ON REDUCIBILITY OF SOME OPERATOR SEMIGROUPS AND ALGEBRAS ON LOCALLY CONVEX SPACES

EDVARD KRAMAR

Received 9 March 2005 and in revised form 20 October 2005

A generalization of some results from normed spaces, concerning reducibility and triangularizability of semigroups and algebras of operators, to locally convex spaces is given.

1. Introduction

Let X be a complex Hausdorff locally convex space. A system of seminorms P inducing the topology on X will be called a calibration. We denote by $\mathcal{P}(X)$ the collection of all calibrations on X. For a given $P \in \mathcal{P}(X)$ let $P = \{p_{\alpha} : \alpha \in \Delta\}$, where Δ is some index set and for each $\alpha \in \Delta$ denote $U_{\alpha} = \{x : p_{\alpha}(x) \leq 1\}$. Let us denote by $\mathcal{L}(X)$ the set of all linear continuous operators on X, by $\mathscr{K}(X)$ the set of compact operators on X ($T \in$ $\mathscr{K}(X)$ if there exists a neighbourhood U_{γ} such that $T(U_{\gamma})$ is a relatively compact set), by $\mathcal{F}(X)$ the set of all finite-rank operators and by $\mathcal{L}B(X)$ the set of all locally bounded operators (there is some neighbourhood U_{γ} such that $T(U_{\gamma})$ is bounded). The topology of bounded convergence on $\mathscr{L}(X)$ and on X' will be denoted by τ_b . By X'_b we will denote the topological space (X', τ_b) . We will denote by $\Re(T)$ the range of T and by $\mathcal{N}(T)$ the null space of T. For a given $T \in \mathcal{L}(X)$ the number $\lambda \in \mathbb{C}$ is in the resolvent set of T if and only if $(\lambda I - T)^{-1}$ exists in $\mathscr{L}(X)$. The spectrum $\sigma(T)$ is the complement of the resolvent set and by $r(T) = \sup\{|\lambda| : \lambda \in \sigma(T)\}$ we denote the spectral radius of T. An operator T is quasinilpotent if $\sigma(T) = \{0\}$. A closed subspace M in X is an *invariant subspace* of an operator T if $T(M) \subseteq M$. A collection of linear operators is *reducible* if it has a common nontrivial invariant subspace and is *irreducible* otherwise. If a family $\mathcal{A} \subset \mathcal{L}(X)$ is an algebra, it is irreducible if and only if it is transitive, that is, the set $Ax := \{Tx : T \in A\}$ is dense in *X* for each $x \neq 0$. For $P \in \mathcal{P}(X)$ and $p_{\alpha} \in P$ let J_{α} denote the null space of p_{α} and X_{α} the quotient space X/J_{α} . It is a normed space with the norm $||x_{\alpha}||_{\alpha} := p_{\alpha}(x)$, where $x_{\alpha} = x + J_{\alpha}$. Let $T \in \mathcal{L}(X)$ be such that $T(J_{\alpha}) \subset J_{\alpha}$ then the corresponding operator T_{α} on X_{α} is well defined by $T_{\alpha}(x_{\alpha}) = Tx + J_{\alpha}$.

2. The results

LEMMA 2.1. Let X be a locally convex space and A a transitive τ_b -closed algebra of continuous operators on X which contains a nonzero finite-rank operator. Then there exists a

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:24 (2005) 3951–3961 DOI: 10.1155/IJMMS.2005.3951

3952 On reducibility of some operator semigroups

τ_b -closed subspace Φ in X'_b such that

- (i) A contains all rank-one operators of the form $x \otimes f$, $x \in X$, $f \in \Phi$,
- (ii) if f(z) = 0 for each $f \in \Phi$, then z = 0.

Proof. Let $F \in \mathcal{A}$ be a nonzero finite-rank operator. Denote $E_1 = \mathcal{R}(F)$ and $\mathcal{A}_1 := F\mathcal{A}$. It is clear that each $T \in \mathcal{A}_1$ maps E_1 to E_1 and the restriction $\mathcal{A}_1|_{E_1}$ is a transitive algebra of operators on a finite-dimensional space. By Burnside's theorem [11] it follows that $\mathcal{A}_1|_{E_1} = \mathcal{L}(E_1)$. Especially, there is some $A_0 \in \mathcal{A}$ such that $FA_0|_{E_1}$ has rank one, hence FA_0F is a rank-one operator in \mathcal{A} of the form $x_0 \otimes f_0, x_0 \in X$, and $f_0 \in X'$. Choose arbitrary nonzero $x \in X$. Since $\mathcal{A}x_0$ is dense in X, there is some net of operators $\{A_\delta\} \subset \mathcal{A}$ such that $A_\delta x_0 \to x$. For any chosen seminorm q_α^M defining the topology τ_b we have

$$q^{M}_{\alpha}((A_{\delta}x_{0})\otimes f_{0}-x\otimes f_{0})=\sup_{y\in M}|f_{0}(y)|p_{\alpha}(A_{\delta}x_{0}-x)\leq c\cdot p_{\alpha}(A_{\delta}x_{0}-x).$$
(2.1)

Since the right-hand side tends to zero, the same holds for the left-hand side, thus $x \otimes f_0 \in \mathcal{A}$. Let us define $\Phi := \{f \in X' : x \otimes f \in \mathcal{A}, \text{ for all } x \in X\}$. Choose $\{f_\delta\} \subset \Phi$ a net which is τ_b -convergent to some f, and $x \in X$ arbitrary, then for any seminorm q_α^M we have

$$q^{M}_{\alpha}(x \otimes f_{\delta} - x \otimes f) = \sup_{y \in M} \left| \left(f_{\delta} - f \right)(y) \right| p_{\alpha}(x).$$
(2.2)

Since \mathcal{A} is τ_b -closed we have $x \otimes f \in \mathcal{A}$, hence $f \in \Phi$. Thus, Φ is a nontrivial τ_b -closed subspace satisfying (i). To verify (ii), let f(z) = 0 for each $f \in \Phi$. Choose a nonzero $f_0 \in \Phi$ and for each $A \in \mathcal{A}$ define $f_1 := A' f_0$, where A' is the adjoint operator of A. Since $x \otimes f_1 = x \otimes A' f_0 = (x \otimes f_0)A \in \mathcal{A}$, for any $x \in X$, we have $f_1 \in \Phi$, hence $f_1(z) = 0$, that is $f_0(Az) = 0$ for each $A \in \mathcal{A}$. If there were $z \neq 0$, then f_0 would be zero on a dense set $\mathcal{A}z$ and consequently identically zero, which is a contradiction.

COROLLARY 2.2. Let X be a semireflexive locally convex space and A a transitive τ_b -closed algebra of continuous operators which contains a nonzero finite-rank operator. Then A contains all finite-rank operators.

Proof. It is sufficient to show that \mathcal{A} contains all rank-one operators and this will be in case $\Phi = X'$. If there were $\Phi \neq X'$, then by the Hahn-Banach theorem there would be some nonzero $F \in (X'_b)'$, such that $F|_{\Phi} = 0$. Since X is semireflexive, there is some nonzero $y \in X$ such that F(f) = f(y) for all $f \in X'$ and then f(y) = F(f) = 0 for all $f \in \Phi$. By (ii) in the previous lemma then y = 0, which is a contradiction.

A linear operator *T* is called *nuclear* if it can be written in the form

$$Tx = \sum_{j=1}^{\infty} \lambda_j c_j(x) a_j, \quad x \in X,$$
(2.3)

where $\{c_j\}$ is an equicontinuous sequence in X', $\{\lambda_j\} \in l_1$, and $\{a_j\}$ is a sequence contained in an absolutely convex bounded set B in X, such that $X_B := \bigcup \{nB : n \in \mathbb{N}\}$ is a complete normed subspace in X with respect to the Minkowski's functional of the set B. (see, e.g., [8]). It is easy to see that the family of nuclear operators is an ideal in $\mathcal{L}(X)$ and that each nuclear operator is also compact.

 \square

COROLLARY 2.3. Let X be a semireflexive locally convex space and A a transitive algebra of continuous operators such that (\overline{A}, τ_b) contains a nonzero finite-rank operator. Then (\overline{A}, τ_b) contains all nuclear operators.

Proof. By Corollary 2.2, $\overline{(\mathcal{A}, \tau_b)} \supset \mathcal{F}(X)$, since each nuclear operator can be τ_b -approximated by finite-rank operators by [1], the conclusion follows.

For a given set \mathcal{M} of compact operators let us denote by $\widetilde{\mathcal{M}}$ the set of all $A \in \mathcal{H}(X)$ which are τ_b -limits of some sequence $\{A_n\} \subset \mathcal{M}$. By [5, Proposition 1] it follows that if X is a barreled locally convex space and \mathcal{S} a semigroup of compact operators on X, then $\widetilde{\mathcal{S}}$ is a semigroup too.

PROPOSITION 2.4. Let X be a barreled locally convex space and \mathcal{G} a semigroup of compact operators. If $A \in \mathcal{G}$ is such that $r(A) \neq 0$ then there exists a sequence $\{n_i\}$ of integers such that one of the following assertions holds:

(a) $A^{n_i} \xrightarrow{\tau_b} E$, where E is idempotent, or

(b) $\alpha_i A^{n_i} \xrightarrow{\tau_b} E$, for some scalar sequence $\{\alpha_i\}$, where *E* is nilpotent.

In both cases $E \in \widetilde{\mathbb{R}^+\mathcal{G}}$ and is of finite rank.

Proof. Following the first part of the proof of [6, Proposition 3] we can find a sequence of operators from \mathcal{G} with the above property.

THEOREM 2.5. Let X be a barreled locally convex space and A a τ_b -closed transitive algebra in $\mathscr{L}(X)$ which contains a nonzero compact operator. Then $\mathscr{A} \cap \mathscr{F}(X)$ is a nontrivial transitive algebra.

Proof. Define $\mathscr{C} = \mathscr{A} \cap \mathscr{K}(X)$, then it is an ideal in \mathscr{A} and by [6, Lemma 5] it is transitive too. Let K be a nonzero operator in \mathscr{C} . Then by Lomonosov's theorem for locally convex spaces [3] there is some $A \in \mathscr{C}$ such that $r(AK) \neq 0$. By Proposition 2.4, $\widetilde{\mathscr{C}} \cap \mathscr{F}(X) \neq \{0\}$. Since \mathscr{A} is τ_b -closed, it is easy to see that $\widetilde{\mathscr{C}} = \mathscr{C}$. Clearly, $\mathscr{A} \cap \mathscr{F}(X) = \mathscr{C} \cap \mathscr{F}(X)$ is an ideal in \mathscr{A} and it is transitive too.

COROLLARY 2.6. Let X be a barreled semireflexive locally convex space and A a τ_b -closed transitive algebra in $\mathcal{L}(X)$ which contains a nonzero compact operator. Then A contains all finite-rank operators.

Proof. By Theorem 2.5 and Corollary 2.2, the conclusion follows.

COROLLARY 2.7. Let X be a barreled semireflexive locally convex space and A a transitive τ_b -closed algebra in $\mathcal{L}(X)$ which contains a nonzero compact operator. If X has the property that each compact operator on X is τ_b -limit of a net of finite-rank operators, then A contains

all compact operators.

PROPOSITION 2.8. Let X be a semireflexive locally convex space, \mathcal{G} a semigroup in $\mathcal{F}(X)$, and ϕ a nontrivial τ_b -continuous linear functional on $\mathcal{F}(X)$. If ϕ is identically zero on \mathcal{G} , then \mathcal{G} is reducible.

Proof. Let us suppose that \mathscr{S} is irreducible. Then the algebra \mathscr{A} generated by \mathscr{S} is also irreducible and the same holds for $(\overline{\mathscr{A}, \tau_b})$. By Corollary 2.2, $(\overline{\mathscr{A}, \tau_b}) \supset \mathscr{F}(X)$. Since ϕ is equal to zero on \mathscr{S} , it is equal to zero also on $\mathscr{F}(X)$, which is a contradiction.

With respect to the strong topology τ_s on $\mathcal{L}(X)$ the following theorem is proven in [8].

THEOREM 2.9. Let X be a locally convex space and A a transitive algebra in $\mathcal{L}(X)$, such that $(\overline{\mathcal{A}, \tau_s})$ contains a nontrivial compact operator. Then A is τ_s -dense in $\mathcal{L}(X)$.

COROLLARY 2.10. Let X be a locally convex space and A a nonscalar operator commuting with a nonzero compact operator. Then A has a nontrivial hyperinvariant subspace.

Proof. Denote by $\mathcal{A} := (A)'$ the commutant of A. Clearly, it is an algebra and let us prove that it is τ_s -closed. Choose any net $\{B_\delta\}$ in \mathcal{A} which is strongly convergent to some B. Then for any seminorm q_x^{α} for the strong topology one has

$$q_{x}^{\alpha}(BA - AB) = p_{\alpha}((BA - AB)x) \le p_{\alpha}((B - B_{\delta})Ax) + p_{\alpha}(A(B - B_{\delta})x)$$
$$\le q_{y}^{\alpha}(B - B_{\delta}) + c_{\alpha}q_{x}^{\beta}(B - B_{\delta}),$$
(2.4)

where y = Ax. Since the right-hand side is arbitrary small, the left-hand side is zero. Since q_x^{α} is arbitrary, we have BA - AB = 0. If \mathcal{A} were transitive, then by the above theorem, it would be equal to $\mathcal{L}(X)$ and consequently $A = \lambda I$ for some complex number λ , which is a contradiction.

COROLLARY 2.11. Let X be a locally convex space and $A, B \in \mathcal{L}(X)$ two commuting operators, where B is nonscalar and commutes with a nonzero compact operator. Then A has a nontrivial invariant subspace.

Proof. By Corollary 2.10, *B* has a hyperinvariant subspace which is invariant for *A*. \Box

COROLLARY 2.12. Let X be a locally convex space and \mathcal{G} a semigroup of operators such that $\overline{(\mathcal{F}, \tau_s)}$ contains a nonzero compact operator and ϕ a nontrivial τ_s -continuous linear functional on $\mathcal{L}(X)$ such that $\phi|_{\mathcal{G}} = 0$. Then \mathcal{G} is reducible.

Proof. Let \mathscr{G} be irreducible, then the algebra \mathscr{A} generated by \mathscr{G} is also irreducible and then by Theorem 2.9, it is strongly dense in $\mathscr{L}(X)$. Clearly, ϕ is equal to zero also on \mathscr{A} and thus on $\mathscr{L}(X)$, which is a contradiction.

COROLLARY 2.13. Let X be a locally convex space and \mathscr{C} a commutative family of compact operators on X. Then \mathscr{C} is reducible.

Proof. Choose a nonzero $A \in \mathcal{C}$, by Corollary 2.10 it has a nontrivial hyperinvariant subspace which is then an invariant subspace for \mathcal{C} .

Let ϕ be a functional on a semigroup $\mathcal{G} \subset \mathcal{L}(X)$. By [11] ϕ is *permutable* on a family $\mathcal{E} \subset \mathcal{G}$ if for any $A_1, A_2, \dots, A_n \in \mathcal{E}$ and any permutation τ of $\{1, 2, \dots, n\}$ we have $\phi(A_1, A_2, \dots, A_n) = \phi(A_{\tau(1)}, A_{\tau(2)}, \dots, A_{\tau(n)})$.

PROPOSITION 2.14. Let X be a semireflexive locally convex space and ϕ a nontrivial τ_b continuous linear functional on $\mathcal{F}(X)$. Let \mathcal{E} be a family of finite-rank operators such that ϕ is permutable on \mathcal{E} . Then \mathcal{E} is reducible.

Proof. Since ϕ is permutable on \mathcal{C} , it is also permutable on the algebra \mathcal{A} generated by \mathcal{C} . In view of Corollary 2.13 we can assume that \mathcal{C} is noncommutative. Then there are

 $A, B \in \mathcal{C}$ such that $C := AB - BA \neq 0$. Denote by \mathcal{F} the ideal in \mathcal{A} generated by *C*. Clearly, $\phi(SCT) = 0$ for each $S, T \in \mathcal{A}$, consequently, $\phi|_{\mathcal{F}} = 0$. Hence, by Proposition 2.8, \mathcal{F} is reducible, then by [6], \mathcal{A} is reducible and \mathcal{C} is reducible too.

COROLLARY 2.15. Let X be a semireflexive locally convex space, \mathcal{G} a semigroup of finite-rank operators, and ϕ a nontrivial τ_b -continuous linear functional on $\mathcal{F}(X)$. Then \mathcal{G} is reducible if one of the following conditions holds:

- (i) ϕ is multiplicative on \mathcal{G} ,
- (ii) ϕ is constant on \mathcal{G} .

For fixed nonzero $x_0 \in X$, $f \in X'$ and a subspace \mathcal{M} in $\mathcal{L}(X)$ let us define (as in [11]) the so-called *coordinate functional* by the relation $\phi(T) := f(Tx_0)$, $T \in \mathcal{M}$. For this class of functionals we do not need semireflexivity of the space.

LEMMA 2.16. Let X be a locally convex space, then the coordinate functional ϕ is τ_b -continuous on $\mathcal{L}(X)$ if and only if f is continuous on X.

Proof. If *f* is continuous, then $|\phi(T)| = |f(Tx_0)| \le cp_\beta(Tx_0) \le cq_\beta^M(T)$, where *M* is an arbitrary bounded set in *X* containing x_0 . Let ϕ be τ_b -continuous on $\mathscr{L}(X)$. Choose any $x \in X$. By the Hahn-Banach theorem there is some $g \in X'$ such that $g(x_0) = 1$ and let $S = x \otimes g$, hence $Sx_0 = x$. By continuity of ϕ there exist a seminorm q_α^M and c > 0 such that $|f(x)| = |f(Sx_0)| = |\phi(S)| \le cq_\alpha^M(S) = c \sup_{y \in M} p_\alpha(g(y)x) \le c_1 p_\alpha(x) \sup_{y \in M} p_y(y) = d_y p_\alpha(x)$ for some constant $d_y > 0$.

PROPOSITION 2.17. Let X be a locally convex space, \mathcal{G} a semigroup in $\mathcal{L}(X)$, and ϕ a τ_b continuous coordinate functional on $\mathcal{L}(X)$. Then \mathcal{G} is reducible if one of the following conditions holds:

- (i) ϕ is constant on \mathcal{G} ,
- (ii) ϕ is multiplicative on \mathcal{G} .

The proof is the same as for the normed space (see [11, Lemma 8.2.8]).

COROLLARY 2.18. Let X be a locally convex space, \mathcal{E} a noncommutative family in $\mathcal{L}(X)$, and ϕ a τ_b -continuous coordinate functional which is permutable on \mathcal{E} , then \mathcal{E} is reducible.

Proof. Since permutability is inherited by passing to an algebra (see [11, page 28]), we can assume that \mathscr{C} is an algebra. Let us choose *A*, *B* in \mathscr{C} such that $C := AB - BA \neq 0$. Then it is easy to see that ϕ is equal to zero on ideal \mathscr{J} generated by *C* and by the previous proposition \mathscr{J} is reducible, hence \mathscr{C} is reducible.

LEMMA 2.19. Let X be a locally convex space and $A, B \in \mathcal{L}(X)$ such that $\sigma(AB)$ is bounded. Then $\sigma(AB) \setminus \{0\} = \sigma(BA) \setminus \{0\}$ and r(AB) = r(BA).

Proof. It is easy to see that if for $\lambda \neq 0$ there exists $C := (\lambda I - AB)^{-1} \in \mathcal{L}(X)$. Then we also have that $(\lambda I - BA)^{-1} = \lambda^{-1}(I + BCA) \in \mathcal{L}(X)$. Hence also $\sigma(BA)$ is bounded and both equalities follow.

A locally convex space is called *H*-locally convex if its topology can be defined by a calibration *P* such that each $p_{\alpha} \in P$ is generated by a semiscalar product: $p_{\alpha}^2(x) = (x, x)_{\alpha}$

(see, e.g., [10]). In *H*-locally convex spaces the trace functional is well-defined on nuclear operators and a generalization to these spaces of Lidskii's theorem holds, which says that the trace of nuclear operator is equal to the sum of its eigenvalues, (see [7]). By this theorem and by the above lemma we also have tr(AB) = tr(BA) for each pair of nuclear operators *A* and *B* acting on an *H*-locally convex space.

THEOREM 2.20. Let \mathcal{G} be a family of nuclear operators on a barreled H-locally convex space. Then \mathcal{G} is triangularizable if and only if the trace functional is permutable on \mathcal{G} .

Proof. We can verify as in [11, Lemma 2.1.14] that the permutability of the trace functional is equivalent to the condition tr(ABC) = tr(ACB), for all $A, B, C \in \mathcal{G}$. Let \mathcal{G} be triangularizable. Then for the diagonal elements the following relations hold:

$$d_j(ABC) = d_j(A)d_j(B)d_j(C) = d_j(ACB); \quad A, B, C \in \mathcal{G}$$

$$(2.5)$$

(see [9]), where it is also shown that the nonzero eigenvalues coincide with nonzero diagonal elements for each operator of \mathcal{G} . Thus, for any $A, B, C \in \mathcal{G}$ we have

$$\operatorname{tr}(ABC) = \sum \lambda_j(ABC) = \sum d_j(ABC) = \sum d_j(ACB) = \operatorname{tr}(ACB). \tag{2.6}$$

Let the trace be permutable on \mathcal{G} . Then it is also permutable on the algebra \mathcal{A} generated by \mathcal{G} . Hence tr(A(BC - CB)) = 0, $A, B, C \in \mathcal{A}$. Taking $A = (BC - CB)^{n-1}$, for $n \in \mathbb{N}$ we obtain tr $((BC - CB)^n) = 0$, $n \in \mathbb{N}$. Denote T := BC - CB, since $T \in \mathcal{H}(X)$, we have $\lambda_j(T^n) = \lambda_j(T)^n$ for each j (see [12]). Hence, by Lidskii's theorem we have

$$\sum_{j} \lambda_j(T)^n = \sum_{j} \lambda_j(T^n) = \operatorname{tr}(T^n) = 0, \quad n \in \mathbb{N}.$$
(2.7)

As in [4] it follows that $\lambda_j(T) = 0$ for each j, thus, $\sigma(BC - CB) = \{0\}$ for each pair $B, C \in \mathcal{A}$ and by [5, Theorem 2], \mathcal{A} is triangularizable and the same holds for \mathcal{G} .

COROLLARY 2.21. Let \mathcal{G} be a family of nuclear operators on a barreled H-locally convex space. Then \mathcal{G} is triangularizable if the trace functional satisfies one of the following conditions:

(i) it is multiplicative on \mathcal{G} ,

(ii) it is constant on \mathcal{G} .

The following result is a generalization of the so-called "downsizing lemma" from [11].

LEMMA 2.22. Let X be a barreled locally convex space, \mathcal{G} a semigroup of compact operators on X and \mathcal{P} a property on \mathcal{G} such that

- (i) each subsemigroup in \mathcal{S} has the property \mathcal{P} ,
- (ii) $\mathcal{G}|_{X_0}$, has the property \mathcal{P} , where $X_0 = \overline{\operatorname{span}\{\mathcal{R}(S), S \in \mathcal{G}\}}$,
- (iii) $\widetilde{\mathbb{R}^+\mathcal{G}}$ has the property \mathcal{P} .

Let \mathcal{G} be irreducible. Then there exist a natural number $k \geq 2$ and an idempotent operator $E \in \mathcal{L}(X)$ of rank k, such that \mathcal{G} contains a subsemigroup \mathcal{G}_0 with properties: $\mathcal{G}_0 = E\mathcal{G}_0$, $\mathcal{G}_0|_{\mathcal{R}(E)}$ is irreducible in $\mathcal{L}(\mathbb{C}^k)$ and it has the property \mathcal{P} . Moreover, if min{rank}(F) : $F \in \mathbb{R}^+\mathcal{G}$ }

Proof. By [6, Theorem 3], not all operators in \mathscr{G} are quasinilpotent, hence by Proposition 2.4, $\widetilde{\mathbb{R}^+\mathscr{G}}$ contains a nonzero finite-rank operator. By [6, Proposition 2], $\hat{\mathscr{G}} := \widetilde{\mathbb{R}^+\mathscr{G}}$ is also a semigroup. Then the proof is the same as for the normed space (see [11, Lemma 8.2.13]), where we take $\hat{\mathscr{G}}$ instead of \mathscr{G} .

PROPOSITION 2.23. Let X be a barreled locally convex space and \mathcal{G} a semigroup of compact operators on X. If \mathcal{G}^k is triangularizable for some $k \in \mathbb{N}$, then \mathcal{G} is triangularizable.

Proof. If $\mathcal{G}^k = \{0\}$, then by [6, Theorem 3], \mathcal{G} is reducible. Let $\mathcal{G}^k \neq \{0\}$ and let \mathcal{G}^k be triangularizable, then \mathcal{G} is reducible since \mathcal{G}^k is an ideal in \mathcal{G} . The triangularizability of a family of compact operators \mathcal{G}^k is inherited by quotients which follows in the same manner as in the proof of [11, Theorem 7.3.9] for the normed space. Then applying the triangularization lemma [5] the triangularization of \mathcal{G} follows.

THEOREM 2.24. Let X be a barreled locally convex space and \mathcal{G} a semigroup of compact operators on X. If AB - BA is quasinilpotent for every $A, B \in \mathcal{G}$, then \mathcal{G} is triangularizable.

Proof. By [5, Lemma 5], the quasinilpotency is inherited by quotients for compact operators. So, by triangularizing lemma it suffices to prove the reducibility of the semigroup \mathcal{G} . Let us verify the conditions of Lemma 2.22. The condition (i) is obvious. Denoting by X_0 the closed span of { $\mathcal{R}(S) : S \in \mathcal{G}$ }, then for $A, B \in \mathcal{G}$ it easy to see that $A|_{X_0}B|_{X_0} - B|_{X_0}A|_{X_0} = (AB - BA)|_{X_0}$ and it is clear that $(AB - BA)|_{X_0}$ is also quasinilpotent, hence (ii) holds. By [5, Theorem 1], quasinilpotency is inherited by $\mathbb{R}^+\mathcal{G}$ and so (iii) holds. If \mathcal{G} were irreducible, then by Lemma 2.22, there would exist a subsemigroup \mathcal{G}_0 of \mathcal{G} such that $\mathcal{G}_0|_{\mathcal{R}(E)}$ would be irreducible in $\mathcal{L}(\mathbb{C}^k)$, which is impossible [11, Theorem 4.4.12]. □

Let \mathscr{C} be a semigroup in $\mathscr{L}B(X)$. It is known (see, e.g., [12]) that the spectrum for each $T \in \mathscr{L}B(X)$ is bounded. We say that *the spectrum is submultiplicative* on \mathscr{C} if $\sigma(AB) \subset \sigma(A)\sigma(B) = \{\lambda\mu : \lambda \in \sigma(A), \mu \in \sigma(B)\}$ for all $A, B \in \mathscr{C}$.

THEOREM 2.25. Let X be an infinite-dimensional barreled locally convex space and \mathcal{G} a semigroup of compact operators on X with the property that the spectrum is submultiplicative on \mathcal{G} . Then \mathcal{G} is reducible.

Proof. Let us denote by $\hat{\mathcal{G}} := \widetilde{\mathbb{R}^+ \mathcal{G}}$. Suppose that \mathcal{G} is irreducible, then $\hat{\mathcal{G}}$ is irreducible too. By [6, Proposition 3] there exists nonzero finite-rank idempotent operator $E \in \hat{\mathcal{G}}$ which has minimal rank m. Denoting $\mathcal{G}_0 = \hat{\mathcal{G}} E \hat{\mathcal{G}}$, this is an ideal in $\hat{\mathcal{G}}$ and all operators in \mathcal{G}_0 have a rank equal to m or 0. Thus, \mathcal{G}_0 is irreducible and then the rest of the proof is the same as for the normed space (see [11, Theorem 8.3.5]), where we take \mathcal{G}_0 instead of \mathcal{G} .

THEOREM 2.26. Let X be an infinite-dimensional barreled locally convex space and \mathcal{G} a semigroup of compact operators with the following property: $\sigma(S) \subset \{0,1\}$ for every $S \in \mathcal{G}$ and if $1 \in \sigma(ST)$, for $S, T \in \mathcal{G}$, let $1 \in \sigma(S) \cap \sigma(T)$. Then \mathcal{G} is reducible.

Proof. We can assume that X is not normable (see [11, Theorem 8.3.8]). Since each $A \in \mathcal{S}$ is locally bounded, it has 0 in his spectrum [12]. With the above assumption the submultiplicativity of spectrum on \mathcal{S} follows, so \mathcal{S} is reducible by the previous theorem. \Box

THEOREM 2.27. Let X be a barreled locally convex space and \mathcal{G} a semigroup of compact idempotent operators. Then \mathcal{G} is triangularizable.

Proof. In view of [11, Theorem 2.3.5] let *X* be infinite-dimensional. A quotient of an idempotent is, clearly, idempotent operator and a quotient of compact operator is again compact (see [5]). So, by the triangularization lemma, it suffices to prove the reducibility. Clearly, for an idempotent *S* and $\lambda \neq 0, \neq 1$, there exists $(\lambda I - S)^{-1} = I/\lambda - S/(\lambda(1 - \lambda)) \in \mathcal{L}(X)$, hence $\sigma(S) \subset \{0,1\}$. If $1 \in \sigma(ST)$ for $S, T \in \mathcal{S}$, then *S* and *T* are nonzero idempotent, hence $1 \in \sigma(S) \cap \sigma(T)$. Thus, the conditions of the preceding theorem are fulfilled and the reducibility of \mathcal{G} follows.

For a semiball U_{γ} , $\gamma \in \Delta$, let us denote by $\mathcal{L}_{\gamma}(X)$ the family of all continuous linear operators T on X, for which $T(U_{\gamma})$ is a bounded set. Clearly, this is a subspace and left ideal in $\mathcal{L}(X)$. For each $T \in \mathcal{L}_{\gamma}(X)$ we have $T(U_{\gamma}) \subset \lambda_{\gamma}U_{\gamma}$ for some $\lambda_{\gamma} > 0$, hence $T(J_{\gamma}) \subset$ J_{γ} , thus, operator T_{γ} is well defined on X_{γ} . For some fixed $T \in \mathcal{L}_{\gamma}(X)$ the convergence of some sequence in $\mathcal{L}(X)$ is inherited to the operator sequence on the quotient space X_{γ} in the following sense.

LEMMA 2.28. Let X be a locally convex space, $T \in \mathcal{L}_{\gamma}(X)$ for some $\gamma \in \Delta$ and $\{S_n\} \subset \mathcal{L}(X)$ a sequence which is τ_b -convergent to some S in $\mathcal{L}(X)$. Then $\{(S_nT)_{\gamma}\}$ is convergent to $(ST)_{\gamma}$ with respect to the norm $\|\cdot\|_{\gamma}$ in X_{γ} .

Proof. Since $M := T(U_{\gamma})$ is a bounded set, we have $||(S_n T)_{\gamma} - (ST)_{\gamma}||_{\gamma} = \sup_{x \in U_{\gamma}} p_{\gamma}((S_n T - ST)x) = \sup_{y \in M} p_{\gamma}((S_n - S)y) = q_{\gamma}^M(S_n - S) \to 0$, as $n \to \infty$.

It is well known that in a normed space the spectral radius is continuous on the set of compact operators (see, e.g., [11]), but this is not the case for general locally convex spaces. Let us take as an example X = s, the space of all real sequences $\{x_n\}$ with the topology generated by seminorms $P = \{p_m : m \in \mathbb{N}\}$, where $p_m(x) = \sup\{|x_j| : j \le m\}$, $x \in X$ and a sequence of operators $\{T_n\}$ defined by $T_n(x_1, x_2, ...) = (0, 0, ..., x_n, 0, 0, ...)$. It is easy to see that all T_n are compact and $T_n \stackrel{\tau_b}{\to} T$, where T = 0. Hence, $r(T_n) = 1$ for all $n \in \mathbb{N}$, but r(T) = 0. We will prove the continuity of spectral radius in a special case.

LEMMA 2.29. Let X be a locally convex space, $T \in \mathcal{K}(X)$ and $\{S_n\}$ a sequence of continuous operators which is τ_b -convergent to $S \in \mathcal{L}(X)$. Then

$$r(S_nT) \longrightarrow r(ST), \quad r(TS_n) \longrightarrow r(TS), \quad as \ n \longrightarrow \infty.$$
 (2.8)

Proof. Since *T* is locally bounded, there is some $\gamma \in \Delta$ such that $T \in \mathcal{L}_{\gamma}(X)$ and also $AT \in \mathcal{L}_{\gamma}(X)$ for each $A \in \mathcal{L}(X)$. The corresponding operator T_{γ} is also compact on X_{γ} and for the spectral radius we have $r(T) = r(T_{\gamma})$ (see [2]). Then, by Lemma 2.28 and by continuity of the spectral radius for a sequence of compact operators acting on a normed

space, we obtain $r(S_nT) = r((S_nT)_{\gamma}) \rightarrow r((ST)_{\gamma}) = r(ST)$, as $n \rightarrow \infty$. By Lemma 2.19 we have also $r(TS_n) \rightarrow r(TS)$, as $n \rightarrow \infty$.

LEMMA 2.30. Let X be a locally convex space, \mathcal{G} a semigroup in $\mathcal{L}(X)$ and A, B some nonzero members in \mathcal{G} such that $\mathcal{BGA} = \{0\}$. Then \mathcal{G} is reducible.

Proof. If $\mathcal{GR}(A) = \{0\}$, then it is easy to see that $\overline{\mathcal{R}(A)}$ is a nontrivial invariant subspace for \mathcal{G} . If $\mathcal{GR}(A) \neq \{0\}$, then the closed span of this set is a nontrivial invariant subspace for \mathcal{G} .

LEMMA 2.31. Let X be a locally convex space and \mathcal{S} an irreducible semigroup of compact operators on X. If spectral radius is submultiplicative on \mathcal{S} then no nonzero product \widetilde{ST} , where $\widetilde{S}, \widetilde{T} \in \widetilde{\mathcal{S}}$, is quasinilpotent.

Proof. Let us denote $\mathcal{J} = \{\widetilde{ST} : \widetilde{S}, \widetilde{T} \in \widetilde{\mathcal{G}}, r(\widetilde{ST}) = 0\}$. This is an outer ideal of \mathcal{G} . Indeed, choose any product $\widetilde{ST} \in \mathcal{J}$ and $C \in \mathcal{G}$, then there exist two sequences $\{S_n\}$ and $\{T_m\}$ in \mathcal{G} such that $S_n \xrightarrow{\tau_b} \widetilde{S}$ and $T_m \xrightarrow{\tau_b} \widetilde{T}$. For each pair of operators S_n , T_m we have

$$r(CS_nT_m) \le r(C)r(S_nT_m); \quad n,m \in \mathbb{N}.$$
(2.9)

Using Lemma 2.29 twice we obtain $r(C\widetilde{S}\widetilde{T}) \leq r(C)r(\widetilde{S}\widetilde{T}) = 0$, hence, $C\widetilde{S}\widetilde{T} \in \mathcal{J}$. Since $r(\widetilde{S}\widetilde{T}C) = r(C\widetilde{S}\widetilde{T})$, also $\widetilde{S}\widetilde{T}C \in \mathcal{J}$. If $\mathcal{J} \neq \{0\}$, by [6, Theorem 3], it would be reducible and then by [6, Lemma 5], \mathcal{G} would be reducible too. Thus, $\mathcal{J} = \{0\}$.

THEOREM 2.32. Let \mathcal{G} be an irreducible semigroup of compact operators on a barreled locally convex space. If spectral radius is submultiplicative on \mathcal{G} , then it is multiplicative on \mathcal{G} .

Proof. Since the spectral radius is homogenous for the nonnegative scalars, one can suppose $\mathbb{R}^+ \mathcal{G} = \mathcal{G}$. By [6], $\tilde{\mathcal{G}}$ is again a semigroup. Let us prove that it has no quasinilpotent operator \tilde{T} in $\tilde{\mathcal{G}}$. Then also $r(\tilde{T}^2) = 0$, hence by the previous lemma, $\tilde{T}^2 = 0$. Consequently $r(\tilde{T}\tilde{S}\tilde{T}) = r(\tilde{S}\tilde{T}^2) = 0$ for any $\tilde{S} \in \tilde{\mathcal{G}}$. Thus $\tilde{T}\tilde{\mathcal{G}}\tilde{T} = \{0\}$, hence, by Lemma 2.30, $\tilde{\mathcal{G}}$ is reducible, which is a contradiction. Choose any $A, B \in \mathcal{G}$, where we can assume r(A) = r(B) = 1. By Proposition 2.4 there exist two nonzero finite-rank idempotents $E, F \in \tilde{\mathcal{G}}$ such that $A^{n_i} \stackrel{\tau_b}{\to} E$ and $B^{m_k} \stackrel{\tau_b}{\to} F$ for some sequences of integers $\{n_i\}$ and $\{m_k\}$. Let us prove that $EF \neq 0$. If EF = 0, then $r(F\tilde{S}E) = r(\tilde{S}EF) = 0$ and by the above lemma it would be $F\tilde{S}E = 0$ for each $\tilde{S} \in \tilde{\mathcal{G}}$, hence $F\tilde{\mathcal{G}}E = \{0\}$ and by Lemma 2.30, $\tilde{\mathcal{G}}$ would be reducible. In the sequel, let us prove the following inequality:

$$r(EF^2E) \le r(EF)^2. \tag{2.10}$$

For each pair of operators from the sequences defining *E* and *F* we have by assumption $r(A^{n_i}B^{2m_k}A^{n_i}) \le r(A^{n_i}B^{m_k})r(B^{m_k}A^{n_i})$ and by Lemma 2.29 we obtain the above inequality. Similarly, we have $r(A^{n_i}B^{m_k}) = r(ABB^{m_k-1}A^{n_i-1}) \le r(AB)r(A)^{n_i-1}r(B)^{m_k-1} = r(AB)$ and by Lemma 2.29 we obtain

$$r(EF) \le r(AB). \tag{2.11}$$

From the idempotency of *E* and *F* and by the inequality (2.10) it follows that:

$$r(EF) = r(E^2F^2) = r(EF^2E) \le r(EF)^2.$$
(2.12)

Thus, we have $1 \le r(EF) \le r(AB) \le r(A)r(B) = 1$, and the multiplicativity of the spectral radius follows.

THEOREM 2.33. Let X be a barreled locally convex space, \mathcal{G} a semigroup of compact operators on X such that each $S \in \mathcal{G}$ is a nonnegative scalar multiple of an idempotent operator and let spectral radius be submultiplicative on \mathcal{G} . Then \mathcal{G} is triangularizable.

Proof. Let us prove that \mathcal{G} is reducible. Denote $\mathcal{G}_0 = \{S/r(S) : S \in \mathcal{G}, S \neq 0\} \cup \{0\}$. Clearly, \mathcal{G}_0 is reducible if and only if \mathcal{G} is reducible. Suppose that \mathcal{G} is irreducible. Then, by Theorem 2.32 the spectral radius is multiplicative on \mathcal{G} . Consequently, \mathcal{G}_0 is a semigroup of compact idempotents. By Theorem 2.27, \mathcal{G}_0 is reducible. Thus, \mathcal{G} is reducible and by triangularization lemma it is triangularizable.

In view of Lemma 2.19 it is easy to see that the spectral radius is permutable on a semigroup \mathcal{G} if and only if r(ABC) = r(ACB) for all $A, B \in \mathcal{G}$.

THEOREM 2.34. Let X be a locally convex space and \mathcal{G} a semigroup of compact operators on X. Then spectral radius is submultiplicative on \mathcal{G} if and only if it is permutable on \mathcal{G} .

Proof. We will use the property $r(T) = r(T_{\gamma})$ for $T \in \mathcal{L}_{\gamma}(X)$, $\gamma \in \Delta$ (see [2]). With no loss of generality we may assume that the calibration $P \in \mathcal{P}(X)$ is *directed*, that is for each $p_{\alpha}, p_{\beta} \in P$ there is some $p_{\gamma} \in P$ such that $p_{\alpha} \leq p_{\gamma}$ and $p_{\beta} \leq p_{\gamma}$. Let *r* be permutable on \mathcal{S} . Choose any $A, B \in \mathcal{S}$. Since they are locally bounded and *P* is directed, there exists $p_{\gamma} \in P$ such that $A, B \in \mathcal{L}_{\gamma}(X)$. Denote by \mathcal{P}_{0}^{γ} the semigroup generated by A_{γ}, B_{γ} . By [6, Lemma 1] spectral radius is also permutable on \mathcal{P}_{0}^{γ} and by [11, Theorem 8.6.3] it is submultiplicative and then $r(AB) = r(A_{\gamma}B_{\gamma}) \leq r(A_{\gamma})r(B_{\gamma}) = r(A)r(B)$. Let *r* be submultiplicative on \mathcal{P} . For any $A, B, C \in \mathcal{S}$ there is some $p_{\gamma} \in P$ such that $A, B, C \in \mathcal{L}_{\gamma}(X)$, then on the semigroup \mathcal{P}_{1}^{γ} generated by A_{γ}, B_{γ} , and C_{γ} the submultiplicativity implies the permutability of *r* and similarly as above we obtain r(ABC) = r(ACB).

Question. What are the conditions on a family of compact operators on a locally convex space yielding the continuity of the spectral radius on this family?

References

- K. Floret and J. Wloka, *Einführung in die Theorie der lokalkonvexen Räume*, Lecture Notes in Mathematics, no. 56, Springer, Berlin, 1968.
- [2] F. Garibay Bonales and R. Vera Mendoza, *Extending the formula to calculate the spectral radius of an operator*, Proc. Amer. Math. Soc. **126** (1998), no. 1, 97–103.
- [3] D. Kalnins, Sous-espaces hyperinvariant d'un operateur compact, C. R. Acad. Sci. Paris Sér. A 288 (1979), 115–116.
- [4] A. Katavolos and H. Radjavi, Simultaneous triangularization of operators on a Banach space, J. London Math. Soc. (2) 41 (1990), no. 3, 547–554.
- [5] E. Kramar, *Triangularization of some families of operators on locally convex spaces*, Comment. Math. Univ. Carolin. 42 (2001), no. 3, 499–506.

- [6] _____, On reducibility of Volterra semigroups on locally convex spaces, Acta Sci. Math. (Szeged) 70 (2004), no. 1-2, 289–298.
- [7] G. L. Litvinov, On the traces of linear operators in locally convex spaces, Selecta Math. Soviet. 8 (1989), no. 3, 203–212.
- [8] G. L. Litvinov and V. I. Lomonosov, Density theorems in locally convex spaces and their applications, Trudy Sem. Vektor. Tenzor. Anal. (1981), no. 20, 210–227 (Russian).
- T.-W. Ma, On rank one commutators and triangular representations, Canad. Math. Bull. 29 (1986), no. 3, 268–273.
- [10] T. Precupanu, *Espaces linéaires à semi-normes hilbertiennes*, An. Ști. Univ. "Al. I. Cuza" Iași Secț. I a Mat. (N.S.) 15 (1969), 83–93.
- [11] H. Radjavi and P. Rosenthal, Simultaneous Triangularization, Universitext, Springer, New York, 2000.
- P. Uss, Sur les opérateurs bornés dans les espaces localement convexes, Studia Math. 37 (1970/1971), 139–158.

Edvard Kramar: Faculty of Mathematics and Physics, University of Ljubljana, Jadranska 19, 1000 Ljubljana, Slovenia

E-mail address: edvard.kramar@fmf.uni-lj.si