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Commutative H*-algebra is characterized in a somewhat unusual fashion without as-
suming either Hilbert space structure or commutativity. Existence of an involution is not
postulated also.

1. Introduction and main result

About 5 years ago, the author wrote an article in which he characterized commutative
H*-algebras in a somewhat unusual way. Now we will show that a similar characteriza-
tion can be achieved without assuming a Hilbert space structure on the algebra. More
specifically we will prove the following theorem.

THEOREM L1.1. Let A be a semisimple complex Banach algebra with the following properties:

(i) for every closed right ideal R in A, there exists a closed left ideal L such that RN L =
{0} and R+ L = A (each a € A can be written in the form a = a; +a, with a; € R,
a, €L);

(i) if a,b in A are such that ab = ba = 0, then |la+b||*> = ||al|* + ||b]I2.

Then A is a commutative proper H*-algebra [1].

It is easy to see that each proper commutative H*-algebra has properties (i) and (ii),
stated in the theorem.

A proper H*-algebra is a Banach algebra A, whose underlying Banach space is a Hilbert
space, which has an involution x — x* such that (xy,z) = (y,x*z) = (x,zy™) forallx, y €
A. An idempotent is a member e of A such that e? = e; e is primitive if it cannot be writ-
ten as a sum, e = e; + e, of two nonzero idempotents e;, e, such that eje; = e;e; =0
(e = e; + e, implies either e; = 0 or e; = 0). A Banach algebra A is semisimple if its radical
[2] (Jacobson radical) consists of 0 alone. One of the properties of radical [2, Theorem
16] is the following proposition: if R is a right ideal consisting of nilpotents (x € R implies
x" = 0 for some positive integer 1), then R is included in the radical. This proposition is
relevant to both the present note and [4].
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2. Relevant lemmas

We will establish the main result (Theorem 1.1) by proving a series of lemmas first.
Let A be a semisimple Banach algebra such that for each closed right ideal R C A, there
is a closed left ideal L such that RN L = {0} and R+ L = A.

LEmMMA 2.1. Theideal L (for each closed right ideal R) is a two-sided ideal. It coincides with
both the right and the left annihilators of R, that is, L = r(R) = I(R), wherer(R) = {x € A:
Rx={0}} andI(R) = {x € A: xR = {0}}.

Proof. First note that L C r(R) and that 7(R) is a two-sided ideal. Hence, RN r(R) is also
aright ideal. But x? = 0 for each x € RN r(R) and so RN r(R) is included in the radical of
A, thatis, RN r(R) = {0} since A is semisimple.

Now letaer(R) ~L(a€r(R), a¢ L). Writea=b+cwithbeR,ce L. Then b =
a — ¢ belongs to r(R) also, and this means that b = 0, a = ¢. Thus L = r(R), L is a two-
sided ideal. O

CoROLLARY 2.2. Each closed right ideal R in A is a two-sided ideal and R = r(L) = I(L)
where L is as above.

LemMA 2.3. Each closed right ideal R in A contains a nonzero idempotent.

Proof. One can use the argument, which is used in the first part of the proof of Lemma
2.6 in [4]. Let x € R be such that x+ y +xy # 0 for all y € A (x has no right quasi-
inverse; existence of x € R is guaranteed by semisimplicity of A). Let R! be the closure of
{xy+y:y € A};write —x = e+ u with e € r(R!), u € R! (we use Lemma 2.1 here). Then
it is easy to verify that e # 0, e = e, and e € R (note that r(R!) C R). O

Now assume that A has property (ii) above (if a,b € A and ab = ba = 0, then ||a +
bll> = llall* + [|b]1?).

LEmMMA 2.4. Every closed right ideal R contains a primitive idempotent.

Proof. We already know that R contains an idempotent e. If e is not primitive, then we can
write e = e; + e;, where e, e; are some nonzero idempotents such that e;e; = e;e; = 0.
From e? = ¢;, it follows that ||e;|| = 1 for i = 1,2 and from (ii), it follows that |le;||? <
llell> — 1. One can use the argument of Ambrose in [1, Theorem 3.2] that e is a sum,
e= Z?:] e; of primitive idempotents ej,...,e, such that e;e; = 0 for i #j,(,jell,...,n}).
From e; = ee;, it follows thate; € R fori = 1,...,n. O

LEMMA 2.5. An idempotent e € A is primitive if and only if the closed right ideal R = eA is
minimal.

Proof. The proof follows by direct verification. O

LEMMA 2.6. Ife € A is a primitive idempotent, then R = eA is 1-dimensional, that is, R =
{Ae: A is a complex number}.

Proof. One can use an obvious modification of the proof of [4, Lemma 2.8]. (In the
present case, we use [(R) = r(R) instead of RP?, the present primitive idempotent cor-
responds to primitive left projection in [4].) First we show that e is also a right identity
of R and then we prove that each x € R has both the right and the left inverse (which
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do coincide). Then we apply Gelfand-Mazur theorem which states that the only complex
Banach algebra, which is a division algebra, is the complex number system. O

LemMa 2.7. The product of any two distinct primitive idempotents ey, e, in A is zero, eje; =
ee) = 0 ifel ?é €.

The proof is the same as the proof of [4, Lemma 2.9].

CoroOLLARY 2.8. If e), e, are primitive idempotents, e; + e, and a, € e1A, a; € e;A then
llay +axll? = llay |12 + llaz |2

Proof. Note that aja; = axa; = 0since a; = Aje;, a; = Ay, for some complex numbers A,
and A,. O

COROLLARY 2.9. If e,ey,...,e, are primitive idempotents and x € >, e;A, then ||x||* =
ity lexll.

Proof. The proof follows by induction on n. O

LemMaA 2.10. Let ey,...,e, be primitive idempotents and let x, y be members of >} e;A,
then |lx+ 112+ llx — ylI> = 2(llx[1> + Iy [1?).

Proof. Tt follows from Lemma 2.6 above that there are complex numbers A4,...,4, and
Yis--pn such that x = 37 e, y = D7 pie;. Lemma?2.7 implies that |lx|> =
S il el Tylli? = 25 lwil?lleill?, and [lx = ylI* = 3L (1A = pil*) lleill*. Then [lx +
yIF 4 llx = plIP = 2500 + @l + 14 = wlPllell? = 235,412 + [wlP)llell® =
20111+ 1y l1%). O

3. Proof Theorem 1.1

Let A be the set of all primitive idempotents in A and let Ry be the set of all finite sums
x = >, x; of members of ideals ¢;A : x; € ¢;A, i = 1,2,...,n, where ey,...,e, are some
members of A. Then Ry is dense in A, otherwise one could find a nonzero primitive
idempotent ey € I(R) = r(R), and this would lead to a contradiction.

It follows from Lemma 2.10 that [lx+ y[I? + llx — y[I> = 2(llx]|* + || y||?) for all x,y €
Ry. Since Ry is dense in A, we may conclude that this relation holds for all x,y € A. It
follows from [3, Section 10A] that A is a Hilbert space with respect to the inner product
(x,y) = (/8 {llx+ ylI? = llx = ylI* +illx+iyll> —illx —iylI?}.

We show that L = I(R) = r(R) coincides with R? = {x € A: (x,y) =0 for all y € R}
for each closed right ideal R in A. If x € R, y € L, then xy = yx = 0 and it follows that
llx+ ylI2 = x>+ lIylI> = llx — ylI> = lIx +iyll*> = Ix — iyl|* from which one can con-
clude that (x, y) = 0. This simply means that L C R?. Now let a € RP. Then a = b + ¢ with
b € R, c € L. This means that ¢ € R? and so b = a — ¢ is also member of R?. It follows that
beRPNR={0}. Thus b =0 and so a = c is a member of L.

The theorem now follows from [4, Theorem 2.1].

References

[1] 'W. Ambrose, Structure theorems for a special class of Banach algebras, Trans. Amer. Math. Soc.
57 (1945), 364-386.



486  Characterization of a commutative H*-algebra

[2]  N.Jacobson, The radical and semi-simplicity for arbitrary rings, Amer. J. Math. 67 (1945), 300—

320.
[3] L. H. Loomis, An Introduction to Abstract Harmonic Analysis, D. Van Nostrand, New York,

1953.
[4] P. P. Saworotnow, An exotic characterization of a commutative H* -algebra, Int. J. Math. Math.

Sci. 24 (2000), no. 1, 1-4.

Parfeny P. Saworotnow: Department of Mathematics, The Catholic University of America, Wash-

ington, DC 20064, USA
E-mail address: saworotnow@cua.edu


mailto:saworotnow@cua.edu

