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Commutative H∗-algebra is characterized in a somewhat unusual fashion without as-
suming either Hilbert space structure or commutativity. Existence of an involution is not
postulated also.

1. Introduction and main result

About 5 years ago, the author wrote an article in which he characterized commutative
H∗-algebras in a somewhat unusual way. Now we will show that a similar characteriza-
tion can be achieved without assuming a Hilbert space structure on the algebra. More
specifically we will prove the following theorem.

Theorem 1.1. Let A be a semisimple complex Banach algebra with the following properties:

(i) for every closed right ideal R in A, there exists a closed left ideal L such that R∩L=
{0} and R+ L= A (each a∈ A can be written in the form a= a1 + a2 with a1 ∈ R,
a2 ∈ L);

(ii) if a,b in A are such that ab = ba= 0, then ‖a+ b‖2 = ‖a‖2 +‖b‖2.

Then A is a commutative proper H∗-algebra [1].
It is easy to see that each proper commutative H∗-algebra has properties (i) and (ii),

stated in the theorem.
A properH∗-algebra is a Banach algebraA, whose underlying Banach space is a Hilbert

space, which has an involution x→ x∗ such that (xy,z)= (y,x∗z)= (x,zy∗) for all x, y ∈
A. An idempotent is a member e of A such that e2 = e; e is primitive if it cannot be writ-
ten as a sum, e = e1 + e2, of two nonzero idempotents e1, e2 such that e1e2 = e2e1 = 0
(e = e1 + e2 implies either e1 = 0 or e2 = 0). A Banach algebra A is semisimple if its radical
[2] (Jacobson radical) consists of 0 alone. One of the properties of radical [2, Theorem
16] is the following proposition: if R is a right ideal consisting of nilpotents (x ∈ R implies
xn = 0 for some positive integer n), then R is included in the radical. This proposition is
relevant to both the present note and [4].
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2. Relevant lemmas

We will establish the main result (Theorem 1.1) by proving a series of lemmas first.
Let A be a semisimple Banach algebra such that for each closed right ideal R⊂A, there

is a closed left ideal L such that R∩L= {0} and R+L=A.

Lemma 2.1. The ideal L (for each closed right ideal R) is a two-sided ideal. It coincides with
both the right and the left annihilators of R, that is, L= r(R)= l(R), where r(R)= {x ∈ A :
Rx = {0}} and l(R)= {x ∈A : xR= {0}}.
Proof. First note that L⊂ r(R) and that r(R) is a two-sided ideal. Hence, R∩ r(R) is also
a right ideal. But x2 = 0 for each x ∈ R∩ r(R) and so R∩ r(R) is included in the radical of
A, that is, R∩ r(R)= {0} since A is semisimple.

Now let a ∈ r(R) ∼ L(a ∈ r(R), a /∈ L). Write a = b + c with b ∈ R, c ∈ L. Then b =
a− c belongs to r(R) also, and this means that b = 0, a = c. Thus L = r(R), L is a two-
sided ideal. �
Corollary 2.2. Each closed right ideal R in A is a two-sided ideal and R = r(L) = l(L)
where L is as above.

Lemma 2.3. Each closed right ideal R in A contains a nonzero idempotent.

Proof. One can use the argument, which is used in the first part of the proof of Lemma
2.6 in [4]. Let x ∈ R be such that x + y + xy �= 0 for all y ∈ A (x has no right quasi-
inverse; existence of x ∈ R is guaranteed by semisimplicity of A). Let R1 be the closure of
{xy + y : y ∈ A}; write −x = e+u with e ∈ r(R1), u∈ R1 (we use Lemma 2.1 here). Then
it is easy to verify that e �= 0, e2 = e, and e ∈ R (note that r(R1)⊂ R). �

Now assume that A has property (ii) above (if a,b ∈ A and ab = ba = 0, then ‖a +
b‖2 = ‖a‖2 +‖b‖2).

Lemma 2.4. Every closed right ideal R contains a primitive idempotent.

Proof. We already know that R contains an idempotent e. If e is not primitive, then we can
write e = e1 + e2, where e1, e2 are some nonzero idempotents such that e1e2 = e2e1 = 0.
From e2

i = ei, it follows that ‖ei‖ ≥ 1 for i = 1,2 and from (ii), it follows that ‖e1‖2 ≤
‖e‖2 − 1. One can use the argument of Ambrose in [1, Theorem 3.2] that e is a sum,
e =∑n

i=1 ei of primitive idempotents e1, . . . ,en such that e1ej = 0 for i �= j, (i, j ∈ {1, . . . ,n}).
From e1 = eei, it follows that ei ∈ R for i= 1, . . . ,n. �
Lemma 2.5. An idempotent e ∈ A is primitive if and only if the closed right ideal R= eA is
minimal.

Proof. The proof follows by direct verification. �
Lemma 2.6. If e ∈ A is a primitive idempotent, then R= eA is 1-dimensional, that is, R=
{λe : λ is a complex number}.
Proof. One can use an obvious modification of the proof of [4, Lemma 2.8]. (In the
present case, we use l(R) = r(R) instead of Rp, the present primitive idempotent cor-
responds to primitive left projection in [4].) First we show that e is also a right identity
of R and then we prove that each x ∈ R has both the right and the left inverse (which
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do coincide). Then we apply Gelfand-Mazur theorem which states that the only complex
Banach algebra, which is a division algebra, is the complex number system. �
Lemma 2.7. The product of any two distinct primitive idempotents e1, e2 in A is zero, e1e2 =
e2e1 = 0 if e1 �= e2.

The proof is the same as the proof of [4, Lemma 2.9].

Corollary 2.8. If e1, e2 are primitive idempotents, e1 �= e2 and a1 ∈ e1A, a2 ∈ e2A then
‖a1 + a2‖2 = ‖a1‖2 +‖a2‖2.

Proof. Note that a1a2 = a2a1 = 0 since a1 = λ1e1, a2 = λ2e2 for some complex numbers λ1

and λ2. �

Corollary 2.9. If e1,e2, . . . ,en are primitive idempotents and x ∈∑n
i=1 eiA, then ‖x‖2 =

∑n
i=1‖eix‖2.

Proof. The proof follows by induction on n. �

Lemma 2.10. Let e1, . . . ,en be primitive idempotents and let x, y be members of
∑n

i=1 eiA,
then ‖x+ y‖2 +‖x− y‖2 = 2(‖x‖2 +‖y‖2).

Proof. It follows from Lemma 2.6 above that there are complex numbers λ1, . . . ,λn and
µ1, . . . ,µn such that x = ∑n

i=1 λiei, y = ∑n
i=1µiei. Lemma 2.7 implies that ‖x‖2 =

∑n
i=1 |λi|2‖ei‖2, ‖y‖2 =∑n

i=1 |µi|2‖ei‖2, and ‖x± y‖2 =∑n
i=1(|λi± µi|2)‖ei‖2. Then ‖x +

y‖2 + ‖x − y‖2 = ∑n
i=1(|λi + µi|2 + |λi − µi|2)‖ei‖2 = 2

∑n
i=1(|λi|2 + |µi|2)‖ei‖2 =

2(‖x‖2 +‖y‖2). �

3. Proof Theorem 1.1

Let ∧ be the set of all primitive idempotents in A and let R0 be the set of all finite sums
x =∑n

i=1 xi of members of ideals eiA : xi ∈ eiA, i = 1,2, . . . ,n, where e1, . . . ,en are some
members of ∧. Then R0 is dense in A, otherwise one could find a nonzero primitive
idempotent e0 ∈ l(R)= r(R), and this would lead to a contradiction.

It follows from Lemma 2.10 that ‖x + y‖2 + ‖x− y‖2 = 2(‖x‖2 + ‖y‖2) for all x, y ∈
R0. Since R0 is dense in A, we may conclude that this relation holds for all x, y ∈ A. It
follows from [3, Section 10A] that A is a Hilbert space with respect to the inner product
(x, y)= (1/4){‖x+ y‖2−‖x− y‖2 + i‖x+ iy‖2− i‖x− iy‖2}.

We show that L = l(R) = r(R) coincides with Rp = {x ∈ A : (x, y) = 0 for all y ∈ R}
for each closed right ideal R in A. If x ∈ R, y ∈ L, then xy = yx = 0 and it follows that
‖x + y‖2 = ‖x‖2 + ‖y‖2 = ‖x − y‖2 = ‖x + iy‖2 = ‖x − iy‖2 from which one can con-
clude that (x, y)= 0. This simply means that L⊂ Rp. Now let a∈ Rp. Then a= b+ c with
b ∈ R, c ∈ L. This means that c ∈ Rp and so b = a− c is also member of Rp. It follows that
b ∈ Rp∩R= {0}. Thus b = 0 and so a= c is a member of L.

The theorem now follows from [4, Theorem 2.1].
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