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A range-kernal orthogonality property is established for the elementary operators €(X) =
S AXBiand €, (X) => AFXB}, where A = (A},A,...,A,) and B = (By,By,...,By)
are n-tuples of mutually commuting scalar operators (in the sense of Dunford) in the al-
gebra B(H) of operators on a Hilbert space H. It is proved that the operator € satisfies
Weyl’s theorem in the case in which A and B are n-tuples of mutually commuting gener-
alized scalar operators.

1. Introduction

For a Banach space operator T, T € B(¥X), the kernel T~!(0) and the range T (%) are said
to have a k-gap for some real number k > 1, denoted T~'(0) Ly T(%), if

ye T 10) = |yl <kdist(y, T(%)) (1.1)

[8, Definition, page 94]. Recall from [10, page 93] that a subspace /il of the Banach space
& is orthogonal to a subspace N of X if ||m|| < |lm + n|| for all m € M and n € N. This def-
inition of orthogonality coincides with the usual definition of orthogonality in the case
in which & = H is a Hilbert space. A 1-gap between T~!(0) and T(¥) corresponds to the
range-kernel orthogonality for the operator T (see [1, 2, 8, 14]). The following implica-
tions are straightforward to see

T H0) Lk T(X) =T 0)NT(X) = {0} = T0)NT(X) = {0} = asc(T) < 1,
(1.2)

where T(X) denotes the closure of T(¥) and asc(T) denotes the ascent of T. A k-gap
between T71(0) and T(X) does not imply that T(%X) is closed, or even when T(¥X) is
closed that = T~1(0) @ T(%) (see, e.g., [1, 2, 23]).

The classical Putnam-Fuglede commutativity theorem says that if A and B are nor-
mal Hilbert space operators, A and B € B(H), and if duap € B(B(H)) is the generalized
derivation 8op(X) := AX — XB, then §,3(0) = 8,i5: (0). Extant literature contains various
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generalizations of the Putnam-Fuglede theorem, amongst them the two n-tuples A =
(A1,Az,...,A,) and B = (By,B,,...,B,) of mutually commuting normal (Hilbert space)
operators A; and B;, 1 <i < n. Let € € B(B(H)) be the elementary operator

i=1

Ifasc(€) < 1, then €1(0) = €;1(0), where €, (X) := 31| A¥ XB/ (see [21, 22, 24]). The
conclusion €1(0) = €;'(0) fails if asc(€) > 1 [21]; moreover, in such a case it may hap-
pen that €71(0) N €(B(H)) # {0} [22]. For 2-tuples A and B of mutually commuting
normal operators it is always the case that asc(€) < 1 (see [14] or [8]).

This paper considers n-tuples A and B of mutually commuting scalar operators (in the
sense of Dunford and Schwartz [10]) A; and B;, 1 < i < n, to prove that the operator €, :=
(€ — ul) € B(B(H)) satisfies: (i) there exists a complex number A = aexpif, a >0 and
0 < 6 < 27, such that if €;1(0) # {0}, then €' (0) Ly ér(B(H)) and €} (0) Lk €. (B(H)),
where €4 = (€4 — AI). Furthermore, if the operators A; and B; in the n-tuples A and B
are normal, then (ii) %;1(0) =%;i(0). This compares with the fact that the operator €
may fail to satisfy the k-gap property of (i) or the Putnam-Fuglede-theorem-type com-
mutativity property of (ii). However, if we restrict the length n of the n-tuples A and
B to n =1 (resp., n = 2), then both (i) and (ii) hold for all complex numbers A [7, 9]
(resp., A = 0 and A = aexpif for some real number « > 0; see [7] and Theorem 2.4 infra).
Our proof of (i) and (ii) makes explicit the relationship between the existence of a k-gap
between the kernel and the range of the operator €, and the Putnam-Fuglede commuta-
tivity property for n-tuples A and B consisting of mutually commuting normal operators.
Letting the n-tuples A and B consist of mutually commuting generalized scalar operators
(in the sense of Colojoara and Foias [5]), it is proved that (i) a sufficient condition for
E1(B(X)) to be closed is that the complex number A is isolated in the spectrum of €; (ii)
f(€) and f(€*) satisfy Weyl’s theorem for every analytic function f defined on a neigh-
borhood of the spectrum of €, and the conjugate operator €* satisfies a-Weyl’s theorem.
These results will be proved in Sections 2 and 3, but before that, we explain our notation
and terminology.

The ascent of T € B(X), asc(T), is the least nonnegative integer #n such that T-"(0) =
T-1(0) and the descent of T, dsc(T), is the least nonnegative integer n such that
T™(X) = T (X). We say that T — A is of finite ascent (resp., finite descent) if asc(T —
M) < oo (resp., dsc(T — AI) < o). The numerical range of T is the closed convex set

W(B(&),T) = {f(T): f € BEO N fIl = f(DI =1} (1.4)

of the set C of complex numbers (see [3]). A spectral operator (in the sense of Dunford)
is an operator with a countable additive resolution of the identity defined on the Borel
sets of C; a spectral operator T is said to be scalar type if it satisfies T = [ AE(dA), where
E is the resolution of the identity for T [11, page 1938]. If A = (A},A»,...,A,) is an n-
tuple of mutually commuting scalar operators in B(H), then there exists an invertible
self-adjoint operator S such that S™'A;S = M; is a normal operator for all i = 1,2,...,n
[10, page 1947]. T € B(X) is a generalized scalar operator if there exists a continuous
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algebra homomorphism @ : C* — B(&X) for which ®(1) = I and ®(Z) = T, where C*(C)
is the Fréchet algebra of all infinitely differentiable functions on C (endowed with its
usual topology of uniform convergence on compact sets for the functions and their partial
derivatives) and Z is the identity function on C (see [5, 16]). We will denote the spectrum
and the isolated points of the spectrum of T by ¢(T) and isoa(T'), respectively. The closed
unit disc in C will be denoted by D, and dD will denote the boundary of the unit disc D.
The operator of left multiplication by T (right multiplication by T) will be denoted by
Ly (resp., Ry). It is clear that [Lg,Rr] = 0 for all S, T € B(%X), where [Lg, Rr] denotes the
commutator LsRr — RyLs. We will henceforth shorten (T —AI) to (T — ).

An operator T € B(¥X) is said to be Fredholm, T € ®(X), if T(%X) is closed and both
the deficiency indices a(T) = dim(T~1(0)) and B(T) = dim(¥/T (%)) are finite, and then
the index of T, ind(T), is defined to be ind(T) = a(T) — B(T). The operator T is Weyl
if it is Fredholm of index zero. The (Fredholm) essential spectrum o¢.(T) and the Weyl
spectrum o,,(T) of T are the sets

0.(T) = {A € C: T — Ais not Fredholm},
0y(T) = {A € C: T — Lisnot Weyl}. (1.5)
Let 719(T) denote the set of Riesz points of T (i.e., the set of A € C such that T — A is Fred-
holm of finite ascent and descent [4]), and let 719 (T') denote the set of isolated eigenvalues
of T of finite geometric multiplicity. Also, let 77,(T') be the set of A € C such that A is an
isolated point of 0,(T) and 0 < dimker(T — 1) < oo, where d,(T) denotes the approximate
point spectrum of the operator T. Clearly, 7o(T) < 7moo(T) S 7a0(T). We say that Weyl’s
theorem holds for T if

o(T)\ 0w(T) = moo(T), (1.6)
and a-Weyl’s theorem holds for T if
Oea(T) = 04(T) \ 7100(T), (1.7)

where 0,,(T) denotes the essential approximate point spectrum (i.e., 0ea(T) = N{0,(T +
K):K € K(&)} with K(¥) denoting the ideal of compact operators on X). If we let
O (X) ={T € B(X) : a(T) < o0 and T(X) is closed} denote the semigroup of upper
semi-Fredholm operators in B(X) and let ® (¥) = {T € ®,(X) : ind(T) < 0}, then 0,,(T)
is the complement in C of all those A for which (T — 1) € @, (¥). The concept of a-Weyl’s
theorem was introduced by Rakocevi¢: a-Weyl’s theorem for T implies Weyl’s theorem
for T, but the converse is generally false [20].

An operator T € B(X) has the single-valued extension property (SVEP) at Ay € C if for
every open disc %), centered at Ay, the only analytic function f : %), — & which satisfies

(T-M)f(A)=0 VAeD,, (1.8)

is the function f = 0. Trivially, every operator T has SVEP at points of the resolvent
p(T) =C\ o(T); also T has SVEP at A € isoo(T). We say that T has SVEP if it has SVEP
at every A € C. The quasinilpotent part Hy(T) and the analytic core K(T) of T € B(X) are
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defined, respectively, by

Ho(T) = {x €% lim || T"(0)]|"" = o},
K(T) = {x € ¥ : Ja sequence {x,} C ¥, § >0 (1.9)

for which x = xo, T(x,+1) = X, ||%4]| < 8"lIx]l V2 =1,2,...}.

We note that Hy(T — A) and K(T — 1) are (generally) nonclosed hyperinvariant subspaces
of T — A such that (T —1)74(0) € Hy(T —A) forall g = 0,1,2,... and (T —A)K(T - 1) =
K(T —A) [18]. If T has SVEP at A, then Hyo(T — A) and K(T — 1) are closed. The operator
T € B(%X) is said to be semiregular if T(X) is closed and T~1(0) C T®(X) = NpuenT™(X);
T admits a generalized Kato decomposition, (GKD), if there exists a pair of T-invariant
closed subspaces (A, N) such that & = M & N, the restriction T'| is quasinilpotent and
Ty is semiregular. An operator T' € B(X) has a (GKD) at every A € isoo(T), namely
X =Hy(T—-21)®K(T —A). We say that T — A is of Kato type if (T — A)| 4 is nilpotent in
the GKD for T — A. Fredholm operators are Kato type [13, Theorem 4], and operators
T € B(¥) satisfying the following property:

H(p) Ho(T = A) = (T —=1)"#(0),

for some integer p > 1, are Kato type at isolated points of ¢(T') (but not every Kato type
operator T satisfies property H(p)).

2. k-gap and the Putnam-Fuglede theorem

Let, as before, A = (A;,A,...,A,) and B = (By,Ba,...,B,) be n-tuples of mutually com-
muting scalar operators, and let €, and €., denote the elementary operators é,(X) =
ST AXB; —AX and €, (X) = > | A XBF — 1X. We say in the following that the n-
tuple A is normally constituted if A; is normal forall 1 <i < n.

The following theorem is the main result of this section.

Tueorem 2.1. (i) There exists a real number a >0 such that if (0 £)X € €,'(0), then
IXII < kl€a(Y)+ Xl and | X|| < kl€«a(Y) +XI|l for some real number k = 1 and all Y €
B(H).

Furthermore, if A and B are normally constituted, then

(i) €, (0) = €54(0).

Proof. There exist invertible self-adjoint operators T, T, € B(H) and normal operators
M;,N; € B(H), 1 <i < n, such that M; = T{'A; Ty, N; = T, 'B; T3, and (Mi,M;] =0 =
[N;,N;] for all 1 <i,j < n. Define scalars a; and a; by a; = || X2 Mj*M;[|'? and a, =
| > N*N;||'/2, define the scalar « by a = ,/aja;, and define the operators C; and
Dj, 1 <i<n,byC;=(1//ar)M; and D; = (1/./a;)N;. Then (C;,Cy,...,C,) and (Dy,D,,
..,Dy) are n-tuples of mutually commuting normal operators. Let E(X) = > | C;XD;.
Set

U=[C G -+ CJ, V=[Di Dy --- Dy, (2.1)
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where [ - - | denotes the transpose of the row matrix [- - - |. Then U and V are contrac-
tions. Representing E(X) by

EX):=UXQIL)V, (2.2)
where I,, denotes the identity of M,,(C), it then follows that E is a contraction. Hence,
W (B(B(H)),E) cD. (2.3)
For u € C, let E, denote the operator E, = E — y. Then
W(B(B(H)),E;) < {A e C:|A+1] <1}. (2.4)

In particular, 0 € OW(B(B(H)),E;). Notice that if 0 is an eigenvalue of €, then 0 is an
eigenvalue of E;. It follows from Sinclair [23, Proposition 1] that

I1X1 < ||E:(Y)+X]| (2.5)

for all X € E;1(0) and Y € B(H). In particular, asc(E;) < 1, which by a result of Shulman
[21] implies that E;'(0) < E;1(0) (where E,; € B(B(H)) is the operator Ey; = E — 1
X — X", CFXD} — X). Representing E,. by

E«(X)=U (X)) V1, (2.6)
where
vi=[Cf ¢ -+ Cfl, wi=[Df Df --- D;l, (2.7)

it follows that E.. is a contraction and 0 is an eigenvalue of Ey; in oW (B(B(H)),Ex1).
Hence,

X1 < ||Es(Y)+X]| (2.8)

for all X € E;1(0) and Y € B(H), which implies that E;}(0) < E;!(0). Hence, E;1(0) =
E;1(0). The proof of (ii) is now a consequence of the observation that

n n
X € E71(0) &= > MiXN; —aX =0 < X € E;{(0) < > M/XN/ —aX =0. (2.9)
i=1 i=1

To prove (i), we let [| Ty [ TT T2l T2 1| = k. Since

allX|l < a|[E (V) + X]|
- ’ T{l{ZAi(ﬂYT{l)Bi —aT\ YT, +05T1XT2_1}T2
i=1

= [l XT3 | < o | T[] [1X
< k||((€a(T1YT£1) +ocT1XT2’1||

(2.10)
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for all X € E;'(0) and Y € B(H) (equivalently, all T;XT5"' € €;'(0) and T, YT, "' €
B(H)), it follows that € !(0) Lx€,(B(H)). A similar argument, applied this time to [| X || <
|E«1(Y)+ X ||, implies that €;1(0) Lx€.(B(H)). This completes the proof of the theo-
rem. =

The following corollary is an immediate consequence of the fact that asc(é,) < 1.
COROLLARY 2.2. The range of €, is closed if and only if € ;1 (0) +€4(B(H)) is closed.

For the proof see [16, Proposition 4.10.4].

The point & of Theorem 2.1 is not unique. Since 0 € oW (B(B(H)), E,) for every u €
C such that |p| = 1, the argument of the proof of Theorem 2.1 implies the following
theorem.

THEOREM 2.3. (i) There exists a complex number A = aexpif, a >0 and 0 < 0 < 271, such
that if (0 #)X € %;1(0), then || X|| < kl|€x(Y) + X || and [| X < kl|€.A(Y) +X|| for some
real numberk > 1 and all Y € B(H).

Furthermore, if A and B are normally constituted, then

(ii) €;1(0) = €51(0) for all A as in part (i).

Let the Hilbert space H be separable, and let 6, denote the von Neumann-Schatten
p-class, 1 < p < co, with norm || - || ,. Then Theorem 2.3 has the following ¢, version.

THEOREM 2.4. (i) There exists a complex number A = aexpif, a« >0 and 0 < 0 < 27, such
that if (0 )X € €;1(0) N6, then || X, < kl€r(Y) +XIl, and | X, < kl€a(Y)+XIl,
for some real number k = 1 and all Y € 6,,.

Furthermore, if A and B are normally constituted, then

(i) €;1(0) ne, = €,1(0) N, forall A as in part (i).

Proof. Define the real numbers «;, i = 1,2, as in the proof of Theorem 2.1, define the
normal operators C; and D; by C; = (1//a;n"??)M; and D; = (1/y/an/??)N;. Let o =
Vara;n’?. Then E € B(6,) is a contraction. Now argue as in the proof of Theorem 2.1.

O

As we will see in the following section, Hy(€,) = %;p (0) for all A € C and some integer
p = 1(i.e., €, satisfies property H(p)), which implies that asc(€,) = 1 forall A € C. (Here,
as also elsewhere, the statement asc(7T") > 1 is to be taken to subsume the hypothesis that
T is not injective.) However, if the n-tuples A and B are of length n = 1, then asc(€)) < 1
for all A € C and for a number of classes of not necessarily scalar or normal operators
Ay and By (see [7,9]). If n =2 and By = A; = I, then asc(€,) < 1 (once again for A,
and B, belonging to a number of classes of operators more general than the class of scalar
operators [7]). Again, if n = 2, then asc(€,) < 1 for A = 0 and A = aexp 0, as follows from
Theorem 2.1 and the following argument. Define the normal operators M; and Nj, i =
1,2, as in the proof of Theorem 2.1. Then [M;,M,] = [N},N,] = 0. Define ¢ € B(B(H))
by ¢(X) = M1 XN; + M>XN,. Then ¢~1(0) Lxk¢(B(H)) (see [14] or [8]), which implies
that asc(¢p) = asc(€) < 1. The following corollary, which generalizes [14, Theorem 2], is
now obvious.

CoROLLARY 2.5. If A = (A},Ay) and B = (By,B,) are 2-tuples of commuting scalar oper-
ators (€ B(H)), if € € B(B(H)) is defined by €(X) = A\ XB; + A, XB, and if the complex
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number A is as in Theorem 2.3, then asc(€,) < 1, and %;1 (0) Lk €u(B(H)) for u = 0,A. Fur-
thermore, if A and B are normally constituted, then €, (0) = €, (0) for u = 0,A.

Perturbation by quasinilpotents. Recall that every spectral operator T € B(X) is the sum
T = S+ Q of a scalar type operator S and a quasinilpotent operator Q such that [S,Q] =0
[11]. Let A = (J;,/2) and B = (K3, K3) be tuples of operators in B(H) such that J; = A; + Q;
and K; = B;+ R;, i = 1,2, for some scalar operators A;, B; and quasinilpotent opera-
tors Q;, R;. If we define E€ B(B(H)) by E(X) = 1 XK; + ,LXK;, then E(X) = €(X) +
¢(X), where €(X) is defined as in Corollary 2.5 and ¢(X) = A1 XR; + A,XR, + QX B, +
Q2 XB; + Q1XR; + Q2XR,. Recall that the sum of two commuting quasinilpotent oper-
ators, as well as the product of two commuting operators one of which is quasinilpo-
tent, is quasinilpotent [5, Lemma 3.8, Chapter 4]. Representing the operator X — SXT by
X — LsRr(X), where (S, T) denotes any of the operator pairs (A;,R;),(Q;,Bi), or (Qi,R;),
i = 1,2, and assuming that the operators in the sets {A;,A,,Q;,Q2} and {R;,R,,B;,B,}
mutually commute, it follows that the operator ¢ is quasinilpotent.

THEOREM 2.6. Let the operator E be defined as above. If the operators in the sets {A1,A;,
Q1,Qy} and {Ry,Ry, By, By} mutually commute, then X € EH0)=> X €€710).

Proof. Let X € E~1(0). The hypothesis that the operators in the sets {A;,A,,Q;,Q,} and
{R1, Rz, By, B,} mutually commute then implies that

—¢(X) = E(X) = Ty {M (T{ "X To) Ny + My (T ' X To) N} T5 (2.11)

where the operator ¢ is quasinilpotent, and where the normal operators M;, Nj, [Mj,
M,] = 0 = [N;,N;], and the invertible operators T;, i = 1,2, are defined as in the proof of
Theorem 2.1. Define ® € B(B(H)) by ®(Y) = M; YN, + M,YN;. Since the operator ¢ is
quasinilpotent,

1/n 1/n

lim [|@"(T7 X To) |7 < [| T Y[ T2 lim [|¢" CO|| ™ = 0. (2.12)

As earlier remarked upon, Hy(®) = ®7(0) for some integer p > 1. Since asc(®) < 1 (by
Corollary 2.5), it follows that ®(T; ' X T,) = 0. Hence X € €7(0). O

3. Weyl’s theorem

If A,B € B(X) are generalized scalar operators, then Ls,Rp € B(B(¥)) are commuting
generalized scalar operators with two commuting spectral distributions, which implies
that LyRg and L4 + Rp are generalized scalar operators (see [5, Theorem 3.3, Proposi-
tion 4.2, Theorem 4.3, Chapter 4]). Let A = (A1, A,,...,A,) and B = (B, B,,...,B,) be n-
tuples of mutually commuting generalized scalar operators in B(%X), and let the elemen-
tary operator Ey € B(B(¥)) be defined by E(X) = X1 A;XB; — AX. Since (La,»Rp,] =
0 for all 1 <4, j < n, the mutual commutativity of the n-tuples implies that [Ls,Rg,,
La,Rp;] =0 for all 1 <1, j < n, the generalized scalar operators L4,Rp, and Ly, Rp; have
two commuting spectral distributions, and (hence that) La,Rp, + La;Rp; is a generalized
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scalar operator. A finitely repeated application of this argument implies that E, is a gen-
eralized scalar operator for all A € C. Thus

Hy(Ey) =E, 7 (0) (3.1)

for some integer p > 1 and all A € C see [5, Theorem 4.5, Chapter 4]. In particular,
asc(E)) < p < o for all A € C and E(= E;) has SVEP.
The following proposition will be required in the proof of our main result.

ProrosITION 3.1. (a) The following conditions are equivalent:
(i) A € isoo(E);

(ii) A is a pole of order p of the resolvent of E;

(iii) dsc(Ey) < oo;

(iv) E) is Kato type and (in the definition of Kato type) the subspace N' < Ey (B(X)).

(b) If E* denotes the conjugate operator of E, then 0,,(E*) = 0,,(E), moo(E*) = moo(E) =
mo(E) = mo(E*), and A € mpo(E) = Ey € O(B(¥X)), and ind(E,) = 0.
Proof. (a) (i)=(ii). If A € isod(E), then B(X) = Hy(E)) @ K(E,) = E;‘D(O) ® K(E,) for
some integer p > 1. But then E,”(0) is complemented by the closed subspace K (E;) <
Ey(B(X)) = K(E)) = Ef(B(%)) [15, Theorem 3.4]. Hence A is a pole of the resolvent of E.

(ii)=(iii). The implication is obvious.

(iii) = (iv). If dsc(E)) < o0, then we have the following implications:

Ho(E)) =E,7(0), Vieg,
= asc (Ey) =dsc(Ey) < p< oo, [16,Proposition 4.10.6],
= B(X)=E,7(0) ®E} (B(X)) = M &N
= E, is Kato type, N < Ey(B(X)).

(3.2)

(iv)=(i). If E, is Kato type, then B(¥) = M & N, where E,| 4 is nilpotent and E, |y is
semiregular. Since E;"(0) < /M < Hy(E)) = E;P (0) for all nonnegative integers n, and the
closed subspace N' < Ey(B(&X)), A € iso(E) [15, Theorem 3.2].
(b) The following implications hold:
Aéo,(E*) < Ef e ®(B(X)*), ind(Ef) =0,
= E, € O(B(¥)), ind(Ey)=0, (3.3)
= \A¢&oa,(E).

Hence 0,,(E) = 0,,(E*). Again,
A €isoo(E*) <= A €isoo(E)
= B(X)=E,"(0) e B} (B(¥)) = A € my(E)
= B®*)* =E} "(0) o E}" (B(X)*)

@AEH@(E*).

(3.4)
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Recall that if the ascent and the descent of an operator T are finite, and either 0 < a(T) <
00 or 0 < B(T) < oo, then asc(T) = dsc(T) < co and 0 < a(T) = B(T) < oo [12, Proposition
38.6]. Hence myo(E*) = mo0(E) = m9(E) = mo(E*), and A € mpo(E) = E; € ®(B(X)) with
ind(E,) = 0. a

It is evident from Proposition 3.1(a) that a sufficient condition for E, to have closed
range is that A € isoo(E). Proposition 3.1(b) implies that both E and E* satisty Weyl’s
theorem: more is true. Let H(c(E)) denote the set of functions f which are defined and
analytic on an open neighborhood of o(E).

TueoreMm 3.2. (a) f(E) and f(E*) satisfy Weyl’s theorem for every f € H(o(E)).
(b) E* satisfies a-Weyl’s theorem.

Proof. (a) A proof follows from [19, Theorem 3.1]. Alternatively, one argues as follows. If
we let E" denote either of E or E*, then o(f(E)") = o(f(E’)) and 0, (f(E)") = 0, (f (E")).
Since E’ is isoloid (i.e., isolated points of E" are eigenvalues of E’) and Weyl’s theorem
holds for E’ (by Proposition 3.1), f(0,,(E")) = f(a(E") \ mpo(E")) = o (f(E")) \ moo(f (E"))
[17,lemma] and f (0, (E")) = 0, (f(E")) [6, Corollary 2.6]. (We note here that although
[17, lemma] is stated for a Hilbert space, it equally holds in the setting of a Banach
space.) Hence, since f(E) satisfies property H(p), then [19, Theorem 3.4] implies (by
Proposition 3.1) that Weyl’s theorem holds for f(E"), o(f(E")) \ 0w (f(E")) = moo(f(E)).

(b) The operator E has SVEP and the operator E* satisfies Weyl’s theorem; hence
o(E*) = 0,(E*) [16, page 35] and 0,(E*) \ 0,,(E*) = 740(E*). We prove that 0.,(E*) 2
0y (E*): since 0,,(E*) < 0,,(E*) always, this would complete the proof. If A & 0,,(E*),
then Ef € ®,(B(¥)*) and ind(Ef) <0 ¢ E, € ®_(B(¥)) and ind(E,) = 0, where
DO_(B(X)) ={T € B(B(X)) : f(T) < oo}. Since asc(E;) < o, ind(Ey) < 0. Hence a(E,) =
B(E)) < o and asc(E;) = dsc(Ey) < co [12, Proposition 38.6], which implies that A &
o, (E*). a
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