∞
0
g
(
xe−t

)
ts−1e−λtdt =

∞∑
n=0

g(n)(0)xn

n!Γ(s)

∫∞
0
e−nte−λtts−1dt

=
∞∑
n=0

g(n)(0)xn

n!(n+ λ)s
.

(5.25)

For the right-hand side we use again (5.24) and the identity
(
−s
k

)
= (−1)k

Γ(k+ s)
k!Γ(s)

. (5.26)

The estimate for the remainder is immediate and the proof is complete. �
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Remark 5.4. The representation (5.20) follows from the series transformation formula
(1.1) formally applied to the function f (z)= 1/(z+ λ)s.

When g(z)= ez, Theorem 5.3 gives

∞∑
n=0

xn

n!(n+ λ)s
∼ ex

∞∑
n=0

(
−s
n

)
1

λn+s
φn(x), (5.27)

and for s= 1 we obtain (5.2).

(The function on the left side in (5.27) was studied by Hardy [15, 16], who obtained
an asymptotic expansion in x. A general method for obtaining asymptotic expansions in
x of series like

e−x
∞∑
n=0

f (n)xn

n!
(5.28)

is given by Ramanujan’s Entry 10 on [4, page 57]. See also the notes on [4, page 64]).
Another interesting example is provided by the function g(z)= 1/(1− z), |z| < 1. We

use the differentiation rule

(
d

dt

)n 1
1− xet

= 1
1− xet

ωn

(
xet

1− xet

)
, (5.29)

which follows from (3.8). Taylor’s formula then gives the representation

1
1− xe−t

=
n∑

k=0

(−1)ktk

k!
1

1− x
ωk

(
x

1− x

)
+

(−1)n+1tn+1

(n+ 1)!
1

1− xeθ
ωn+1

(
xeθ

1− xeθ

)
, (5.30)

with the property

∣∣∣∣ 1
1− x

ωk

(
x

1− x

)∣∣∣∣≤ 1
1−|x|ωk

( |x|
1−|x|

)
. (5.31)

Therefore, when λ > 0, |x| < 1,

∞∑
n=0

xn

(n+ λ)s
∼ 1

(1− x)

∞∑
n=0

(
−s
n

)
1

λn+s
ωn

(
x

1− x

)
, (5.32)

with

∣∣Rn

∣∣≤ 1
λn+s+1

∣∣∣∣∣
(
−s
n

)∣∣∣∣∣ 1(
1−|x|)ωn+1

( |x|
1−|x|

)
. (5.33)
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The Lerch transcendent Φ(x,s,λ). This function (also known as the Lerch zeta function,
or Hurwitz-Lerch zeta function) is defined for λ > 0 and |x| ≤ 1, x �= 1, Re(s) > 0 or x = 1,
Re(s) > 1, by (see [11])

Φ(x,s,λ)=
∞∑
n=0

xn

(n+ λ)s
. (5.34)

When |x| < 1, the series is convergent for all s. We have obtained the following.

Corollary 5.5. For |x| < 1 the Lerch transcendent has the asymptotic expansion (5.32) in
λ > 0.

For a different approach to this expansion see [12].

It is clear from the above considerations that the asymptotic expansion (5.32) still
holds, when |x| ≤ 1, x �= 1, and Re(s) > 0, only without the given estimate for the remain-
der.

When s= 1, (5.32) becomes

∞∑
n=0

xn

n+ λ
∼ 1

1− x

∞∑
n=0

(−1)n

λn+1
ωn

(
x

1− x

)
(5.35)

(cf. [37, Example 8.21, page 151]). For completeness, we list here also the expansion

∞∑
n=0

(−1)n
(
−r
n

)
xn

(n+ λ)s
∼ 1

(1− x)r

∞∑
n=0

(
−s
n

)
1

λn+s
ωn,r

(
x

1− x

)
, (5.36)

(Re(r) > 0, Re(s) > 0, |x| < 1) where the polynomials ωn,r are defined in (3.24). This ex-
pansion follows from (5.20) with g(z)= 1/(1− z)r .

Remark 5.6. As mentioned in Remark 4.3 at the end of Section 4, the series transfor-
mation formula (1.1) results from applying the operator f (xD) to g(x). When f (xD)=
(xD+ λ)−s, the action of this operator is described by (5.25), that is,

(xD+ λ)−sg(x)= 1
Γ(s)

∫∞
0
g
(
xe−t

)
ts−1e−λtdt =

∞∑
n=0

g(n)(0)xn

n!(n+ λ)s
. (5.37)

Formally, the asymptotic expansion (5.20) follows from the symbolic binomial series rep-
resentation:

(xD+ λ)−s = 1
λs

(
1 +

xD

λ

)−s
=

∞∑
n=0

(
−s
n

)
(xD)n

λn+s
(5.38)

applied to g(x) with (xD)ng(x)= gn(x).
An analytical theory of the operator (xD + λ)r was recently developed in a series of

articles by Butzer et al. [5, 6, 7].
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6. Some examples of series evaluation

As mentioned at the beginning, formula (1.1) evaluates the series on the left side in a
closed form when f is a polynomial. Let

(z)m = z(z+ 1)···(z+m− 1) (6.1)

be the rising factorial. Setting f (z)= (z)m and using the representation [14, page 263],

(z)m =
m∑
k=1

[
m
k

]
zk, (6.2)

we obtain the following evaluations:

∞∑
n=0

(n)m
xn

n!
= ex

m∑
k=1

[
m
k

]
φk(x) (6.3)

for every x, according to the ETF (2.1) and

∞∑
n=0

(n)mxn = 1
1− x

m∑
k=1

[
m
k

]
ωk

(
x

1− x

)
(6.4)

for every |x| < 1, according to the GTF (3.2).
Next, for every polynomial f of order m,

f (z)=
m∑
n=0

anz
n, (6.5)

and for every p ∈N, the GTF provides the evaluation

∞∑
n=0

[
f (n)

]p
xn = 1

1− x

mp∑
k=0

αkωk

(
x

1− x

)
, (6.6)

where the coefficients αk are given by

αk =
∑

j1+ j2+···+ jp=k
aj1aj2 ···ajp . (6.7)

For example, using the representation

(
z

m

)
= 1

m!

m∑
k=1

[
m
k

]
(−1)m−kzk (6.8)

[14, equation (6.13), page 263] one finds

∞∑
n=m

(
n

m

)p

xn = 1
1− x

mp∑
k=0

αkωk

(
x

1− x

)
, (6.9)
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with

αk = (−1)mp−k

(m!)p
∑

j1+ j2+···+ jp=k

[
m
j1

][
m
j2

]
···

[
m
jp

]
. (6.10)

When p = 1,

∞∑
n=m

(
n

m

)
xn = 1

1− x

m∑
k=0

1
m!

[
m
k

]
(−1)m−kωk

(
x

1− x

)
= xm

(1− x)m+1
, (6.11)

according to (3.4). This can be verified independently by differentiating the geometric
series (3.9) m-times and then multiplying the result by xm/m!.

Another line of applications is described by the following example. Consider the mul-
tiple zeta function

Em(s)=
∑ 1(

n1 +n2 + ···+nm+1
)s , (6.12)

where m≥ 1, s > m+ 1, and n1, . . . ,nm run from one to infinity, while nm+1 runs from zero
to infinity (we need this different range for nm+1 in order to have the factor (1− e−t)−1 in
the second integral below). We will evaluate Em(s) in terms of Riemann’s zeta function:

ζ(s)=
∞∑
n=1

n−s, Re(s) > 1, (6.13)

(cf. [29, page 499]). Using the representation (5.24) we write

Γ(s)Em(s)=
∫∞

0
ts−1

∑
e−(n1+···+nm+1)tdt =

∫∞
0
ts−1

(
1

1− e−t

)(
e−t

1− e−t

)m
dt

=
∫∞

0
ts−1

{(
1

1− e−t

) m∑
k=1

Mm
k ωk

(
e−t

1− e−t

)}
dt.

(6.14)

Here we have used (3.4), setting for brevity

Mm
k =

(−1)m−k

m!

[
m
k

]
, (6.15)

(note that Mm
0 = 0). Consider now the polynomial f (z)=∑m

k=1M
m
k z

k. The GTF gives

Γ(s)Em(s)=
∫∞

0
ts−1

{ ∞∑
n=1

f (n)e−nt
}
dt

=
∞∑
n=1

f (n)
∫∞

0
ts−1e−ntdt = Γ(s)

∞∑
n=1

f (n)
ns

= Γ(s)
m∑
k=1

Mm
k ζ(s− k).

(6.16)

Therefore,

Em(s)=
m∑
k=1

(−1)m−k

m!

[
m
k

]
ζ(s− k). (6.17)
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