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A range-kernal orthogonality property is established for the elementary operators �(X)=∑n
i=1AiXBi and �∗(X)=∑n

i=1A
∗
i XB

∗
i , where A= (A1,A2, . . . ,An) and B= (B1,B2, . . . ,Bn)

are n-tuples of mutually commuting scalar operators (in the sense of Dunford) in the al-
gebra B(H) of operators on a Hilbert space H . It is proved that the operator � satisfies
Weyl’s theorem in the case in which A and B are n-tuples of mutually commuting gener-
alized scalar operators.

1. Introduction

For a Banach space operator T , T ∈ B(�), the kernel T−1(0) and the range T(�) are said
to have a k-gap for some real number k ≥ 1, denoted T−1(0)⊥kT(�), if

y ∈ T−1(0)=⇒ ‖y‖ ≤ kdist
(
y,T(�)

)
(1.1)

[8, Definition, page 94]. Recall from [10, page 93] that a subspace � of the Banach space
� is orthogonal to a subspace � of � if ‖m‖ ≤ ‖m+n‖ for all m∈� and n∈�. This def-
inition of orthogonality coincides with the usual definition of orthogonality in the case
in which �=H is a Hilbert space. A 1-gap between T−1(0) and T(�) corresponds to the
range-kernel orthogonality for the operator T (see [1, 2, 8, 14]). The following implica-
tions are straightforward to see

T−1(0)⊥kT(�)=⇒T−1(0)∩T(�)= {0} =⇒ T−1(0)∩T(�)= {0} =⇒ asc(T)≤ 1,
(1.2)

where T(�) denotes the closure of T(�) and asc(T) denotes the ascent of T . A k-gap
between T−1(0) and T(�) does not imply that T(�) is closed, or even when T(�) is
closed that �= T−1(0)⊕T(�) (see, e.g., [1, 2, 23]).

The classical Putnam-Fuglede commutativity theorem says that if A and B are nor-
mal Hilbert space operators, A and B ∈ B(H), and if δAB ∈ B(B(H)) is the generalized
derivation δAB(X) := AX −XB, then δ−1

AB(0)= δ−1
A∗B∗(0). Extant literature contains various

Copyright © 2005 Hindawi Publishing Corporation
International Journal of Mathematics and Mathematical Sciences 2005:3 (2005) 465–474
DOI: 10.1155/IJMMS.2005.465

http://dx.doi.org/10.1155/S0161171204407467


466 Subspace gaps

generalizations of the Putnam-Fuglede theorem, amongst them the two n-tuples A =
(A1,A2, . . . ,An) and B = (B1,B2, . . . ,Bn) of mutually commuting normal (Hilbert space)
operators Ai and Bi, 1≤ i≤ n. Let �∈ B(B(H)) be the elementary operator

�(X) :=
n∑
i=1

AiXBi. (1.3)

If asc(�)≤ 1, then �−1(0)=�−1∗ (0), where �∗(X) :=∑n
i=1A

∗
i XB

∗
i (see [21, 22, 24]). The

conclusion �−1(0)⊆ �−1∗ (0) fails if asc(�) > 1 [21]; moreover, in such a case it may hap-
pen that �−1(0)∩�(B(H)) �= {0} [22]. For 2-tuples A and B of mutually commuting
normal operators it is always the case that asc(�)≤ 1 (see [14] or [8]).

This paper considers n-tuples A and B of mutually commuting scalar operators (in the
sense of Dunford and Schwartz [10]) Ai and Bi, 1≤ i≤ n, to prove that the operator �µ :=
(�− µI) ∈ B(B(H)) satisfies: (i) there exists a complex number λ = αexp iθ, α > 0 and
0≤ θ < 2π, such that if �−1

λ (0) �= {0}, then �−1
λ (0)⊥k�λ(B(H)) and �−1

∗λ(0)⊥k�∗λ(B(H)),
where �∗λ = (�∗ − λI). Furthermore, if the operators Ai and Bi in the n-tuples A and B
are normal, then (ii) �−1

λ (0)=�−1
∗λ(0). This compares with the fact that the operator �

may fail to satisfy the k-gap property of (i) or the Putnam-Fuglede-theorem-type com-
mutativity property of (ii). However, if we restrict the length n of the n-tuples A and
B to n = 1 (resp., n = 2), then both (i) and (ii) hold for all complex numbers λ [7, 9]
(resp., λ= 0 and λ= αexp iθ for some real number α > 0; see [7] and Theorem 2.4 infra).
Our proof of (i) and (ii) makes explicit the relationship between the existence of a k-gap
between the kernel and the range of the operator �λ, and the Putnam-Fuglede commuta-
tivity property for n-tuples A and B consisting of mutually commuting normal operators.
Letting the n-tuples A and B consist of mutually commuting generalized scalar operators
(in the sense of Colojoară and Foiaş [5]), it is proved that (i) a sufficient condition for
�λ(B(�)) to be closed is that the complex number λ is isolated in the spectrum of �; (ii)
f (�) and f (�∗) satisfy Weyl’s theorem for every analytic function f defined on a neigh-
borhood of the spectrum of �, and the conjugate operator �∗ satisfies a-Weyl’s theorem.
These results will be proved in Sections 2 and 3, but before that, we explain our notation
and terminology.

The ascent of T ∈ B(�), asc(T), is the least nonnegative integer n such that T−n(0)=
T−(n+1)(0) and the descent of T , dsc(T), is the least nonnegative integer n such that
Tn(�) = Tn+1(�). We say that T − λ is of finite ascent (resp., finite descent) if asc(T −
λI) <∞ (resp., dsc(T − λI) <∞). The numerical range of T is the closed convex set

W
(
B(�),T

)= { f (T) : f ∈ B(�)∗,‖ f ‖ = ∥∥ f (I)
∥∥= 1

}
(1.4)

of the set C of complex numbers (see [3]). A spectral operator (in the sense of Dunford)
is an operator with a countable additive resolution of the identity defined on the Borel
sets of C; a spectral operator T is said to be scalar type if it satisfies T = ∫ λE(dλ), where
E is the resolution of the identity for T [11, page 1938]. If A = (A1,A2, . . . ,An) is an n-
tuple of mutually commuting scalar operators in B(H), then there exists an invertible
self-adjoint operator S such that S−1AiS =Mi is a normal operator for all i = 1,2, . . . ,n
[10, page 1947]. T ∈ B(�) is a generalized scalar operator if there exists a continuous
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algebra homomorphism Φ : C∞ → B(�) for which Φ(1)= I and Φ(Z)= T , where C∞(C)
is the Fréchet algebra of all infinitely differentiable functions on C (endowed with its
usual topology of uniform convergence on compact sets for the functions and their partial
derivatives) and Z is the identity function on C (see [5, 16]). We will denote the spectrum
and the isolated points of the spectrum of T by σ(T) and isoσ(T), respectively. The closed
unit disc in C will be denoted by D, and ∂D will denote the boundary of the unit disc D.
The operator of left multiplication by T (right multiplication by T) will be denoted by
LT (resp., RT). It is clear that [LS,RT]= 0 for all S,T ∈ B(�), where [LS,RT] denotes the
commutator LSRT −RTLS. We will henceforth shorten (T − λI) to (T − λ).

An operator T ∈ B(�) is said to be Fredholm, T ∈Φ(�), if T(�) is closed and both
the deficiency indices α(T)= dim(T−1(0)) and β(T)= dim(�/T(�)) are finite, and then
the index of T , ind(T), is defined to be ind(T) = α(T)− β(T). The operator T is Weyl
if it is Fredholm of index zero. The (Fredholm) essential spectrum σe(T) and the Weyl
spectrum σw(T) of T are the sets

σe(T)= {λ∈ C : T − λ is not Fredholm},
σw(T)= {λ∈ C : T − λ is not Weyl}. (1.5)

Let π0(T) denote the set of Riesz points of T (i.e., the set of λ∈ C such that T − λ is Fred-
holm of finite ascent and descent [4]), and let π00(T) denote the set of isolated eigenvalues
of T of finite geometric multiplicity. Also, let πa0(T) be the set of λ∈ C such that λ is an
isolated point of σa(T) and 0 < dimker(T − λ) <∞, where σa(T) denotes the approximate
point spectrum of the operator T . Clearly, π0(T) ⊆ π00(T) ⊆ πa0(T). We say that Weyl’s
theorem holds for T if

σ(T) \ σw(T)= π00(T), (1.6)

and a-Weyl’s theorem holds for T if

σea(T)= σa(T) \πa0(T), (1.7)

where σea(T) denotes the essential approximate point spectrum (i.e., σea(T) = ∩{σa(T +
K) : K ∈ K(�)} with K(�) denoting the ideal of compact operators on �). If we let
Φ+(�) = {T ∈ B(�) : α(T) < ∞ and T(�) is closed} denote the semigroup of upper
semi-Fredholm operators in B(�) and let Φ−

+ (�)= {T ∈Φ+(�) : ind(T)≤ 0}, then σea(T)
is the complement inC of all those λ for which (T − λ)∈Φ−

+ (�). The concept of a-Weyl’s
theorem was introduced by Rakočević: a-Weyl’s theorem for T implies Weyl’s theorem
for T , but the converse is generally false [20].

An operator T ∈ B(�) has the single-valued extension property (SVEP) at λ0 ∈ C if for
every open disc �λ0 centered at λ0, the only analytic function f : �λ0 →� which satisfies

(T − λ) f (λ)= 0 ∀λ∈�λ0 (1.8)

is the function f ≡ 0. Trivially, every operator T has SVEP at points of the resolvent
ρ(T)= C \ σ(T); also T has SVEP at λ∈ isoσ(T). We say that T has SVEP if it has SVEP
at every λ∈ C. The quasinilpotent part H0(T) and the analytic core K(T) of T ∈ B(�) are
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defined, respectively, by

H0(T)=
{
x ∈� : lim

n−→∞
∥∥Tn(x)

∥∥1/n = 0
}

,

K(T)= {x ∈� : ∃a sequence
{
xn
}⊂�, δ > 0

for which x = x0, T
(
xn+1

)= xn,
∥∥xn∥∥≤ δn‖x‖ ∀n= 1,2, . . .

}
.

(1.9)

We note that H0(T − λ) and K(T − λ) are (generally) nonclosed hyperinvariant subspaces
of T − λ such that (T − λ)−q(0)⊆H0(T − λ) for all q = 0,1,2, . . . and (T − λ)K(T − λ)=
K(T − λ) [18]. If T has SVEP at λ, then H0(T − λ) and K(T − λ) are closed. The operator
T ∈ B(�) is said to be semiregular if T(�) is closed and T−1(0)⊂ T∞(�)=∩n∈NTn(�);
T admits a generalized Kato decomposition, (GKD), if there exists a pair of T-invariant
closed subspaces (�,�) such that � =�⊕�, the restriction T|� is quasinilpotent and
T|� is semiregular. An operator T ∈ B(�) has a (GKD) at every λ ∈ isoσ(T), namely
� =H0(T − λ)⊕K(T − λ). We say that T − λ is of Kato type if (T − λ)|� is nilpotent in
the GKD for T − λ. Fredholm operators are Kato type [13, Theorem 4], and operators
T ∈ B(�) satisfying the following property:

H(p) H0(T − λ)= (T − λ)−p(0),

for some integer p ≥ 1, are Kato type at isolated points of σ(T) (but not every Kato type
operator T satisfies property H(p)).

2. k-gap and the Putnam-Fuglede theorem

Let, as before, A = (A1,A2, . . . ,An) and B = (B1,B2, . . . ,Bn) be n-tuples of mutually com-
muting scalar operators, and let �λ and �∗λ denote the elementary operators �λ(X) =∑n

i=1AiXBi − λX and �∗λ(X) =∑n
i=1A

∗
i XB

∗
i − λX . We say in the following that the n-

tuple A is normally constituted if Ai is normal for all 1≤ i≤ n.
The following theorem is the main result of this section.

Theorem 2.1. (i) There exists a real number α > 0 such that if (0 �=)X ∈ �−1
α (0), then

‖X‖ ≤ k‖�α(Y) +X‖ and ‖X‖ ≤ k‖�∗α(Y) +X‖ for some real number k ≥ 1 and all Y ∈
B(H).

Furthermore, if A and B are normally constituted, then
(ii) �−1

α (0)=�−1∗α(0).

Proof. There exist invertible self-adjoint operators T1,T2 ∈ B(H) and normal operators
Mi,Ni ∈ B(H), 1 ≤ i ≤ n, such that Mi = T−1

1 AiT1, Ni = T−1
2 BiT2, and [Mi,Mj] = 0 =

[Ni,Nj] for all 1 ≤ i, j ≤ n. Define scalars α1 and α2 by α1 = ‖
∑n

i=1M
∗
i Mi‖1/2 and α2 =

‖∑n
i=1N

∗
i Ni‖1/2, define the scalar α by α = √α1α2, and define the operators Ci and

Di, 1≤ i≤ n, by Ci = (1/
√
α1)Mi and Di = (1/

√
α2)Ni. Then (C1,C2, . . . ,Cn) and (D1,D2,

. . . ,Dn) are n-tuples of mutually commuting normal operators. Let E(X) =∑n
i=1CiXDi.

Set

U = [C1 C2 ··· Cn
]
, V = [D1 D2 ··· Dn

]t
, (2.1)
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where [···]t denotes the transpose of the row matrix [···]. Then U and V are contrac-
tions. Representing E(X) by

E(X) :=U
(
X



In
)
V , (2.2)

where In denotes the identity of Mn(C), it then follows that E is a contraction. Hence,

W
(
B
(
B(H)

)
,E
)⊆D. (2.3)

For µ∈ C, let Eµ denote the operator Eµ = E−µ. Then

W
(
B
(
B(H)

)
,E1
)⊆ {λ∈ C : |λ+ 1| ≤ 1

}
. (2.4)

In particular, 0 ∈ ∂W(B(B(H)),E1). Notice that if 0 is an eigenvalue of �α, then 0 is an
eigenvalue of E1. It follows from Sinclair [23, Proposition 1] that

‖X‖ ≤ ∥∥E1(Y) +X
∥∥ (2.5)

for all X ∈ E−1
1 (0) and Y ∈ B(H). In particular, asc(E1)≤ 1, which by a result of Shulman

[21] implies that E−1
1 (0) ⊆ E−1

∗1(0) (where E∗1 ∈ B(B(H)) is the operator E∗1 = E∗ − 1 :
X →∑n

i=1C
∗
i XD

∗
i −X). Representing E∗ by

E∗(X)=U1
(
X



In
)
V1, (2.6)

where

U1 =
[
C∗1 C∗2 ··· C∗n

]
, V1 =

[
D∗1 D∗2 ··· D∗n

]t
, (2.7)

it follows that E∗ is a contraction and 0 is an eigenvalue of E∗1 in ∂W(B(B(H)),E∗1).
Hence,

‖X‖ ≤ ∥∥E∗1(Y) +X
∥∥ (2.8)

for all X ∈ E−1
∗1(0) and Y ∈ B(H), which implies that E−1

∗1(0) ⊆ E−1
1 (0). Hence, E−1

1 (0) =
E−1
∗1(0). The proof of (ii) is now a consequence of the observation that

X ∈ E−1
1 (0)⇐⇒

n∑
i=1

MiXNi−αX = 0⇐⇒ X ∈ E−1
∗1(0)⇐⇒

n∑
i=1

M∗
i XN

∗
i −αX = 0. (2.9)

To prove (i), we let ‖T1‖‖T−1
1 ‖‖T2‖‖T−1

2 ‖ = k. Since

α‖X‖ ≤ α
∥∥E1(Y) +X

∥∥
=
∥∥∥∥∥T−1

1

{ n∑
i=1

Ai
(
T1YT

−1
2

)
Bi−αT1YT

−1
2 +αT1XT

−1
2

}
T2

∥∥∥∥∥
=⇒ ∥∥αT1XT

−1
2

∥∥≤ α
∥∥T1

∥∥∥∥T−1
2

∥∥‖X‖
≤ k
∥∥�α

(
T1YT

−1
2

)
+αT1XT

−1
2

∥∥
(2.10)
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for all X ∈ E−1
1 (0) and Y ∈ B(H) (equivalently, all T1XT

−1
2 ∈ �−1

α (0) and T1YT
−1
2 ∈

B(H)), it follows that �−1
α (0)⊥k�α(B(H)). A similar argument, applied this time to ‖X‖ ≤

‖E∗1(Y) +X‖, implies that �−1∗α(0)⊥k�∗α(B(H)). This completes the proof of the theo-
rem. �

The following corollary is an immediate consequence of the fact that asc(�α)≤ 1.

Corollary 2.2. The range of �α is closed if and only if �−1
α (0) + �α(B(H)) is closed.

For the proof see [16, Proposition 4.10.4].
The point α of Theorem 2.1 is not unique. Since 0∈ ∂W(B(B(H)),Eµ) for every µ ∈

C such that |µ| = 1, the argument of the proof of Theorem 2.1 implies the following
theorem.

Theorem 2.3. (i) There exists a complex number λ= αexp iθ, α > 0 and 0≤ θ < 2π, such
that if (0 �=)X ∈ �−1

λ (0), then ‖X‖ ≤ k‖�λ(Y) +X‖ and ‖X‖ ≤ k‖�∗λ(Y) +X‖ for some
real number k ≥ 1 and all Y ∈ B(H).

Furthermore, if A and B are normally constituted, then
(ii) �−1

λ (0)=�−1
∗λ(0) for all λ as in part (i).

Let the Hilbert space H be separable, and let �p denote the von Neumann-Schatten
p-class, 1≤ p <∞, with norm ‖ · ‖p. Then Theorem 2.3 has the following �p version.

Theorem 2.4. (i) There exists a complex number λ= αexp iθ, α > 0 and 0≤ θ < 2π, such
that if (0 �=)X ∈�−1

λ (0)∩�p, then ‖X‖p ≤ k‖�λ(Y) +X‖p and ‖X‖p ≤ k‖�∗λ(Y) +X‖p
for some real number k ≥ 1 and all Y ∈�p.

Furthermore, if A and B are normally constituted, then
(ii) �−1

λ (0)∩�p =�−1
∗λ(0)∩�p for all λ as in part (i).

Proof. Define the real numbers αi, i = 1,2, as in the proof of Theorem 2.1, define the
normal operators Ci and Di by Ci = (1/

√
α1n1/2p)Mi and Di = (1/

√
α2n1/2p)Ni. Let α =√

α1α2n1/p. Then E ∈ B(�p) is a contraction. Now argue as in the proof of Theorem 2.1.
�

As we will see in the following section, H0(�λ)=�
−p
λ (0) for all λ∈ C and some integer

p ≥ 1 (i.e., �λ satisfies property H(p)), which implies that asc(�λ)≥ 1 for all λ∈ C. (Here,
as also elsewhere, the statement asc(T)≥ 1 is to be taken to subsume the hypothesis that
T is not injective.) However, if the n-tuples A and B are of length n= 1, then asc(�λ)≤ 1
for all λ ∈ C and for a number of classes of not necessarily scalar or normal operators
A1 and B1 (see [7, 9]). If n = 2 and B1 = A2 = I , then asc(�λ) ≤ 1 (once again for A1

and B2 belonging to a number of classes of operators more general than the class of scalar
operators [7]). Again, if n= 2, then asc(�λ)≤ 1 for λ= 0 and λ= αexp iθ, as follows from
Theorem 2.1 and the following argument. Define the normal operators Mi and Ni, i =
1,2, as in the proof of Theorem 2.1. Then [M1,M2]= [N1,N2]= 0. Define φ ∈ B(B(H))
by φ(X) =M1XN1 + M2XN2. Then φ−1(0)⊥kφ(B(H)) (see [14] or [8]), which implies
that asc(φ) = asc(�)≤ 1. The following corollary, which generalizes [14, Theorem 2], is
now obvious.

Corollary 2.5. If A = (A1,A2) and B = (B1,B2) are 2-tuples of commuting scalar oper-
ators (∈ B(H)), if � ∈ B(B(H)) is defined by �(X) = A1XB1 +A2XB2 and if the complex
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number λ is as in Theorem 2.3, then asc(�µ)≤ 1, and �−1
µ (0)⊥k�µ(B(H)) for µ= 0,λ. Fur-

thermore, if A and B are normally constituted, then �−1
µ (0)=�−1∗µ(0) for µ= 0,λ.

Perturbation by quasinilpotents. Recall that every spectral operator T ∈ B(�) is the sum
T = S+Q of a scalar type operator S and a quasinilpotent operator Q such that [S,Q]= 0
[11]. Let A= (J1, J2) and B= (K1,K2) be tuples of operators in B(H) such that Ji =Ai +Qi

and Ki = Bi + Ri, i = 1,2, for some scalar operators Ai, Bi and quasinilpotent opera-
tors Qi, Ri. If we define E∈ B(B(H)) by E(X) = J1XK1 + J2XK2, then E(X) = �(X) +
φ(X), where �(X) is defined as in Corollary 2.5 and φ(X)= A1XR1 +A2XR2 +Q1XB1 +
Q2XB2 +Q1XR1 +Q2XR2. Recall that the sum of two commuting quasinilpotent oper-
ators, as well as the product of two commuting operators one of which is quasinilpo-
tent, is quasinilpotent [5, Lemma 3.8, Chapter 4]. Representing the operator X → SXT by
X → LSRT(X), where (S,T) denotes any of the operator pairs (Ai,Ri),(Qi,Bi), or (Qi,Ri),
i = 1,2, and assuming that the operators in the sets {A1,A2,Q1,Q2} and {R1,R2,B1,B2}
mutually commute, it follows that the operator φ is quasinilpotent.

Theorem 2.6. Let the operator E be defined as above. If the operators in the sets {A1,A2,
Q1,Q2} and {R1,R2,B1,B2}mutually commute, then X ∈ E−1(0)⇒ X ∈�−1(0).

Proof. Let X ∈ E−1(0). The hypothesis that the operators in the sets {A1,A2,Q1,Q2} and
{R1,R2,B1,B2}mutually commute then implies that

−φ(X)= E(X)= T1
{
M1
(
T−1

1 XT2
)
N1 +M2

(
T−1

1 XT2
)
N2
}
T−1

2 , (2.11)

where the operator φ is quasinilpotent, and where the normal operators Mi, Ni, [M1,
M2]= 0= [N1,N2], and the invertible operators Ti, i= 1,2, are defined as in the proof of
Theorem 2.1. Define Φ∈ B(B(H)) by Φ(Y)=M1YN1 +M2YN2. Since the operator φ is
quasinilpotent,

lim
n→∞

∥∥Φn
(
T−1

1 XT2
)∥∥1/n ≤ ∥∥T−1

1

∥∥∥∥T2
∥∥ lim
n→∞

∥∥φn(X)
∥∥1/n = 0. (2.12)

As earlier remarked upon, H0(Φ)=Φ−p(0) for some integer p ≥ 1. Since asc(Φ)≤ 1 (by
Corollary 2.5), it follows that Φ(T−1

1 XT2)= 0. Hence X ∈�−1(0). �

3. Weyl’s theorem

If A,B ∈ B(�) are generalized scalar operators, then LA,RB ∈ B(B(�)) are commuting
generalized scalar operators with two commuting spectral distributions, which implies
that LARB and LA + RB are generalized scalar operators (see [5, Theorem 3.3, Proposi-
tion 4.2, Theorem 4.3, Chapter 4]). Let A= (A1,A2, . . . ,An) and B= (B1,B2, . . . ,Bn) be n-
tuples of mutually commuting generalized scalar operators in B(�), and let the elemen-
tary operator Eλ ∈ B(B(�)) be defined by Eλ(X) =∑n

i=1AiXBi − λX . Since [LAi ,RBj ] =
0 for all 1 ≤ i, j ≤ n, the mutual commutativity of the n-tuples implies that [LAiRBi ,
LAjRBj ] = 0 for all 1 ≤ i, j ≤ n, the generalized scalar operators LAiRBi and LAjRBj have
two commuting spectral distributions, and (hence that) LAiRBi + LAjRBj is a generalized
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scalar operator. A finitely repeated application of this argument implies that Eλ is a gen-
eralized scalar operator for all λ∈ C. Thus

H0
(

Eλ
)= E

−p
λ (0) (3.1)

for some integer p ≥ 1 and all λ ∈ C see [5, Theorem 4.5, Chapter 4]. In particular,
asc(Eλ)≤ p <∞ for all λ∈ C and E(= E0) has SVEP.

The following proposition will be required in the proof of our main result.

Proposition 3.1. (a) The following conditions are equivalent:

(i) λ∈ isoσ(E);
(ii) λ is a pole of order p of the resolvent of E;

(iii) dsc(Eλ) <∞;
(iv) Eλ is Kato type and (in the definition of Kato type) the subspace �⊆ Eλ(B(�)).

(b) If E∗ denotes the conjugate operator of E, then σw(E∗)= σw(E), π00(E∗)= π00(E)=
π0(E)= π0(E∗), and λ∈ π00(E)⇒ Eλ ∈Φ(B(�)), and ind(Eλ)= 0.

Proof. (a) (i)⇒(ii). If λ ∈ isoσ(E), then B(�) = H0(Eλ)⊕ K(Eλ) = E
−p
λ (0)⊕ K(Eλ) for

some integer p ≥ 1. But then E
−p
λ (0) is complemented by the closed subspace K(Eλ) ⊆

Eλ(B(�))⇒ K(Eλ)= E
p
λ (B(�)) [15, Theorem 3.4]. Hence λ is a pole of the resolvent of E.

(ii)⇒(iii). The implication is obvious.
(iii)⇒(iv). If dsc(Eλ) <∞, then we have the following implications:

H0
(

Eλ
)= E

−p
λ (0), ∀λ∈ C,

=⇒ asc
(

Eλ
)= dsc

(
Eλ
)≤ p <∞, [16, Proposition 4.10.6],

=⇒ B(�)= E
−p
λ (0)⊕E

p
λ

(
B(�)

)=�⊕�

=⇒ Eλ is Kato type, �⊆ Eλ
(
B(�)

)
.

(3.2)

(iv)⇒(i). If Eλ is Kato type, then B(�) = �⊕�, where Eλ|� is nilpotent and Eλ|� is
semiregular. Since E−nλ (0)⊆� ⊆H0(Eλ)= E

−p
λ (0) for all nonnegative integers n, and the

closed subspace �⊆ Eλ(B(�)), λ∈ iso(E) [15, Theorem 3.2].
(b) The following implications hold:

λ /∈ σw
(

E∗
)⇐⇒ E∗λ ∈Φ

(
B(�)∗

)
, ind

(
E∗λ
)= 0,

⇐⇒ Eλ ∈Φ
(
B(�)

)
, ind

(
Eλ)= 0,

⇐⇒ λ /∈ σw(E
)
.

(3.3)

Hence σw(E)= σw(E∗). Again,

λ∈ isoσ
(

E∗
)⇐⇒ λ∈ isoσ(E)

⇐⇒ B(�)= E
−p
λ (0)⊕E

p
λ

(
B(�)

)⇐⇒ λ∈ π0(E)

⇐⇒ B(�)∗ = E∗
−p

λ (0)⊕E∗
p

λ

(
B(�)∗

)
⇐⇒ λ∈ π0

(
E∗
)
.

(3.4)



B. P. Duggal 473

Recall that if the ascent and the descent of an operator T are finite, and either 0 < α(T) <
∞ or 0 < β(T) <∞, then asc(T)= dsc(T) <∞ and 0 < α(T)= β(T) <∞ [12, Proposition
38.6]. Hence π00(E∗) = π00(E) = π0(E) = π0(E∗), and λ ∈ π00(E)⇒ Eλ ∈ Φ(B(�)) with
ind(Eλ)= 0. �

It is evident from Proposition 3.1(a) that a sufficient condition for Eλ to have closed
range is that λ ∈ isoσ(E). Proposition 3.1(b) implies that both E and E∗ satisfy Weyl’s
theorem: more is true. Let H(σ(E)) denote the set of functions f which are defined and
analytic on an open neighborhood of σ(E).

Theorem 3.2. (a) f (E) and f (E∗) satisfy Weyl’s theorem for every f ∈H(σ(E)).
(b) E∗ satisfies a-Weyl’s theorem.

Proof. (a) A proof follows from [19, Theorem 3.1]. Alternatively, one argues as follows. If
we let E′ denote either of E or E∗, then σ( f (E)′)= σ( f (E′)) and σw( f (E)′)= σw( f (E′)).
Since E′ is isoloid (i.e., isolated points of E′ are eigenvalues of E′) and Weyl’s theorem
holds for E′ (by Proposition 3.1), f (σw(E′))= f (σ(E′) \π00(E′))= σ( f (E′)) \π00( f (E′))
[17, lemma] and f (σw(E′))= σw( f (E′)) [6, Corollary 2.6]. (We note here that although
[17, lemma] is stated for a Hilbert space, it equally holds in the setting of a Banach
space.) Hence, since f (E) satisfies property H(p), then [19, Theorem 3.4] implies (by
Proposition 3.1) that Weyl’s theorem holds for f (E′), σ( f (E′)) \ σw( f (E′))= π00( f (E′)).

(b) The operator E has SVEP and the operator E∗ satisfies Weyl’s theorem; hence
σ(E∗) = σa(E∗) [16, page 35] and σa(E∗) \ σw(E∗) = πa0(E∗). We prove that σea(E∗) ⊇
σw(E∗): since σea(E∗) ⊆ σw(E∗) always, this would complete the proof. If λ /∈ σea(E∗),
then E∗λ ∈ Φ+(B(�)∗) and ind(E∗λ ) ≤ 0 ⇔ Eλ ∈ Φ−(B(�)) and ind(Eλ) ≥ 0, where
Φ−(B(�)) = {T ∈ B(B(�)) : β(T) <∞}. Since asc(Eλ) <∞, ind(Eλ) ≤ 0. Hence α(Eλ) =
β(Eλ) < ∞ and asc(Eλ) = dsc(Eλ) < ∞ [12, Proposition 38.6], which implies that λ /∈
σw(E∗). �
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[2] J. Anderson and C. Foiaş, Properties which normal operators share with normal derivations and

related operators, Pacific J. Math. 61 (1975), no. 2, 313–325.
[3] F. F. Bonsall and J. Duncan, Numerical Ranges. II, London Mathematical Society Lecture Notes

Series, no. 10, Cambridge University Press, New York, 1973.
[4] S. R. Caradus, W. E. Pfaffenberger, and Y. Bertram, Calkin Algebras and Algebras of Operators

on Banach Spaces, Marcel Dekker, New York, 1974.
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