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A generalization of some results from normed spaces, concerning reducibility and trian-
gularizability of semigroups and algebras of operators, to locally convex spaces is given.

1. Introduction

Let X be a complex Hausdorff locally convex space. A system of seminorms P inducing
the topology on X will be called a calibration. We denote by % (X) the collection of all
calibrations on X. For a given P € P(X) let P = {py: @« € A}, where A is some index
set and for each « € A denote Uy = {x: pa(x) < 1}. Let us denote by L(X) the set of
all linear continuous operators on X, by J{(X) the set of compact operators on X (T €
JE(X) if there exists a neighbourhood U, such that T(U,) is a relatively compact set),
by F(X) the set of all finite-rank operators and by £B(X) the set of all locally bounded
operators (there is some neighbourhood U, such that T(U,) is bounded). The topology
of bounded convergence on £(X) and on X’ will be denoted by 73,. By X, we will denote
the topological space (X’,73,). We will denote by R(T') the range of T and by N'(T) the
null space of T. For a given T' € £(X) the number A € C is in the resolvent set of T if and
only if (AT — T)~! exists in £(X). The spectrum o(T) is the complement of the resolvent
set and by (T) = sup{|Al : A € 6(T)} we denote the spectral radius of T. An operator T
is quasinilpotent if 6(T) = {0}. A closed subspace M in X is an invariant subspace of an
operator T if T(M) < M. A collection of linear operators is reducible if it has a common
nontrivial invariant subspace and is irreducible otherwise. If a family s{ ¢ £(X) is an
algebra, it is irreducible if and only if it is transitive, that is, the set sdx:= {Tx: T € o} is
dense in X for each x # 0. For P € (X)) and p, € P let J, denote the null space of p, and
X, the quotient space X/J,. It is a normed space with the norm [|xsll4 := pa(x), where
Xo = x+ ]y Let T € L(X) be such that T(J,) C J, then the corresponding operator T, on
Xy is well defined by Ty (x4) = Tx + J.

2. The results

LEmMMA 2.1. Let X be a locally convex space and s a transitive ty,-closed algebra of con-
tinuous operators on X which contains a nonzero finite-rank operator. Then there exists a
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7p-closed subspace © in X, such that
(i) A contains all rank-one operators of the formx® f,x € X, f € D,
(ii) if f(z) = 0 for each f € @, then z = 0.

Proof. Let F € 9 be a nonzero finite-rank operator. Denote E; = R(F) and o := Fd.
It is clear that each T € o, maps E; to E; and the restriction &, |, is a transitive alge-
bra of operators on a finite-dimensional space. By Burnside’s theorem [11] it follows that
Ailg, = L(Ey). Especially, there is some Ay € s such that FA|g, has rank one, hence
FAyF is a rank-one operator in s{ of the form x ® fy, xo € X, and f; € X’. Choose arbi-
trary nonzero x € X. Since #x is dense in X, there is some net of operators {As} C
such that Asxo — x. For any chosen seminorm g defining the topology 7;, we have

qgu' ((Asx0) ® fo—x® fo) = sup | fo(y) | pa(Asxo —x) < c- pa(Asxo — x). (2.1)
ye

Since the right-hand side tends to zero, the same holds for the left-hand side, thus x ® fy €
A. Letus define @:={f € X" :x® f € o, forall x € X}. Choose {fs} C ® a net which
is Tp-convergent to some f, and x € X arbitrary, then for any seminorm g2! we have

4@ (x® fr—x®f) = Su5|(fa—f)(y)|pa(x)- (2.2)
ye

Since o is 7,-closed we have x ® f € s, hence f € ®@. Thus, ® is a nontrivial 7,-closed
subspace satisfying (i). To verify (ii), let f(z) = 0 for each f € ®. Choose a nonzero f) €
® and for each A € o define f; := A’ fy, where A" is the adjoint operator of A. Since
x® fi=x®A fy=(x® fy)A € d, for any x € X, we have f; € ®, hence fi(z) = 0, that is
fo(Az) = 0 for each A € . If there were z # 0, then f; would be zero on a dense set Az
and consequently identically zero, which is a contradiction. O

CoROLLARY 2.2. Let X be a semireflexive locally convex space and sd a transitive 1p-closed
algebra of continuous operators which contains a nonzero finite-rank operator. Then sd con-
tains all finite-rank operators.

Proof. Tt is sufficient to show that s contains all rank-one operators and this will be
in case ® = X'. If there were @ # X', then by the Hahn-Banach theorem there would
be some nonzero F € (X;)’, such that Fl¢ = 0. Since X is semireflexive, there is some
nonzero y € X such that F(f) = f(y) for all f € X" and then f(y) = F(f) = 0 for all
f € ®. By (ii) in the previous lemma then y = 0, which is a contradiction. O

A linear operator T is called nuclear if it can be written in the form

Tx = lecj(x)aj, xeX, (2.3)
j=1

where {c;} is an equicontinuous sequence in X', {A;} € I, and {a;} is a sequence con-
tained in an absolutely convex bounded set B in X, such that Xz := J{nB:n € N} is a
complete normed subspace in X with respect to the Minkowski’s functional of the set B.
(see, e.g., [8]). It is easy to see that the family of nuclear operators is an ideal in £(X) and
that each nuclear operator is also compact.
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CoROLLARY 2.3. Let X be a semireflexive locally convex space and s a transitive algebra of
continuous operators such that (A, 1,) contains a nonzero finite-rank operator. Then (A, 7y)
contains all nuclear operators.

Proof. By Corollary 2.2, (A, 1,) D F(X), since each nuclear operator can be 7,-approxi-
mated by finite-rank operators by [1], the conclusion follows. O

For a given set Jl of compact operators let us denote by A the set of all A € H(X)
which are 7,-limits of some sequence {A,} C Jl. By [5, Proposition 1] it follows that if X
is a barreled locally convex space and ¥ a semigroup of compact operators on X, then g
is a semigroup too.

ProposiTiON 2.4. Let X be a barreled locally convex space and & a semigroup of compact
operators. If A € & is such that r(A) # 0 then there exists a sequence {n;} of integers such
that one of the following assertions holds:

(a) A" % E, where E is idempotent, or

(b) a;A" 2 E, for some scalar sequence {a;}, where E is nilpotent.
In both cases E € R*F and is of finite rank.

Proof. Following the first part of the proof of [6, Proposition 3] we can find a sequence
of operators from & with the above property. O

THEOREM 2.5. Let X be a barreled locally convex space and s a tp-closed transitive alge-
bra in L(X) which contains a nonzero compact operator. Then b N F(X) is a nontrivial
transitive algebra.

Proof. Define € = sl N H(X), then it is an ideal in & and by [6, Lemma 5] it is transitive
too. Let K be a nonzero operator in ‘6. Then by Lomonosov’s theorem for locally convex
spaces [3] there is some A € 6 such that r(AK) # 0. By Proposition 2.4, € n F(X) # {0}.
Since A is 1p-closed, it is easy to see that € =e. Clearly, e N F(X) =€ N F(X) is an
ideal in o and it is transitive too. |

COROLLARY 2.6. Let X be a barreled semireflexive locally convex space and 9 a tp-closed
transitive algebra in £(X) which contains a nonzero compact operator. Then s contains all
finite-rank operators.

Proof. By Theorem 2.5 and Corollary 2.2, the conclusion follows. O

CoROLLARY 2.7. Let X be a barreled semireflexive locally convex space and 3 a transitive
1p-closed algebra in £(X) which contains a nonzero compact operator. If X has the property
that each compact operator on X is ty,-limit of a net of finite-rank operators, then s contains
all compact operators.

ProrosiTiON 2.8. Let X be a semireflexive locally convex space, & a semigroup in F(X),
and ¢ a nontrivial T,-continuous linear functional on F(X). If ¢ is identically zero on ¥,
then & is reducible.

Proof. Let us suppose that & is irreducible. Then the algebra s generated by & is also
irreducible and the same holds for (54, 13). By Corollary 2.2, (,13,) D %(X). Since ¢ is
equal to zero on ¥, it is equal to zero also on % (X), which is a contradiction. ]
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With respect to the strong topology 7; on £(X) the following theorem is proven in [8].

TueOREM 2.9. Let X be a locally convex space and S a transitive algebra in £(X), such that
(A, 1) contains a nontrivial compact operator. Then A is 1,-dense in L(X).

CoroOLLARY 2.10. Let X be a locally convex space and A a nonscalar operator commuting
with a nonzero compact operator. Then A has a nontrivial hyperinvariant subspace.

Proof. Denote by ol := (A)" the commutant of A. Clearly, it is an algebra and let us prove
that it is 7,-closed. Choose any net {Bs} in s which is strongly convergent to some B.
Then for any seminorm g¢ for the strong topology one has

qx(BA - AB) = pa((BA - AB)x) < pa((B — Bs)Ax) + pa(A(B — Bs)x) o
< q%(B~Bs) +cags (B — B), '

where y = Ax. Since the right-hand side is arbitrary small, the left-hand side is zero. Since
q% is arbitrary, we have BA — AB = 0. If s{ were transitive, then by the above theorem, it
would be equal to £(X) and consequently A = AI for some complex number A, which is
a contradiction. O

CororLARy 2.11. Let X be a locally convex space and A,B € L(X) two commuting oper-
ators, where B is nonscalar and commutes with a nonzero compact operator. Then A has a
nontrivial invariant subspace.

Proof. By Corollary 2.10, B has a hyperinvariant subspace which is invariant for A. O

CoROLLARY 2.12. Let X be a locally convex space and ¥ a semigroup of operators such
that (¥,1;) contains a nonzero compact operator and ¢ a nontrivial Ts-continuous linear
functional on L(X) such that $|g = 0. Then & is reducible.

Proof. Let & be irreducible, then the algebra sd generated by & is also irreducible and
then by Theorem 2.9, it is strongly dense in £(X). Clearly, ¢ is equal to zero also on
and thus on £(X), which is a contradiction. O

CoROLLARY 2.13. Let X be a locally convex space and € a commutative family of compact
operators on X. Then € is reducible.

Proof. Choose a nonzero A € €, by Corollary 2.10 it has a nontrivial hyperinvariant sub-
space which is then an invariant subspace for €. O

Let ¢ be a functional on a semigroup ¥ € £(X). By [11] ¢ is permutable on a fam-
ily € c & if for any A1,A,,...,A, € € and any permutation 7 of {1,2,...,n} we have
¢(A] )A27- .. )Aﬂ) = ¢(AT(1))AT(2))- .. )AT(VI))'

ProrosiTioN 2.14. Let X be a semireflexive locally convex space and ¢ a nontrivial ;-
continuous linear functional on F(X). Let € be a family of finite-rank operators such that ¢
is permutable on €. Then € is reducible.

Proof. Since ¢ is permutable on €, it is also permutable on the algebra sd generated by
€. In view of Corollary 2.13 we can assume that € is noncommutative. Then there are
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A,B € € such that C:= AB — BA # 0. Denote by $ the ideal in o generated by C. Clearly,
¢(SCT) = 0 for each S,T € o, consequently, ¢|4 = 0. Hence, by Proposition 2.8, $ is
reducible, then by [6], 54 is reducible and € is reducible too. O

CoROLLARY 2.15. Let X be a semireflexive locally convex space, & a semigroup of finite-rank
operators, and ¢ a nontrivial T,-continuous linear functional on F(X). Then & is reducible
if one of the following conditions holds:

(1) ¢ is multiplicative on &,

(ii) ¢ is constant on &.

For fixed nonzero xy € X, f € X’ and a subspace Jil in £(X) let us define (as in [11])
the so-called coordinate functional by the relation ¢(T) := f(Txy), T € M. For this class
of functionals we do not need semireflexivity of the space.

LemMa 2.16. Let X be a locally convex space, then the coordinate functional ¢ is T,-contin-
uous on £(X) if and only if f is continuous on X.

Proof. If f is continuous, then |¢(T)| = | f(Txo)| < cpp(Txp) < cqg’I(T), where M is an
arbitrary bounded set in X containing xg. Let ¢ be 7,-continuous on £(X). Choose any
x € X. By the Hahn-Banach theorem there is some g € X’ such that g(xy) = 1 and let
S = x ® g, hence Sxq = x. By continuity of ¢ there exist a seminorm ¢! and ¢ > 0 such that
1 = 1F(Sx0)| = [$(S)] = cgh'($) = csup, ey palg(1)%) = c1Pa(x)SUp ey py(y) =
d, pa(x) for some constant d,, > 0. O

ProPOSITION 2.17. Let X be a locally convex space, ¥ a semigroup in L(X), and ¢ a 7,-
continuous coordinate functional on L(X). Then & is reducible if one of the following con-
ditions holds:

(i) ¢ is constant on &,

(ii) ¢ is multiplicative on &.

The proof is the same as for the normed space (see [11, Lemma 8.2.8]).

CoroLLARY 2.18. Let X be a locally convex space, € a noncommutative family in £(X),
and ¢ a T,-continuous coordinate functional which is permutable on €, then € is reducible.

Proof. Since permutability is inherited by passing to an algebra (see [11, page 28]), we
can assume that € is an algebra. Let us choose A, B in € such that C:= AB— BA # 0.
Then it is easy to see that ¢ is equal to zero on ideal $ generated by C and by the previous
proposition $ is reducible, hence € is reducible. O

LemMA 2.19. Let X be a locally convex space and A, B € £(X) such that 0(AB) is bounded.
Then 0(AB) \ {0} = 0(BA) \ {0} and r(AB) = r(BA).

Proof. Itis easy to see that if for A # 0 there exists C := (Al — AB)~! € £(X). Then we also
have that (A\I — BA)™! = A"1(I + BCA) € £(X). Hence also o(BA) is bounded and both
equalities follow. O

A locally convex space is called H-locally convex if its topology can be defined by a
calibration P such that each p, € P is generated by a semiscalar product: p2(x) = (x,x)
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(see, e.g., [10]). In H-locally convex spaces the trace functional is well-defined on nuclear
operators and a generalization to these spaces of Lidskii’s theorem holds, which says that
the trace of nuclear operator is equal to the sum of its eigenvalues, (see [7]). By this
theorem and by the above lemma we also have tr(AB) = tr(BA) for each pair of nuclear
operators A and B acting on an H-locally convex space.

TueoreM 2.20. Let & be a family of nuclear operators on a barreled H-locally convex space.
Then ¥ is triangularizable if and only if the trace functional is permutable on .

Proof. We can verify as in [11, Lemma 2.1.14] that the permutability of the trace func-
tional is equivalent to the condition tr(ABC) = tr(ACB), for all A,B,C € ¥. Let & be
triangularizable. Then for the diagonal elements the following relations hold:

d;(ABC) = d;(A)d;(B)d;(C) = d;(ACB); A,B,C€Y (2.5)

(see [9]), where it is also shown that the nonzero eigenvalues coincide with nonzero di-
agonal elements for each operator of &. Thus, for any A,B,C € ¥ we have

tr(ABC) = > 1;(ABC) = > d;(ABC) = > d;(ACB) = tr(ACB). (2.6)

Let the trace be permutable on ¥. Then it is also permutable on the algebra s{ gener-
ated by &. Hence tr(A(BC — CB)) =0, A,B,C € d. Taking A = (BC— CB)"" !, forn € N
we obtain tr((BC — CB)") = 0, n € N. Denote T := BC — CB, since T € J(X), we have
Ai(T™) = A;(T)" for each j (see [12]). Hence, by Lidskii’s theorem we have

Z/\ (T)" ZA (T") =tr (T") =0, neN. (2.7)

As in [4] it follows that A;(T) = 0 for each j, thus, 0(BC — CB) = {0} for each pair B,C €
A and by [5, Theorem 2], o is triangularizable and the same holds for &. O

CoroLLARY 2.21. Let & be a family of nuclear operators on a barreled H-locally convex
space. Then & is triangularizable if the trace functional satisfies one of the following condi-
tions:

(i) it is multiplicative on &,

(ii) it is constant on &.

The following result is a generalization of the so-called “downsizing lemma” from [11].
LEmMa 2.22. Let X be a barreled locally convex space, ¥ a semigroup of compact operators
on X and P a property on & such that

(i) each subsemigroup in & has the property P,
(ii) Slx,, has the property P, where Xy = span{R(S), S € ¥},
(iii) R*S has the property P.

Let & be irreducible. Then there exist a natural number k > 2 and an idempotent operator
E € $(X) of rank k, such that & contains a subsemigroup Sy with properties: ¥y = ES,,
ff’ol% is irreducible in L(Ck) and it has the property %. Moreover, if min{rank(F): F €

R*F} > 1, the operator E can be chosen from R*S.
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Proof. By [6, Theorem 3], not all operators in & are quasinilpotent, hence by Proposition
2.4, R+F contains a nonzero finite-rank operator. By [6, Proposition 2], P =R+ is
also a semigroup. Then the proof is the same as for the normed space (see [11, Lemma
8.2.13]), where we take & instead of &. O

ProrosiTioN 2.23. Let X be a barreled locally convex space and & a semigroup of compact
operators on X. If ¥ is triangularizable for some k € N, then & is triangularizable.

Proof. If $* = {0}, then by [6, Theorem 3], & is reducible. Let ¥* # {0} and let ¥* be
triangularizable, then & is reducible since ¥* is an ideal in &. The triangularizability of
a family of compact operators ¥* is inherited by quotients which follows in the same
manner as in the proof of [11, Theorem 7.3.9] for the normed space. Then applying the
triangularization lemma [5] the triangularization of & follows. O

TaeOREM 2.24. Let X be a barreled locally convex space and & a semigroup of compact
operators on X. If AB — BA is quasinilpotent for every A,B € &, then & is triangularizable.

Proof. By [5, Lemma 5], the quasinilpotency is inherited by quotients for compact op-
erators. So, by triangularizing lemma it suffices to prove the reducibility of the semi-
group . Let us verify the conditions of Lemma 2.22. The condition (i) is obvious. De-
noting by X the closed span of {R(S) : S € &}, then for A,B € & it easy to see that
Alx,Blx, — Blx,Alx, = (AB — BA)|x, and it is clear that (AB — BA)|x, is also quasinilpo-
tent, hence (ii) holds. By [5, Theorem 1], quasinilpotency is inherited by R*F and so (ii1)
holds. If & were irreducible, then by Lemma 2.22, there would exist a subsemigroup ¥y
of ¥ such that %4 | r) would be irreducible in £(Ck), which is impossible [11, Theorem
4.4.12]. 0

Let € be a semigroup in £B(X). It is known (see, e.g., [12]) that the spectrum for each
T € £B(X) is bounded. We say that the spectrum is submultiplicative on € if 0(AB) C
0(A)o(B) ={Au:Ae0(A), yca(B)} forall A,B € €.

TaEOREM 2.25. Let X be an infinite-dimensional barreled locally convex space and & a
semigroup of compact operators on X with the property that the spectrum is submultiplicative
on ¥. Then & is reducible.

Proof. Let us denote by 9= R+. Suppose that & is irreducible, then 9 is irreducible
too. By [6, Proposition 3] there exists nonzero finite-rank idempotent operator E € g
which has minimal rank m. Denoting ¥ = PEZ, this is an ideal in ¥ and all operators
in ¥y have a rank equal to m or 0. Thus, ¥ is irreducible and then the rest of the proof

is the same as for the normed space (see [11, Theorem 8.3.5]), where we take &, instead
of &. O

THEOREM 2.26. Let X be an infinite-dimensional barreled locally convex space and & a
semigroup of compact operators with the following property: o(S) C {0,1} for every Se€ ¥
and if 1 € o(ST), for S,T € ¥, let 1 € a(S) N o(T). Then ¥ is reducible.
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Proof. We can assume that X is not normable (see [11, Theorem 8.3.8]). SinceeachA € &
is locally bounded, it has 0 in his spectrum [12]. With the above assumption the submul-
tiplicativity of spectrum on ¥ follows, so & is reducible by the previous theorem. O

THEOREM 2.27. Let X be a barreled locally convex space and & a semigroup of compact
idempotent operators. Then & is triangularizable.

Proof. In view of [11, Theorem 2.3.5] let X be infinite-dimensional. A quotient of an
idempotent is, clearly, idempotent operator and a quotient of compact operator is again
compact (see [5]). So, by the triangularization lemma, it suffices to prove the reducibility.
Clearly, for an idempotent S and A # 0, #1, there exists (AI —S)~! = I/A - S (A(1 — 1)) €
L(X), hence 0(S) C {0,1}.If 1 € 0(ST) for S,T € ¥, then S and T are nonzero idempo-
tent, hence 1 € 0(S) N o(T). Thus, the conditions of the preceding theorem are fulfilled
and the reducibility of & follows. O

For a semiball U,, y € A, let us denote by §Ey(X ) the family of all continuous linear
operators T on X, for which T(U,) is a bounded set. Clearly, this is a subspace and left
ideal in £(X). For each T € £, (X) we have T(U,) C A, U, for some A, >0, hence T(J,) C
Jy» thus, operator T, is well defined on X, For some fixed T € £, (X) the convergence of
some sequence in ££(X) is inherited to the operator sequence on the quotient space X, in
the following sense.

LEmMA 2.28. Let X be a locally convex space, T € £,(X) for some y € A and {S,} C £(X)
a sequence which is T,-convergent to some S in £(X). Then {(S,T),} is convergent to (ST),
with respect to the norm || - ||, in X,.

Proof. Since M := T(U,) is a bounded set, we have ||(S,T), — (ST), I, = SUP.ey, py((SuT
= ST)x) = sup,cp py((Su = 8)y) = q{,”(Sn —8) - 0,asn — co. O

It is well known that in a normed space the spectral radius is continuous on the set
of compact operators (see, e.g., [11]), but this is not the case for general locally convex
spaces. Let us take as an example X = s, the space of all real sequences {x,} with the
topology generated by seminorms P = {p,, : m € N}, where p,,(x) = sup{|x;|: j < m},
x € X and a sequence of operators {T,,} defined by T,,(x1,x2,...) = (0,0,...,x,,0,0,...). It
is easy to see that all T, are compact and T, 2% T, where T = 0. Hence, r(T,) = 1 for all
n € N, but r(T) = 0. We will prove the continuity of spectral radius in a special case.

LemMA 2.29. Let X be a locally convex space, T € K(X) and {S,} a sequence of continuous
operators which is p-convergent to S € £(X). Then

r(S,T) — r(ST), r(TS,) — r(TS), asn— oo. (2.8)

Proof. Since T is locally bounded, there is some y € A such that T € £,(X) and also
AT € ¥,(X) for each A € £(X). The corresponding operator T), is also compact on X,
and for the spectral radius we have r(T) = r(T,) (see [2]). Then, by Lemma 2.28 and by
continuity of the spectral radius for a sequence of compact operators acting on a normed
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space, we obtain r(S,T) = r((S,T),) — r((ST),) = r(ST), as n — co. By Lemma 2.19 we
have also r(T'S,) — r(TS), as n — oo. O

LemMA 2.30. Let X be a locally convex space, & a semigroup in £(X) and A, B some nonzero
members in & such that B¥YA = {0}. Then & is reducible.

Proof. It YR(A) = {0}, then it is easy to see that R(A) is a nontrivial invariant subspace
for . If SR(A) # {0}, then the closed span of this set is a nontrivial invariant subspace
for &. O

LemMA 2.31. Let X be a locally convex space and ¥ an irreducible semigroup of compact
operators on X. If spectral radius is submultiplicative on & then no nonzero product ST,
where $,T € 9, is quasinilpotent.

Proof. Let us denote $ = {ST : S, Te g’, r(§7N") = 0}. This is an outer ideal of &. Indeed,
choose any product ST e $ and C € ¥, then there exist two sequences {S,} and {T),} in
¥ such that S, = Sand T,, = T. For each pair of operators S,, T}, we have

r(CS,Ty) <r(C)r(S,Ty); n,m e N. (2.9)

Using Lemma 2.29 twice we obtain r(C§7N") < r(C)r(gf) =0, hence, CST € $. Since
r(STC) = r(C8T), also STC € §. If § # {0}, by [6, Theorem 3], it would be reducible
and then by [6, Lemma 5], & would be reducible too. Thus, $ = {0}. O

THEOREM 2.32. Let & be an irreducible semigroup of compact operators on a barreled locally
convex space. If spectral radius is submultiplicative on &, then it is multiplicative on &.

Proof. Since the spectral radius is homogenous for the nonnegative scalars, one can sup-
pose R*Y = <. By [6], Fis again a semigroup. Let us prove that it has no quasinilpo-
tent element. Suppose, to the contrary, that there is a nonzero quasinilpotent opera-
tor T in &. Then also (12) = 0, hence by the prev1ous lemma, T2 = 0. Consequently
r(TST) = r(ST?) = 0 for any SeP. Thus TT = {0}, hence, by Lemma 2.30, P is re-
ducible, which is a contradiction. Choose any A,B € ¥, where we can assume r(A) =
r(B) = 1. By Proposition 2.4 there exist two nonzero finite-rank idempotents E,F & g
such that A" % E and B™ 2 F for some sequences of integers {n;} and {my}. Let us
prove that EF # 0. If EF = 0, then r(F SE) = r(SEF) = 0 and by the above lemma it would
be FSE = 0 for each S € 57, hence FFE = {0} and by Lemma 2.30, & would be reducible.
In the sequel, let us prove the following inequality:

r(EF*E) < r(EF)>. (2.10)

For each pair of operators from the sequences defining E and F we have by assumption
r(AMB2m AM) < r(A"B™)r(B™ A™) and by Lemma 2.29 we obtain the above inequality.
Similarly, we have r(A"B™) = r(ABB™ 1A"~1) < r(AB)r(A)"~'r(B)™ ! = r(AB) and
by Lemma 2.29 we obtain

r(EF) < r(AB). (2.11)
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From the idempotency of E and F and by the inequality (2.10) it follows that:
r(EF) = r(E*F?) = r(EF?E) < r(EF)>. (2.12)

Thus, we have 1 < r(EF) < r(AB) < r(A)r(B) = 1, and the multiplicativity of the spectral
radius follows. |

THEOREM 2.33. Let X be a barreled locally convex space, ¥ a semigroup of compact operators
on X such that each S € & is a nonnegative scalar multiple of an idempotent operator and
let spectral radius be submultiplicative on F. Then & is triangularizable.

Proof. Let us prove that & is reducible. Denote ¥y = {§/r(S): S€ &, S # 0} U {0}. Clearly,
Sy is reducible if and only if & is reducible. Suppose that & is irreducible. Then, by
Theorem 2.32 the spectral radius is multiplicative on &. Consequently, ¥ is a semigroup
of compact idempotents. By Theorem 2.27, ¥, is reducible. Thus, ¥ is reducible and by
triangularization lemma it is triangularizable. O

In view of Lemma 2.19 it is easy to see that the spectral radius is permutable on a
semigroup & if and only if r(ABC) = r(ACB) forall A,B € ¥.

THEOREM 2.34. Let X be a locally convex space and & a semigroup of compact operators on
X. Then spectral radius is submultiplicative on & if and only if it is permutable on &.

Proof. We will use the property r(T) = r(T,) for T € £,(X), y € A (see [2]). With no
loss of generality we may assume that the calibration P € P(X) is directed, that is for
each pq, pg € P there is some p, € P such that p, < p, and ps < p,. Let r be permutable
on &. Choose any A,B € . Since they are locally bounded and P is directed, there ex-
ists py € P such that A,B € £,(X). Denote by &} the semigroup generated by A,, B,.
By [6, Lemma 1] spectral radius is also permutable on &} and by [11, Theorem 8.6.3]
it is submultiplicative and then r(AB) = r(A,B,) < r(A,)r(B,) = r(A)r(B). Let r be sub-
multiplicative on &. For any A, B,C € ¥ there is some p, € P such that A,B,C € £,(X),
then on the semigroup ¥/ generated by A,, B,, and C, the submultiplicativity implies the
permutability of r and similarly as above we obtain r(ABC) = r(ACB). O

Question. What are the conditions on a family of compact operators on a locally convex
space yielding the continuity of the spectral radius on this family?
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