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A generalization of some results from normed spaces, concerning reducibility and trian-
gularizability of semigroups and algebras of operators, to locally convex spaces is given.

1. Introduction

Let X be a complex Hausdorff locally convex space. A system of seminorms P inducing
the topology on X will be called a calibration. We denote by �(X) the collection of all
calibrations on X . For a given P ∈ �(X) let P = {pα : α ∈ ∆}, where ∆ is some index
set and for each α ∈ ∆ denote Uα = {x : pα(x) ≤ 1}. Let us denote by �(X) the set of
all linear continuous operators on X , by �(X) the set of compact operators on X (T ∈
�(X) if there exists a neighbourhood Uγ such that T(Uγ) is a relatively compact set),
by �(X) the set of all finite-rank operators and by �B(X) the set of all locally bounded
operators (there is some neighbourhood Uγ such that T(Uγ) is bounded). The topology
of bounded convergence on �(X) and on X ′ will be denoted by τb. By X ′b we will denote
the topological space (X ′,τb). We will denote by �(T) the range of T and by �(T) the
null space of T . For a given T ∈�(X) the number λ∈ C is in the resolvent set of T if and
only if (λI −T)−1 exists in �(X). The spectrum σ(T) is the complement of the resolvent
set and by r(T)= sup{|λ| : λ∈ σ(T)} we denote the spectral radius of T . An operator T
is quasinilpotent if σ(T)= {0}. A closed subspace M in X is an invariant subspace of an
operator T if T(M)⊆M. A collection of linear operators is reducible if it has a common
nontrivial invariant subspace and is irreducible otherwise. If a family � ⊂ �(X) is an
algebra, it is irreducible if and only if it is transitive, that is, the set �x := {Tx : T ∈�} is
dense in X for each x �= 0. For P ∈�(X) and pα ∈ P let Jα denote the null space of pα and
Xα the quotient space X/Jα. It is a normed space with the norm ‖xα‖α := pα(x), where
xα = x+ Jα. Let T ∈�(X) be such that T(Jα)⊂ Jα then the corresponding operator Tα on
Xα is well defined by Tα(xα)= Tx+ Jα.

2. The results

Lemma 2.1. Let X be a locally convex space and � a transitive τb-closed algebra of con-
tinuous operators on X which contains a nonzero finite-rank operator. Then there exists a
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τb-closed subspace Φ in X ′b such that
(i) � contains all rank-one operators of the form x⊗ f , x ∈ X , f ∈Φ,

(ii) if f (z)= 0 for each f ∈Φ, then z = 0.

Proof. Let F ∈� be a nonzero finite-rank operator. Denote E1 =�(F) and �1 := F�.
It is clear that each T ∈�1 maps E1 to E1 and the restriction �1|E1 is a transitive alge-
bra of operators on a finite-dimensional space. By Burnside’s theorem [11] it follows that
�1|E1 =�(E1). Especially, there is some A0 ∈� such that FA0|E1 has rank one, hence
FA0F is a rank-one operator in � of the form x0⊗ f0, x0 ∈ X , and f0 ∈ X ′. Choose arbi-
trary nonzero x ∈ X . Since �x0 is dense in X , there is some net of operators {Aδ} ⊂�
such that Aδx0 → x. For any chosen seminorm qMα defining the topology τb we have

qMα
((
Aδx0

)⊗ f0− x⊗ f0
)= sup

y∈M

∣∣ f0(y)
∣∣pα(Aδx0− x

)≤ c · pα
(
Aδx0− x

)
. (2.1)

Since the right-hand side tends to zero, the same holds for the left-hand side, thus x⊗ f0 ∈
�. Let us define Φ := { f ∈ X ′ : x⊗ f ∈�, for all x ∈ X}. Choose { fδ} ⊂Φ a net which
is τb-convergent to some f , and x ∈ X arbitrary, then for any seminorm qMα we have

qMα
(
x⊗ fδ − x⊗ f

)= sup
y∈M

∣∣( fδ − f
)
(y)
∣∣pα(x). (2.2)

Since � is τb-closed we have x⊗ f ∈�, hence f ∈Φ. Thus, Φ is a nontrivial τb-closed
subspace satisfying (i). To verify (ii), let f (z)= 0 for each f ∈Φ. Choose a nonzero f0 ∈
Φ and for each A ∈ � define f1 := A′ f0, where A′ is the adjoint operator of A. Since
x⊗ f1 = x⊗A′ f0 = (x⊗ f0)A∈�, for any x ∈ X , we have f1 ∈Φ, hence f1(z)= 0, that is
f0(Az)= 0 for each A∈�. If there were z �= 0, then f0 would be zero on a dense set �z
and consequently identically zero, which is a contradiction. �

Corollary 2.2. Let X be a semireflexive locally convex space and � a transitive τb-closed
algebra of continuous operators which contains a nonzero finite-rank operator. Then � con-
tains all finite-rank operators.

Proof. It is sufficient to show that � contains all rank-one operators and this will be
in case Φ = X ′. If there were Φ �= X ′, then by the Hahn-Banach theorem there would
be some nonzero F ∈ (X ′b)′, such that F|Φ = 0. Since X is semireflexive, there is some
nonzero y ∈ X such that F( f ) = f (y) for all f ∈ X ′ and then f (y) = F( f ) = 0 for all
f ∈Φ. By (ii) in the previous lemma then y = 0, which is a contradiction. �

A linear operator T is called nuclear if it can be written in the form

Tx =
∞∑
j=1

λjc j(x)aj , x ∈ X , (2.3)

where {cj} is an equicontinuous sequence in X ′, {λj} ∈ l1, and {aj} is a sequence con-
tained in an absolutely convex bounded set B in X , such that XB :=⋃{nB : n ∈ N} is a
complete normed subspace in X with respect to the Minkowski’s functional of the set B.
(see, e.g., [8]). It is easy to see that the family of nuclear operators is an ideal in �(X) and
that each nuclear operator is also compact.
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Corollary 2.3. Let X be a semireflexive locally convex space and � a transitive algebra of
continuous operators such that (�,τb) contains a nonzero finite-rank operator. Then (�,τb)
contains all nuclear operators.

Proof. By Corollary 2.2, (�,τb)⊃�(X), since each nuclear operator can be τb-approxi-
mated by finite-rank operators by [1], the conclusion follows. �

For a given set � of compact operators let us denote by �̃ the set of all A ∈�(X)
which are τb-limits of some sequence {An} ⊂�. By [5, Proposition 1] it follows that if X

is a barreled locally convex space and 	 a semigroup of compact operators on X , then 	̃
is a semigroup too.

Proposition 2.4. Let X be a barreled locally convex space and 	 a semigroup of compact
operators. If A ∈ 	 is such that r(A) �= 0 then there exists a sequence {ni} of integers such
that one of the following assertions holds:

(a) Ani τb→ E, where E is idempotent, or

(b) αiAni τb→ E, for some scalar sequence {αi}, where E is nilpotent.

In both cases E ∈�R+	 and is of finite rank.

Proof. Following the first part of the proof of [6, Proposition 3] we can find a sequence
of operators from 	 with the above property. �
Theorem 2.5. Let X be a barreled locally convex space and � a τb-closed transitive alge-
bra in �(X) which contains a nonzero compact operator. Then �∩�(X) is a nontrivial
transitive algebra.

Proof. Define 
=�∩�(X), then it is an ideal in � and by [6, Lemma 5] it is transitive
too. Let K be a nonzero operator in 
. Then by Lomonosov’s theorem for locally convex

spaces [3] there is some A∈
 such that r(AK) �= 0. By Proposition 2.4, 
̃∩�(X) �= {0}.
Since � is τb-closed, it is easy to see that 
̃ = 
. Clearly, �∩�(X) = 
∩�(X) is an
ideal in � and it is transitive too. �

Corollary 2.6. Let X be a barreled semireflexive locally convex space and � a τb-closed
transitive algebra in �(X) which contains a nonzero compact operator. Then � contains all
finite-rank operators.

Proof. By Theorem 2.5 and Corollary 2.2, the conclusion follows. �

Corollary 2.7. Let X be a barreled semireflexive locally convex space and � a transitive
τb-closed algebra in �(X) which contains a nonzero compact operator. If X has the property
that each compact operator on X is τb-limit of a net of finite-rank operators, then � contains
all compact operators.

Proposition 2.8. Let X be a semireflexive locally convex space, 	 a semigroup in �(X),
and φ a nontrivial τb-continuous linear functional on �(X). If φ is identically zero on 	,
then 	 is reducible.

Proof. Let us suppose that 	 is irreducible. Then the algebra � generated by 	 is also
irreducible and the same holds for (�,τb). By Corollary 2.2, (�,τb) ⊃�(X). Since φ is
equal to zero on 	, it is equal to zero also on �(X), which is a contradiction. �
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With respect to the strong topology τs on �(X) the following theorem is proven in [8].

Theorem 2.9. Let X be a locally convex space and � a transitive algebra in �(X), such that
(�,τs) contains a nontrivial compact operator. Then � is τs-dense in �(X).

Corollary 2.10. Let X be a locally convex space and A a nonscalar operator commuting
with a nonzero compact operator. Then A has a nontrivial hyperinvariant subspace.

Proof. Denote by � := (A)′ the commutant of A. Clearly, it is an algebra and let us prove
that it is τs-closed. Choose any net {Bδ} in � which is strongly convergent to some B.
Then for any seminorm qαx for the strong topology one has

qαx(BA−AB)= pα
(
(BA−AB)x

)≤ pα
((
B−Bδ

)
Ax
)

+ pα
(
A
(
B−Bδ

)
x
)

≤ qαy
(
B−Bδ

)
+ cαq

β
x
(
B−Bδ

)
,

(2.4)

where y = Ax. Since the right-hand side is arbitrary small, the left-hand side is zero. Since
qαx is arbitrary, we have BA−AB = 0. If � were transitive, then by the above theorem, it
would be equal to �(X) and consequently A= λI for some complex number λ, which is
a contradiction. �

Corollary 2.11. Let X be a locally convex space and A,B ∈�(X) two commuting oper-
ators, where B is nonscalar and commutes with a nonzero compact operator. Then A has a
nontrivial invariant subspace.

Proof. By Corollary 2.10, B has a hyperinvariant subspace which is invariant for A. �

Corollary 2.12. Let X be a locally convex space and 	 a semigroup of operators such
that (	,τs) contains a nonzero compact operator and φ a nontrivial τs-continuous linear
functional on �(X) such that φ|	 = 0. Then 	 is reducible.

Proof. Let 	 be irreducible, then the algebra � generated by 	 is also irreducible and
then by Theorem 2.9, it is strongly dense in �(X). Clearly, φ is equal to zero also on �
and thus on �(X), which is a contradiction. �

Corollary 2.13. Let X be a locally convex space and � a commutative family of compact
operators on X . Then � is reducible.

Proof. Choose a nonzero A∈�, by Corollary 2.10 it has a nontrivial hyperinvariant sub-
space which is then an invariant subspace for �. �

Let φ be a functional on a semigroup 	 ⊂�(X). By [11] φ is permutable on a fam-
ily � ⊂ 	 if for any A1,A2, . . . ,An ∈ � and any permutation τ of {1,2, . . . ,n} we have
φ(A1,A2, . . . ,An)= φ(Aτ(1),Aτ(2), . . . ,Aτ(n)).

Proposition 2.14. Let X be a semireflexive locally convex space and φ a nontrivial τb-
continuous linear functional on �(X). Let � be a family of finite-rank operators such that φ
is permutable on �. Then � is reducible.

Proof. Since φ is permutable on �, it is also permutable on the algebra � generated by
�. In view of Corollary 2.13 we can assume that � is noncommutative. Then there are
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A,B ∈� such that C := AB−BA �= 0. Denote by � the ideal in � generated by C. Clearly,
φ(SCT) = 0 for each S,T ∈ �, consequently, φ|� = 0. Hence, by Proposition 2.8, � is
reducible, then by [6], � is reducible and � is reducible too. �

Corollary 2.15. Let X be a semireflexive locally convex space, 	 a semigroup of finite-rank
operators, and φ a nontrivial τb-continuous linear functional on �(X). Then 	 is reducible
if one of the following conditions holds:

(i) φ is multiplicative on 	,
(ii) φ is constant on 	.

For fixed nonzero x0 ∈ X , f ∈ X ′ and a subspace � in �(X) let us define (as in [11])
the so-called coordinate functional by the relation φ(T) := f (Tx0), T ∈�. For this class
of functionals we do not need semireflexivity of the space.

Lemma 2.16. Let X be a locally convex space, then the coordinate functional φ is τb-contin-
uous on �(X) if and only if f is continuous on X .

Proof. If f is continuous, then |φ(T)| = | f (Tx0)| ≤ cpβ(Tx0) ≤ cqMβ (T), where M is an
arbitrary bounded set in X containing x0. Let φ be τb-continuous on �(X). Choose any
x ∈ X . By the Hahn-Banach theorem there is some g ∈ X ′ such that g(x0) = 1 and let
S= x⊗ g, hence Sx0 = x. By continuity of φ there exist a seminorm qMα and c > 0 such that
| f (x)| = | f (Sx0)| = |φ(S)| ≤ cqMα (S) = c supy∈M pα(g(y)x) ≤ c1pα(x)supy∈M pγ(y) =
dγ pα(x) for some constant dγ > 0. �

Proposition 2.17. Let X be a locally convex space, 	 a semigroup in �(X), and φ a τb-
continuous coordinate functional on �(X). Then 	 is reducible if one of the following con-
ditions holds:

(i) φ is constant on 	,
(ii) φ is multiplicative on 	.

The proof is the same as for the normed space (see [11, Lemma 8.2.8]).

Corollary 2.18. Let X be a locally convex space, � a noncommutative family in �(X),
and φ a τb-continuous coordinate functional which is permutable on �, then � is reducible.

Proof. Since permutability is inherited by passing to an algebra (see [11, page 28]), we
can assume that � is an algebra. Let us choose A, B in � such that C := AB− BA �= 0.
Then it is easy to see that φ is equal to zero on ideal � generated by C and by the previous
proposition � is reducible, hence � is reducible. �

Lemma 2.19. Let X be a locally convex space and A,B ∈�(X) such that σ(AB) is bounded.
Then σ(AB) \ {0} = σ(BA) \ {0} and r(AB)= r(BA).

Proof. It is easy to see that if for λ �= 0 there exists C := (λI −AB)−1 ∈�(X). Then we also
have that (λI −BA)−1 = λ−1(I +BCA) ∈�(X). Hence also σ(BA) is bounded and both
equalities follow. �

A locally convex space is called H-locally convex if its topology can be defined by a
calibration P such that each pα ∈ P is generated by a semiscalar product: p2

α(x)= (x,x)α
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(see, e.g., [10]). In H-locally convex spaces the trace functional is well-defined on nuclear
operators and a generalization to these spaces of Lidskii’s theorem holds, which says that
the trace of nuclear operator is equal to the sum of its eigenvalues, (see [7]). By this
theorem and by the above lemma we also have tr(AB)= tr(BA) for each pair of nuclear
operators A and B acting on an H-locally convex space.

Theorem 2.20. Let 	 be a family of nuclear operators on a barreled H-locally convex space.
Then 	 is triangularizable if and only if the trace functional is permutable on 	.

Proof. We can verify as in [11, Lemma 2.1.14] that the permutability of the trace func-
tional is equivalent to the condition tr(ABC) = tr(ACB), for all A,B,C ∈ 	. Let 	 be
triangularizable. Then for the diagonal elements the following relations hold:

dj(ABC)= dj(A)dj(B)dj(C)= dj(ACB); A,B,C ∈	 (2.5)

(see [9]), where it is also shown that the nonzero eigenvalues coincide with nonzero di-
agonal elements for each operator of 	. Thus, for any A,B,C ∈	 we have

tr(ABC)=
∑

λj(ABC)=
∑

dj(ABC)=
∑

dj(ACB)= tr(ACB). (2.6)

Let the trace be permutable on 	. Then it is also permutable on the algebra � gener-
ated by 	. Hence tr(A(BC−CB))= 0, A,B,C ∈�. Taking A= (BC−CB)n−1, for n∈N
we obtain tr((BC−CB)n) = 0, n ∈ N. Denote T := BC−CB, since T ∈�(X), we have
λj(Tn)= λj(T)n for each j (see [12]). Hence, by Lidskii’s theorem we have

∑
j

λ j(T)n =
∑
j

λ j
(
Tn
)= tr

(
Tn
)= 0, n∈N. (2.7)

As in [4] it follows that λj(T)= 0 for each j, thus, σ(BC−CB)= {0} for each pair B,C ∈
� and by [5, Theorem 2], � is triangularizable and the same holds for 	. �

Corollary 2.21. Let 	 be a family of nuclear operators on a barreled H-locally convex
space. Then 	 is triangularizable if the trace functional satisfies one of the following condi-
tions:

(i) it is multiplicative on 	,
(ii) it is constant on 	.

The following result is a generalization of the so-called “downsizing lemma” from [11].

Lemma 2.22. Let X be a barreled locally convex space, 	 a semigroup of compact operators
on X and � a property on 	 such that

(i) each subsemigroup in 	 has the property �,
(ii) 	|X0 , has the property �, where X0 = span{�(S), S∈	},

(iii) �R+	 has the property �.

Let 	 be irreducible. Then there exist a natural number k ≥ 2 and an idempotent operator
E ∈�(X) of rank k, such that 	 contains a subsemigroup 	0 with properties: 	0 = E	0,
	0|�(E) is irreducible in �(Ck) and it has the property �. Moreover, if min{rank(F) : F ∈
�R+	} > 1, the operator E can be chosen from �R+	.
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Proof. By [6, Theorem 3], not all operators in 	 are quasinilpotent, hence by Proposition

2.4, �R+	 contains a nonzero finite-rank operator. By [6, Proposition 2], 	̂ := �R+	 is
also a semigroup. Then the proof is the same as for the normed space (see [11, Lemma

8.2.13]), where we take 	̂ instead of 	. �

Proposition 2.23. Let X be a barreled locally convex space and 	 a semigroup of compact
operators on X . If 	k is triangularizable for some k ∈N, then 	 is triangularizable.

Proof. If 	k = {0}, then by [6, Theorem 3], 	 is reducible. Let 	k �= {0} and let 	k be
triangularizable, then 	 is reducible since 	k is an ideal in 	. The triangularizability of
a family of compact operators 	k is inherited by quotients which follows in the same
manner as in the proof of [11, Theorem 7.3.9] for the normed space. Then applying the
triangularization lemma [5] the triangularization of 	 follows. �

Theorem 2.24. Let X be a barreled locally convex space and 	 a semigroup of compact
operators on X . If AB−BA is quasinilpotent for every A,B ∈	, then 	 is triangularizable.

Proof. By [5, Lemma 5], the quasinilpotency is inherited by quotients for compact op-
erators. So, by triangularizing lemma it suffices to prove the reducibility of the semi-
group 	. Let us verify the conditions of Lemma 2.22. The condition (i) is obvious. De-
noting by X0 the closed span of {�(S) : S ∈ 	}, then for A,B ∈ 	 it easy to see that
A|X0B|X0 −B|X0A|X0 = (AB−BA)|X0 and it is clear that (AB−BA)|X0 is also quasinilpo-

tent, hence (ii) holds. By [5, Theorem 1], quasinilpotency is inherited by �R+	 and so (iii)
holds. If 	 were irreducible, then by Lemma 2.22, there would exist a subsemigroup 	0

of 	 such that 	0|�(E) would be irreducible in �(Ck), which is impossible [11, Theorem
4.4.12]. �

Let � be a semigroup in �B(X). It is known (see, e.g., [12]) that the spectrum for each
T ∈ �B(X) is bounded. We say that the spectrum is submultiplicative on � if σ(AB) ⊂
σ(A)σ(B)= {λµ : λ∈ σ(A), µ∈ σ(B)} for all A,B ∈�.

Theorem 2.25. Let X be an infinite-dimensional barreled locally convex space and 	 a
semigroup of compact operators onX with the property that the spectrum is submultiplicative
on 	. Then 	 is reducible.

Proof. Let us denote by 	̂ :=�R+	. Suppose that 	 is irreducible, then 	̂ is irreducible

too. By [6, Proposition 3] there exists nonzero finite-rank idempotent operator E ∈ 	̂

which has minimal rank m. Denoting 	0 = 	̂E	̂, this is an ideal in 	̂ and all operators
in 	0 have a rank equal to m or 0. Thus, 	0 is irreducible and then the rest of the proof
is the same as for the normed space (see [11, Theorem 8.3.5]), where we take 	0 instead
of 	. �

Theorem 2.26. Let X be an infinite-dimensional barreled locally convex space and 	 a
semigroup of compact operators with the following property: σ(S) ⊂ {0,1} for every S ∈ 	
and if 1∈ σ(ST), for S,T ∈	, let 1∈ σ(S)∩ σ(T). Then 	 is reducible.
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Proof. We can assume that X is not normable (see [11, Theorem 8.3.8]). Since each A∈	
is locally bounded, it has 0 in his spectrum [12]. With the above assumption the submul-
tiplicativity of spectrum on 	 follows, so 	 is reducible by the previous theorem. �

Theorem 2.27. Let X be a barreled locally convex space and 	 a semigroup of compact
idempotent operators. Then 	 is triangularizable.

Proof. In view of [11, Theorem 2.3.5] let X be infinite-dimensional. A quotient of an
idempotent is, clearly, idempotent operator and a quotient of compact operator is again
compact (see [5]). So, by the triangularization lemma, it suffices to prove the reducibility.
Clearly, for an idempotent S and λ �= 0, �=1, there exists (λI − S)−1 = I/λ− S/(λ(1− λ))∈
�(X), hence σ(S)⊂ {0,1}. If 1∈ σ(ST) for S,T ∈	, then S and T are nonzero idempo-
tent, hence 1 ∈ σ(S)∩ σ(T). Thus, the conditions of the preceding theorem are fulfilled
and the reducibility of 	 follows. �

For a semiball Uγ, γ ∈ ∆, let us denote by �γ(X) the family of all continuous linear
operators T on X , for which T(Uγ) is a bounded set. Clearly, this is a subspace and left
ideal in �(X). For each T ∈�γ(X) we have T(Uγ)⊂ λγUγ for some λγ > 0, hence T(Jγ)⊂
Jγ, thus, operator Tγ is well defined on Xγ. For some fixed T ∈�γ(X) the convergence of
some sequence in �(X) is inherited to the operator sequence on the quotient space Xγ in
the following sense.

Lemma 2.28. Let X be a locally convex space, T ∈�γ(X) for some γ ∈ ∆ and {Sn} ⊂�(X)
a sequence which is τb-convergent to some S in �(X). Then {(SnT)γ} is convergent to (ST)γ
with respect to the norm ‖ · ‖γ in Xγ.

Proof. Since M := T(Uγ) is a bounded set, we have ‖(SnT)γ − (ST)γ‖γ = supx∈Uγ
pγ((SnT

− ST)x)= supy∈M pγ((Sn− S)y)= qMγ (Sn− S)→ 0, as n→∞. �

It is well known that in a normed space the spectral radius is continuous on the set
of compact operators (see, e.g., [11]), but this is not the case for general locally convex
spaces. Let us take as an example X = s, the space of all real sequences {xn} with the
topology generated by seminorms P = {pm : m ∈ N}, where pm(x) = sup{|xj| : j ≤m},
x ∈ X and a sequence of operators {Tn} defined by Tn(x1,x2, . . .)= (0,0, . . . ,xn,0,0, . . .). It

is easy to see that all Tn are compact and Tn
τb→ T , where T = 0. Hence, r(Tn) = 1 for all

n∈N, but r(T)= 0. We will prove the continuity of spectral radius in a special case.

Lemma 2.29. Let X be a locally convex space, T ∈�(X) and {Sn} a sequence of continuous
operators which is τb-convergent to S∈�(X). Then

r
(
SnT

)−→ r(ST), r
(
TSn

)−→ r(TS), as n−→∞. (2.8)

Proof. Since T is locally bounded, there is some γ ∈ ∆ such that T ∈ �γ(X) and also
AT ∈�γ(X) for each A ∈�(X). The corresponding operator Tγ is also compact on Xγ

and for the spectral radius we have r(T)= r(Tγ) (see [2]). Then, by Lemma 2.28 and by
continuity of the spectral radius for a sequence of compact operators acting on a normed
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space, we obtain r(SnT) = r((SnT)γ)→ r((ST)γ) = r(ST), as n→∞. By Lemma 2.19 we
have also r(TSn)→ r(TS), as n→∞. �

Lemma 2.30. Let X be a locally convex space, 	 a semigroup in �(X) and A, B some nonzero
members in 	 such that B	A= {0}. Then 	 is reducible.

Proof. If 	�(A)= {0}, then it is easy to see that �(A) is a nontrivial invariant subspace
for 	. If 	�(A) �= {0}, then the closed span of this set is a nontrivial invariant subspace
for 	. �

Lemma 2.31. Let X be a locally convex space and 	 an irreducible semigroup of compact
operators on X . If spectral radius is submultiplicative on 	 then no nonzero product S̃T̃ ,

where S̃, T̃ ∈ 	̃, is quasinilpotent.

Proof. Let us denote �= {S̃T̃ : S̃, T̃ ∈ 	̃, r(S̃T̃)= 0}. This is an outer ideal of 	. Indeed,
choose any product S̃T̃ ∈ � and C ∈	, then there exist two sequences {Sn} and {Tm} in

	 such that Sn
τb→ S̃ and Tm

τb→ T̃ . For each pair of operators Sn, Tm we have

r
(
CSnTm

)≤ r(C)r
(
SnTm

)
; n,m∈N. (2.9)

Using Lemma 2.29 twice we obtain r(CS̃T̃) ≤ r(C)r(S̃T̃) = 0, hence, CS̃T̃ ∈ �. Since
r(S̃T̃C) = r(CS̃T̃), also S̃T̃C ∈ �. If � �= {0}, by [6, Theorem 3], it would be reducible
and then by [6, Lemma 5], 	 would be reducible too. Thus, �= {0}. �

Theorem 2.32. Let 	 be an irreducible semigroup of compact operators on a barreled locally
convex space. If spectral radius is submultiplicative on 	, then it is multiplicative on 	.

Proof. Since the spectral radius is homogenous for the nonnegative scalars, one can sup-

pose R+	 = 	. By [6], 	̃ is again a semigroup. Let us prove that it has no quasinilpo-
tent element. Suppose, to the contrary, that there is a nonzero quasinilpotent opera-

tor T̃ in 	̃. Then also r(T̃2) = 0, hence by the previous lemma, T̃2 = 0. Consequently

r(T̃S̃T̃) = r(S̃T̃2) = 0 for any S̃ ∈ 	̃. Thus T̃	̃T̃ = {0}, hence, by Lemma 2.30, 	̃ is re-
ducible, which is a contradiction. Choose any A,B ∈ 	, where we can assume r(A) =
r(B) = 1. By Proposition 2.4 there exist two nonzero finite-rank idempotents E,F ∈ 	̃

such that Ani τb→ E and Bmk
τb→ F for some sequences of integers {ni} and {mk}. Let us

prove that EF �= 0. If EF = 0, then r(FS̃E)= r(S̃EF)= 0 and by the above lemma it would

be FS̃E = 0 for each S̃∈ 	̃, hence F	̃E = {0} and by Lemma 2.30, 	̃ would be reducible.
In the sequel, let us prove the following inequality:

r
(
EF2E

)≤ r(EF)2. (2.10)

For each pair of operators from the sequences defining E and F we have by assumption
r(AniB2mkAni)≤ r(AniBmk )r(BmkAni) and by Lemma 2.29 we obtain the above inequality.
Similarly, we have r(AniBmk ) = r(ABBmk−1Ani−1) ≤ r(AB)r(A)ni−1r(B)mk−1 = r(AB) and
by Lemma 2.29 we obtain

r(EF)≤ r(AB). (2.11)
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From the idempotency of E and F and by the inequality (2.10) it follows that:

r(EF)= r
(
E2F2)= r

(
EF2E

)≤ r(EF)2. (2.12)

Thus, we have 1≤ r(EF)≤ r(AB)≤ r(A)r(B)= 1, and the multiplicativity of the spectral
radius follows. �

Theorem 2.33. LetX be a barreled locally convex space, 	 a semigroup of compact operators
on X such that each S ∈ 	 is a nonnegative scalar multiple of an idempotent operator and
let spectral radius be submultiplicative on 	. Then 	 is triangularizable.

Proof. Let us prove that 	 is reducible. Denote 	0 = {S/r(S) : S∈	, S �= 0}∪{0}. Clearly,
	0 is reducible if and only if 	 is reducible. Suppose that 	 is irreducible. Then, by
Theorem 2.32 the spectral radius is multiplicative on 	. Consequently, 	0 is a semigroup
of compact idempotents. By Theorem 2.27, 	0 is reducible. Thus, 	 is reducible and by
triangularization lemma it is triangularizable. �

In view of Lemma 2.19 it is easy to see that the spectral radius is permutable on a
semigroup 	 if and only if r(ABC)= r(ACB) for all A,B ∈	.

Theorem 2.34. Let X be a locally convex space and 	 a semigroup of compact operators on
X . Then spectral radius is submultiplicative on 	 if and only if it is permutable on 	.

Proof. We will use the property r(T) = r(Tγ) for T ∈�γ(X), γ ∈ ∆ (see [2]). With no
loss of generality we may assume that the calibration P ∈ �(X) is directed, that is for
each pα, pβ ∈ P there is some pγ ∈ P such that pα ≤ pγ and pβ ≤ pγ. Let r be permutable
on 	. Choose any A,B ∈ 	. Since they are locally bounded and P is directed, there ex-
ists pγ ∈ P such that A,B ∈ �γ(X). Denote by 	

γ
0 the semigroup generated by Aγ, Bγ.

By [6, Lemma 1] spectral radius is also permutable on 	
γ
0 and by [11, Theorem 8.6.3]

it is submultiplicative and then r(AB)= r(AγBγ)≤ r(Aγ)r(Bγ)= r(A)r(B). Let r be sub-
multiplicative on 	. For any A,B,C ∈	 there is some pγ ∈ P such that A,B,C ∈�γ(X),
then on the semigroup 	

γ
1 generated by Aγ, Bγ, and Cγ the submultiplicativity implies the

permutability of r and similarly as above we obtain r(ABC)= r(ACB). �

Question. What are the conditions on a family of compact operators on a locally convex
space yielding the continuity of the spectral radius on this family?
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