SPACES OF D_{L^p} TYPE AND A CONVOLUTION PRODUCT ASSOCIATED WITH THE SPHERICAL MEAN OPERATOR

M. DZIRI, M. JELASSI, AND L. T. RACHDI

Received 2 June 2004 and in revised form 23 November 2004

We define and study the spaces $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$, $1 \le p \le \infty$, that are of D_{L^p} type. Using the harmonic analysis associated with the spherical mean operator, we give a new characterization of the dual space $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$ and describe its bounded subsets. Next, we define a convolution product in $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n) \times \mathcal{M}_r(\mathbb{R} \times \mathbb{R}^n)$, $1 \le r \le p < \infty$, and prove some new results.

1. Introduction

The spherical mean operator \mathcal{R} is defined, for a function f on \mathbb{R}^{n+1} , even with respect to the first variable, by

$$\mathscr{R}(f)(r,x) = \int_{S^n} f(r\eta, x + r\xi) d\sigma_n(\eta, \xi), \quad (r,x) \in \mathbb{R} \times \mathbb{R}^n,$$
(1.1)

where S^n is the unit sphere $\{(\eta, \xi) \in \mathbb{R} \times \mathbb{R}^n : \eta^2 + ||\xi||^2 = 1\}$ in \mathbb{R}^{n+1} and σ_n is the surface measure on S^n normalized to have total measure one.

This operator plays an important role and has many applications, for example, in image processing of so-called synthetic aperture radar (SAR) data (see [7, 8]), or in the linearized inverse scattering problem in acoustics [6]. In [10], the authors associate to the operator \Re a Fourier transform and a convolution product and have established many results of harmonic analysis (inversion formula, Paley-Wiener and Plancherel theorems, etc.).

In [11], the authors define and study Weyl transforms related to the mean operator \Re and have proved that these operators are compact. The spaces D_{L^p} , $1 \le p \le \infty$, have been studied by many authors [1, 2, 4, 5, 12, 13]. In this work, we introduce the function spaces $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$, $1 \le p \le \infty$, similar to D_{L^p} , but replace the usual derivatives by the operator

$$L = l + \sum_{j=1}^{n} \left(\frac{\partial}{\partial x_j}\right)^2,$$
(1.2)

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:3 (2005) 357–381 DOI: 10.1155/IJMMS.2005.357

where *l* is the Bessel operator defined on $]0, +\infty[$ by

$$l = \left(\frac{\partial}{\partial r}\right)^2 + \frac{n}{r}\frac{\partial}{\partial r}.$$
 (1.3)

The main result of this paper gives a new characterization of the dual space $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$ of the space $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$ and a description of its bounded subsets. More precisely, in Section 2, we recall some harmonic results related to a convolution product and the Fourier transform connected with the spherical mean operator, that we use in the following sections.

In the Section 3, we define the space $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$, $1 \le p \le \infty$, to be the space of measurable functions f on $]0, +\infty[\times \mathbb{R}^{n+1}$ such that for all $k \in \mathbb{N}$, $L^k f$ belongs to the space $L^p(d\nu)$ (the space of functions of pth power integrable on $[0, +\infty[\times \mathbb{R}^{n+1}]$ with respect to the measure $r^n dr \otimes dx$). We give some properties of this space, in particular we prove that it is a Frechet space.

Section 4 is consecrated to the study of the dual space $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$. We give a nice description of the elements of this space and we characterize its bounded subsets.

In the last section, we define and study a convolution product in $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n) \times M_r(\mathbb{R} \times \mathbb{R}^n)$, $1 \le r \le p < \infty$, where $M_r(\mathbb{R} \times \mathbb{R}^n)$ is the closure of the Schwartz space $S_*(\mathbb{R} \times \mathbb{R}^n)$ in $\mathcal{M}_r(\mathbb{R} \times \mathbb{R}^n)$.

2. Spherical mean operator

In this section, we define and recall some properties of the spherical mean operator. For more details see [3, 6, 10, 11]. We denote by

- (A) $\mathscr{C}_*(\mathbb{R} \times \mathbb{R}^n)$ the space of infinitely differentiable functions on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable,
- (B) S^n the unit sphere in $\mathbb{R} \times \mathbb{R}^n$,

$$S^{n} = \{(\eta, \xi) \in \mathbb{R} \times \mathbb{R}^{n}; \, \eta^{2} + \|\xi\|^{2} = 1\},$$
(2.1)

where for $\xi = (\xi_1, ..., \xi_n)$, we have $\|\xi\|^2 = \xi_1^2 + \cdots + \xi_n^2$,

(C) $d\sigma$ the normalized surface measure on S^n .

Definition 2.1. The spherical mean operator is defined on $\mathscr{C}_*(\mathbb{R} \times \mathbb{R}^n)$ by

$$\forall (r,x) \in [0,+\infty[\times\mathbb{R}^n, \quad \Re f(r,x) = \int_{S^n} f(r\eta, x+r\xi) d\sigma_n(\eta,\xi).$$
(2.2)

For $(\mu, \lambda) \in \mathbb{C} \times \mathbb{C}^n$, we put

$$\forall (r,x) \in [0,+\infty[\times\mathbb{R}^n, \quad \varphi_{\mu,\lambda}(r,x) = \Re(\cos(\mu \cdot)e^{-i\langle\lambda/\cdot\rangle})(r,x).$$
(2.3)

We have

$$\varphi_{\mu,\lambda}(r,x) = j_{(n-1)/2} \left(r \sqrt{\mu^2 + \lambda^2} \right) e^{-i\langle \lambda/x \rangle}, \qquad (2.4)$$

where $j_{(n-1)/2}$ is the normalized Bessel function defined by

$$j_{(n-1)/2}(x) = 2^{(n-1)/2} \Gamma \frac{n+1}{2} \frac{J_{(n-1)/2}(z)}{z^{(n-1)/2}}$$
$$= \Gamma \frac{n+1}{2} \sum_{k=0}^{+\infty} \frac{(-1)^k}{k! \Gamma((2k+1+n)/2)} \left(\frac{z}{2}\right)^{2k}$$
(2.5)

with $J_{(n-1)/2}$ the Bessel function of first kind and index (n-1)/2 [9, 15], and if $\lambda = (\lambda_1, ..., \lambda_n) \in \mathbb{C}^n$ and $x = (x_1, ..., x_n) \in \mathbb{R}^n$, we put $\lambda^2 = \lambda_1^2 + \cdots + \lambda_n^2$ and $\langle \lambda / x \rangle = \lambda_1 x_1 + \cdots + \lambda_n x_n$.

The normalized Bessel function $j_{(n-1)/2}$ has the following Mehler integral representation:

$$\forall r \in \mathbb{R}, \quad j_{(n-1)/2}(r) = \frac{2\Gamma((n+1)/2)}{\sqrt{\pi}\Gamma(n/2)} \int_0^1 (1-t^2)^{n/2-1} \cos(tr) dt, \tag{2.6}$$

and therefore

$$\forall k \in \mathbb{N}, \ \forall r \in \mathbb{R}, \quad \left| j_{(n-1)/2}^{(k)}(r) \right| \le 1.$$

$$(2.7)$$

Moreover, for all $\lambda \in \mathbb{C}$, the function

$$r \mapsto j_{(n-1)/2}(\lambda r)$$
 (2.8)

is the unique solution of the differential equation

$$lu(r) = -\lambda^2 u(r),$$

$$u(0) = 1, \qquad u'(0) = 0,$$
(2.9)

where *l* is the Bessel operator defined on $]0, +\infty[$ by (1.3).

On the other hand, the function $\varphi_{\mu,\lambda}$ is the unique solution of the system

$$D_{j}v(r,x) = -i\lambda_{j}v(r,x), \quad j = 1, 2, ..., n,$$

$$(l - \Delta)v(r,x) = -\mu^{2}v(r,x),$$

$$v(0,0) = 1; \quad \frac{\partial v}{\partial r}(0,x) = 0 \quad \forall x \in \mathbb{R}^{n},$$

(2.10)

where $D_j = \partial/\partial x_j$, and Δ is the Laplacien operator on \mathbb{R}^n :

$$\Delta = \sum_{j=1}^{n} D_j^2.$$
 (2.11)

Now let Γ be the set

$$\Gamma = \mathbb{R} \times \mathbb{R}^n \cup \{ (it, x); (t, x) \in \mathbb{R} \times \mathbb{R}^n, |t| \le ||x|| \}.$$
(2.12)

We have for all $(\mu, \lambda) \in \Gamma$,

$$\sup_{(r,x)\in\mathbb{R}\times\mathbb{R}^n} |\varphi_{\mu,\lambda}(r,x)| = 1.$$
(2.13)

In the following, we will define a convolution product and the Fourier transform associated with the spherical mean operator. For this, we use the product formula for the functions $\varphi_{\mu,\lambda}$. For all $(r, x), (s, y) \in \mathbb{R} \times \mathbb{R}^n$,

$$\varphi_{\mu,\lambda}(r,x)\varphi_{\mu,\lambda}(s,y) = \frac{\Gamma((n+1)/2)}{\sqrt{\pi}\Gamma(n/2)} \int_0^\pi \varphi_{\mu,\lambda} \left(\sqrt{r^2 + s^2 + 2rs\cos\theta}, x+y\right) \times (\sin\theta)^{n-1}\theta.$$
(2.14)

We denote by (see [11])

(A) $d\nu(r,x)$ the measure defined on $[0, +\infty[\times \mathbb{R}^n$ by

$$d\nu(r,x) = k_n r^n dr \otimes dx \tag{2.15}$$

with

$$k_n = \frac{1}{2^{(n-1)/2} \Gamma((n+1)/2) (2\pi)^{n/2}};$$
(2.16)

(B) $L^p(d\nu)$, $1 \le p \le +\infty$, the space of measurable functions on $[0, +\infty[\times \mathbb{R}^n, \text{satisfy-ing}]$

$$\|f\|_{p,\nu} = \left(\int_{\mathbb{R}^n} \int_0^\infty |f(r,x)|^p d\nu(r,x)\right)^{1/p} < +\infty, \quad 1 \le p < +\infty,$$

$$\|f\|_{\infty,\nu} = \operatorname{ess\,sup}_{(r,x)\in[0,+\infty[\times\mathbb{R}^n]} |f(r,x)| < \infty, \quad p = +\infty;$$

(2.17)

(C) $d\gamma(\mu, \lambda)$ the measure defined on the set Γ by

$$\int_{\Gamma} f(\mu,\lambda) d\gamma(\mu,\lambda) = k_n \left\{ \int_{\mathbb{R}^n} \int_0^{\infty} f(\mu,\lambda) \left(\mu^2 + \|\lambda\|^2 \right)^{(n-1)/2} \mu d\mu d\lambda + \int_{\mathbb{R}^n} \int_0^{\|\lambda\|} f(i\mu,\lambda) \left(\|\lambda\|^2 - \mu^2 \right)^{(n-1)/2} \mu d\mu d\lambda \right\};$$
(2.18)

(D) $L^p(d\gamma)$, $1 \le p \le +\infty$, the space of measurable functions on Γ , satisfying

$$\|f\|_{p,\gamma} = \left(\int_{\Gamma} |f(\mu,\lambda)|^{p} d\gamma(\mu,\lambda)\right)^{1/p} < +\infty, \quad 1 \le p < +\infty, \|f\|_{\infty,\gamma} = \underset{(\mu,\lambda)\in\Gamma}{\operatorname{ess sup}} |f(\mu,\lambda)| < \infty, \quad p = +\infty.$$
(2.19)

Definition 2.2. (i) The translation operator associated with the spherical mean operator is defined on $L^1(d\nu)$ by for all $(r,x), (s, y) \in [0, +\infty[\times \mathbb{R}^n,$

$$\tau_{(r,x)}f(s,y) = \frac{\Gamma((n+1)/2)}{\sqrt{\pi}\Gamma(n/2)} \int_0^{\pi} f\left(\sqrt{r^2 + s^2 + 2rs\cos\theta}, x + y\right) (\sin\theta)^{n-1} d\theta.$$
(2.20)

(ii) A convolution product associated with the spherical mean operator of $f,g \in L^1(d\nu)$ is defined by for all $(r,x) \in [0, +\infty[\times \mathbb{R}^n]$,

$$f * g(r,x) = \int_{\mathbb{R}^n} \int_0^\infty f(s,y) \tau_{(r,-x)} \check{g}(s,y) d\nu(s,y), \qquad (2.21)$$

where

$$\breve{g}(r,x) = g(r,-x).$$
(2.22)

We have the following properties.

- (A) $\tau_{(r,x)}\varphi_{\mu,\lambda}(s,y) = \varphi_{\mu,\lambda}(r,x)\varphi_{\mu,\lambda}(s,y).$
- (B) If $f \in L^p(d\nu)$, $1 \le p \le +\infty$, then for all $(s, y) \in [0, +\infty[\times \mathbb{R}^n]$, the function $\tau_{(s,y)} f \in L^p(d\nu)$, and we have

$$\||\tau_{(s,y)}f\||_{p,\nu} \le \|f\|_{p,\nu}.$$
(2.23)

(C) Let $1 \le p, q, r \le +\infty$ such that 1/r = 1/p + 1/q - 1, then for all $f \in L^p(d\nu)$ and all $g \in L^q(d\nu)$, the function $f * g \in L^r(d\nu)$, and we have

$$\|f * g\|_{r,\nu} \le \|f\|_{p,\nu} \|g\|_{q,\nu}.$$
(2.24)

Definition 2.3. The Fourier transform associated with the spherical mean operator is defined on $L^1(d\nu)$ by

$$\forall (\mu, \lambda) \in \Gamma, \quad \mathscr{F}f(\mu, \lambda) = \int_{\mathbb{R}^n} \int_0^\infty f(r, x) \varphi_{\mu, \lambda}(r, x) d\nu(r, x). \tag{2.25}$$

We have the following properties.

(A) For all $(\mu, \lambda) \in \Gamma$,

$$\mathcal{F}f(\mu,\lambda) = Bo\tilde{\mathcal{F}}f(\mu,\lambda),$$
 (2.26)

where for all $(\mu, \lambda) \in \mathbb{R} \times \mathbb{R}^n$,

$$\begin{split} \tilde{\mathscr{F}}f(\mu,\lambda) &= \int_{\mathbb{R}^n} \int_0^\infty f(r,x) j_{(n-1)/2}(r\mu) e^{-i\langle\lambda/x\rangle} d\nu(r,x), \\ \forall (\mu,\lambda) \in \Gamma, \quad Bf(\mu,\lambda) &= f\left(\sqrt{\mu^2 + \lambda^2}, \lambda\right). \end{split}$$
(2.27)

(B) For $f \in L^1(d\nu)$ such that $\mathcal{F}f \in L^1(d\gamma)$, we have the inversion formula for \mathcal{F} : for almost every $(r, x) \in [0, +\infty[\times \mathbb{R}^n,$

$$f(r,x) = \iint_{\Gamma} \mathcal{F}f(\mu,\lambda) \overline{\varphi_{\mu,\lambda}(r,x)} d\gamma(\mu,\lambda).$$
(2.28)

(C) Let *f* be in $L^1(d\nu)$. For all $(s, y) \in [0, +\infty[\times \mathbb{R}^n, we have$

$$\forall (\mu, \lambda) \in \Gamma, \quad \mathscr{F}(\tau_{(s, -y)} f)(\mu, \lambda) = \varphi_{\mu, \lambda}(s, y) \mathscr{F}f(\mu, \lambda). \tag{2.29}$$

(D) For $f,g \in L^1(d\nu)$, we have

$$\forall (\mu, \lambda) \in \Gamma, \quad \mathcal{F}(f * g)(\mu, \lambda) = \mathcal{F}f(\mu, \lambda)\mathcal{F}g(\mu, \lambda). \tag{2.30}$$

(E) For all $p \in [1, +\infty]$ and $f \in L^p(d\nu)$,

$$Bf \in L^p(d\gamma), \qquad \|Bf\|_{p,\gamma} = \|f\|_{p,\gamma}.$$
 (2.31)

In particular, the mapping *B* is an isometric isomorphism from $L^2(d\nu)$ onto $L^2(d\gamma)$. The mapping $\tilde{\mathcal{F}}$ is also an isometric isomorphism from $L^2(d\nu)$ onto itself. Consequently, the Fourier transform \mathcal{F} is an isometric isomorphism from $L^2(d\nu)$ onto $L^2(d\gamma)$.

Thus,

$$\forall f \in L^2(d\nu), \quad \mathcal{F}f \in L^2(d\gamma), \quad \|\mathcal{F}f\|_{2,\gamma} = \|f\|_{2,\nu}. \tag{2.32}$$

PROPOSITION 2.4 (see[11]). Let f be in $L^p(d\nu)$, with $p \in [1,2]$. Then $\mathcal{F}f \in L^{p'}(d\gamma)$, with 1/p + 1/p' = 1, and

$$\|\mathscr{F}f\|_{p',\gamma} \le \|f\|_{p,\gamma}.$$
(2.33)

We denote by

- (A) $S_*(\mathbb{R} \times \mathbb{R}^n)$ the space of infinitely differentiable functions on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, rapidly decreasing together with all their derivatives;
- (B) $S_*(\Gamma)$ the space of infinitely differentiable functions on Γ , even with respect to the first variable, rapidly decreasing together with all their derivatives; that means for all $k_1, k_2 \in \mathbb{N}$, for all $\alpha \in \mathbb{N}^n$,

$$\sup\left\{\left(1+|\mu|^{2}+\|\lambda\|^{2}\right)^{k_{1}}\left|\left(\frac{\partial}{\partial\mu}\right)^{k_{2}}D_{\lambda}^{\alpha}f(\mu,\lambda)\right|;\,(\mu,\lambda)\in\Gamma\right\}<+\infty,\qquad(2.34)$$

where

$$\frac{\partial f}{\partial \mu}(\mu,\lambda) = \begin{cases} \frac{\partial}{\partial r}(f(r,\lambda)) & \text{if } \mu = r \in \mathbb{R}, \\ \frac{1}{i}\frac{\partial}{\partial t}(f(it,\lambda)) & \text{if } \mu = it, |t| \le ||\lambda||, \\ D_{\lambda}^{\alpha} = \left(\frac{\partial}{\partial \lambda_{1}}\right)^{\alpha_{1}} \left(\frac{\partial}{\partial \lambda_{2}}\right)^{\alpha_{2}} \cdots \left(\frac{\partial}{\partial \lambda_{n}}\right)^{\alpha_{n}},$$
(2.35)

(see [10]);

(C) $S'_*(\mathbb{R} \times \mathbb{R}^n)$ and $S'_*(\Gamma)$ are, respectively, the dual spaces of $S_*(\mathbb{R} \times \mathbb{R}^n)$ and $S_*(\Gamma)$. Each of these spaces is equipped with its usual topology.

Remark 2.5. From [10], the Fourier transform \mathcal{F} is a topological isomorphism from $S_*(\mathbb{R} \times \mathbb{R}^n)$ onto $S_*(\Gamma)$. The inverse mapping is given by for all $(r, x) \in \mathbb{R} \times \mathbb{R}^n$,

$$\mathcal{F}^{-1}f(r,x) = \int_{\Gamma} f(\mu,\lambda) \overline{\varphi_{\mu,\lambda}(r,x)} d\gamma(\mu,\lambda).$$
(2.36)

Definition 2.6. The Fourier transform \mathcal{F} is defined on $S'_*(\mathbb{R} \times \mathbb{R}^n)$ by

$$\forall T \in S'_*(\mathbb{R} \times \mathbb{R}^n), \quad \langle \mathcal{F}(T), \varphi \rangle = \langle T, \mathcal{F}^{-1}(\varphi) \rangle, \quad \varphi \in S_*(\Gamma).$$
(2.37)

Since the Fourier transform \mathcal{F} is an isomorphism from $S_*(\mathbb{R} \times \mathbb{R}^n)$ onto $S_*(\Gamma)$, we deduce that \mathcal{F} is also an isomorphism from $S'_*(\mathbb{R} \times \mathbb{R}^n)$ onto $S'_*(\Gamma)$.

3. The space $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$

We denote by

(A) *L* the partial differential operator defined by

$$L = -\left(\frac{\partial^2}{\partial r^2} + \frac{n}{r}\frac{\partial}{\partial r}\right) - \sum_{j=0}^n \frac{\partial^2}{\partial x_j^2};$$
(3.1)

(B) for $f \in L^p(d\nu)$, $p \in [1, \infty]$, T_f is the element of $S'_*(\mathbb{R} \times \mathbb{R}^n)$ defined by

$$\langle T_f, \varphi \rangle = \int_{\mathbb{R}^n} \int_0^\infty f(r, x) \varphi(r, x) d\nu(r, x), \quad \varphi \in S_* (\mathbb{R} \times \mathbb{R}^n);$$
(3.2)

(C) for $g \in L^p(d\gamma)$, $p \in [1, \infty]$, T_g is the element of $S'_*(\Gamma)$ defined by

$$\langle T_g, \psi \rangle = \int_{\Gamma} g(\mu, \lambda) \psi(\mu, \lambda) d\gamma(\mu, \lambda), \quad \psi \in S_*(\Gamma).$$
 (3.3)

From Proposition 2.4 and Remark 2.5, we deduce that for all $f \in L^p(d\nu)$, $1 \le p \le 2$, $\mathcal{F}f$ belongs to the space $L^{p'}(d\gamma)$ and we have

$$\mathscr{F}(T_f) = T_{\mathscr{F}(\check{f})}.$$
(3.4)

Definition 3.1. Let $p \in [1, \infty]$. We define $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$ to be the set of measurable functions f on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable, and such that for all $k \in \mathbb{N}$ there exists $g_k \in L^p(d\nu)$ satisfying

$$L^k T_f = T_{g_k}. (3.5)$$

The space $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$ is equipped with the topology generated by the family of norms

$$\gamma_{m,p}(f) = \max_{0 \le k \le m} ||g_k||_{p,\nu}, \quad m \in \mathbb{N},$$
(3.6)

where $g_k, k \in \mathbb{N}$, is the function given by the relation (3.5). Let

$$d_p: \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n) \times \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n) \longrightarrow [0, \infty[,$$

$$(f,g) \longmapsto d_p(f,g) = \sum_{m=0}^{\infty} \frac{1}{2^m} \frac{\gamma_{m,p}(f-g)}{1 + \gamma_{m,p}(f-g)}.$$
(3.7)

Then d_p is a distance on $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$. Moreover the sequence $(f_k)_{k \in \mathbb{N}}$ converges to 0 in $(\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n), d_p)$ if and only if

$$\forall m \in \mathbb{N}, \quad \gamma_{m,p}(f_k) \xrightarrow[k \to \infty]{} 0. \tag{3.8}$$

In the following, we will give some properties of the space $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$.

PROPOSITION 3.2. $(\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n), d_p)$ is a Frechet space.

Proof. Let $(f_m)_{m \in \mathbb{N}}$ be a Cauchy sequence in $(\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n), d_p)$ and let $(g_{m,k})_{m \in \mathbb{N}} \subset L^p(d\nu)$ such that

$$L^k T_{f_m} = T_{g_{m,k}}, \quad k \in \mathbb{N}.$$
(3.9)

Then for all $k \in \mathbb{N}$, $(g_{m,k})_{m \in \mathbb{N}}$ is a Cauchy sequence in $L^p(d\nu)$. We put

$$f = g_0 = \lim_{m \to \infty} f_m,$$

$$g_k = \lim_{m \to \infty} g_{m,k}, \quad k \in \mathbb{N}^*,$$
(3.10)

in $L^p(d\nu)$. Thus

$$\forall k \in \mathbb{N}, \quad T_{g_{m,k}} \xrightarrow[m \to \infty]{} T_{g_k}, \tag{3.11}$$

in $S'_*(\mathbb{R} \times \mathbb{R}^n)$. Since L^k is a continuous operator from $S'_*(\mathbb{R} \times \mathbb{R}^n)$ into itself, we deduce that

$$L^{k}T_{f_{m}} \xrightarrow[m \to \infty]{} L^{k}T_{f}, \qquad (3.12)$$

in $S'_*(\mathbb{R} \times \mathbb{R}^n)$.

From relations (3.9) and (3.11), we deduce that

$$\forall k \in \mathbb{N}, \quad L^k T_f = T_{g_k}. \tag{3.13}$$

This proves that $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$ and

$$f_m \xrightarrow[m \to \infty]{} f \tag{3.14}$$

in $(\mathcal{M}_p(\mathbb{R}\times\mathbb{R}^n), d_p)$.

PROPOSITION 3.3. Let $p \in [1,2]$ and $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$, then

(i) for all $k \in \mathbb{N}$, the function

$$(\mu,\lambda) \longrightarrow \left(1 + \mu^2 + 2\|\lambda\|^2\right)^k \mathcal{F}(f)(\mu,\lambda) \tag{3.15}$$

belongs to the space $L^{p'}(d\gamma)$ with p' = p/(p-1);

(ii) $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n) \cap \mathcal{C}_*(\mathbb{R} \times \mathbb{R}^n) \subset \mathcal{C}_*(\mathbb{R} \times \mathbb{R}^n)$, where $\mathcal{C}_*(\mathbb{R} \times \mathbb{R}^n)$ is the space of continuous functions on $\mathbb{R} \times \mathbb{R}^n$ even with respect to the first variable.

Proof. (i) Let $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$, $1 \le p \le 2$, and $g_k \in L^p(d\nu)$ such that

$$L^k T_f = T_{g_k} \quad k \in \mathbb{N}. \tag{3.16}$$

From relation (3.4), we have

$$\mathscr{F}(T_{g_k}) = T_{\mathscr{F}(\check{g}_k)},\tag{3.17}$$

which gives

$$\mathscr{F}(L^k T_f) = T_{\mathscr{F}(\check{g}_k)}.$$
(3.18)

On the other hand

$$\mathcal{F}(L^{k}T_{f}) = \left(\mu^{2} + 2\|\lambda\|^{2}\right)^{k} \mathcal{F}(T_{f}) = T_{(\mu^{2} + 2\|\lambda\|^{2})^{k} \mathcal{F}(\check{f})},$$
(3.19)

hence

$$\left(\mu^2 + 2\|\lambda\|^2\right)^k \mathcal{F}(f) = \mathcal{F}(g_k). \tag{3.20}$$

This equality, together with the fact that the function $\mathcal{F}(g_k)$ belongs to the space $L^{p'}(d\nu)$ implies (i).

(ii) Let $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n) \cap \mathscr{C}_*(\mathbb{R} \times \mathbb{R}^n)$. From the assertion (i) and relations (2.26) and (2.31), we deduce that for all $k \in \mathbb{N}$, the function

$$(r,x) \longrightarrow (r^2 + ||x||^2)^k \widetilde{\mathcal{F}}(f)$$
 (3.21)

belongs to the space $L^{p'}(d\nu)$, in particular $\widetilde{\mathcal{F}}(f) \in L^1(d\nu) \cap L^2(d\nu)$.

On the other hand, the transform $\tilde{\mathcal{F}}$ is an isometric isomorphism from $L^2(d\nu)$ onto itself, then from the inversion formula for $\tilde{\mathcal{F}}$ and using the continuity of the function f, we have for all $(r, x) \in \mathbb{R} \times \mathbb{R}^n$,

$$f(r,x) = \int_{\mathbb{R}^n} \int_0^\infty \widetilde{\mathcal{F}}_{F} f(\mu,\lambda) j_{(n-1)/2}(r\mu) e^{i\langle\lambda/x\rangle} d\nu(\mu,\lambda).$$
(3.22)

Consequently, (ii) follows from relation (2.7) and the fact that for all $k \in \mathbb{N}$, $\alpha \in \mathbb{N}^n$, the function

$$(\mu,\lambda) \longrightarrow \mu^k \lambda^\alpha \widetilde{\mathcal{F}}(\mu,\lambda) \tag{3.23}$$

belongs to the space $L^1(d\nu)$.

PROPOSITION 3.4. Let $p \in [1, 2]$, then, for all $r \in [2, \infty]$,

$$\mathcal{M}_{p}(\mathbb{R}\times\mathbb{R}^{n})\cap\mathcal{C}_{*}(\mathbb{R}\times\mathbb{R}^{n})\subset\mathcal{M}_{r}(\mathbb{R}\times\mathbb{R}^{n}).$$
(3.24)

Proof. Let $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n) \cap \mathcal{C}_*(\mathbb{R} \times \mathbb{R}^n)$, $p \in [1,2]$, $r \ge 2$, and r' = r/(r-1). From Proposition 3.3, we deduce that $f \in \mathcal{C}_*(\mathbb{R} \times \mathbb{R}^n)$ and for all $k \in \mathbb{N}$, the function (3.21) belongs to the space $L^{p'}(d\nu)$. By applying Holder's inequality, it follows that this last function belongs to the space $L^{r'}(d\nu)$. On the other hand, for all $(r, x) \in \mathbb{R} \times \mathbb{R}^n$,

$$L^{k}f(r,x) = \int_{\mathbb{R}^{n}} \int_{0}^{\infty} \left(\mu^{2} + \|\lambda\|^{2}\right)^{k} \widetilde{\mathcal{F}}(f)(\mu,\lambda) j_{(n-1)/2}(r\mu) e^{i\langle\lambda/x\rangle} d\nu(\mu,\lambda)$$

$$= \widetilde{\mathcal{F}}\left(\left(\mu^{2} + \|\lambda\|^{2}\right)^{k} \widetilde{\mathcal{F}}(\check{f})\right)(r,x).$$
(3.25)

From Proposition 2.4 and the fact that

$$\left|\left|\mathfrak{F}(g)\right|\right|_{r,\gamma} = \left|\left|\mathfrak{F}(g)\right|\right|_{r,\gamma}, \quad g \in L^{r'}(d\nu), \tag{3.26}$$

we deduce that, for all $k \in \mathbb{N}$, the function $L^k f$ belongs to the space $L^r(d\nu)$.

4. The dual space $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$

In this section, we will give a new characterization of the dual space $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$ of $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$. We recall that for every $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$, the family $\{V_{m,p,\varepsilon}(f), m \in \mathbb{N}, \varepsilon > 0\}$ is a basic of neighborhoods of f in $(\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n), d_p)$, where

$$V_{m,p,\varepsilon}(f) = \{ g \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n), \, \gamma_{m,p}(f-g) < \varepsilon \}.$$

$$(4.1)$$

In addition, $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$ if and only if there exist $m \in \mathbb{N}$ and c > 0 such that

$$\forall f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n), \quad |\langle T, f \rangle| \le c \gamma_{m,p}(f).$$
(4.2)

For $f \in L^{p'}(d\nu)$ and $\varphi \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$, we put

$$\langle L^{k}(T_{f}), \varphi \rangle = \int_{\mathbb{R}^{n}} \int_{0}^{\infty} f(r, x) \psi_{k}(r, x) d\nu(r, x)$$
(4.3)

with $L^k T_{\varphi} = T_{\psi_k}$. Then

$$|\langle L^{k}(T_{f}),\varphi\rangle| \leq ||f||_{p',\nu} ||\psi_{k}||_{p,\nu} \leq ||f||_{p',\nu} \gamma_{k,p}(\varphi).$$
(4.4)

This proves that for all $f \in L^{p'}(d\nu)$ and $k \in \mathbb{N}$, the functional $L^k T_f$ defined by the relation (4.3) belongs to the space $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$.

In the following, we will prove that every element of $\mathcal{M}'_p(\mathbb{R}\times\mathbb{R}^n)$ is also of this type.

THEOREM 4.1. Let $T \in S'_*(\mathbb{R} \times \mathbb{R}^n)$. Then $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$, $1 \le p < \infty$, if and only if there exist $m \in \mathbb{N}$ and $\{f_0, \ldots, f_m\} \subset L^{p'}(d\nu)$ such that

$$T = \sum_{k=0}^{m} L^k T_{f_k},$$
 (4.5)

where $L^k T_{f_k}$ is given by relation (4.3).

Proof. It is clear that if

$$T = \sum_{k=0}^{m} L^{k} T_{f_{k}}, \quad \{f_{0}, \dots, f_{m}\} \subset L^{p'}(d\nu),$$
(4.6)

then T belongs to the space $\mathcal{M}'_p(\mathbb{R}\times\mathbb{R}^n).$

Conversely, suppose that $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$. From relation (4.2) there exist $m \in \mathbb{N}$ and c > 0 such that

$$\forall \varphi \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n), \quad |\langle T, \varphi \rangle| \le c \gamma_{m,p}(\varphi).$$
(4.7)

Let

$$(L^{p}(d\nu))^{m+1} = \{(f_{0}, \dots, f_{m}), f_{k} \in L^{p}(d\nu), 0 \le k \le m\}$$
(4.8)

equipped with the norm

$$||(f_0, \dots, f_m)||_{(L^p(d\nu))^{m+1}} = \max_{0 \le k \le m} ||f_k||_{p,\nu}.$$
(4.9)

We consider the mappings

$$\mathcal{A}: \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n) \longrightarrow (L^p(d\nu))^{m+1}, \qquad (4.10)$$
$$\varphi \longmapsto (\varphi, g_1, \dots, g_m),$$

where

$$L^{k}T_{\varphi} = T_{g_{k}}, \quad k \ge 1,$$

$$\mathfrak{B}: \operatorname{Im}(\mathcal{A}) \longrightarrow \mathbb{C},$$

$$\mathfrak{B}(\mathcal{A}\varphi) = \langle T, \varphi \rangle.$$
(4.11)

From relation (4.2) we deduce that

$$\left| \mathscr{BA}(\varphi) \right| = \left| \langle T, \varphi \rangle \right| \le c \left| \left| \mathscr{A}(\varphi) \right| \right|_{(L^{p}(d\gamma))^{m+1}}.$$

$$(4.12)$$

This means that \mathcal{B} is a continuous functional on the subspace Im(\mathcal{A}) of the space $(L^p(d\nu))^{m+1}$. From Hahn-Banach theorems, there exists a continuous extension of \mathcal{B} to $(L^p(d\nu))^{m+1}$, denoted again by \mathcal{B} .

By Riez's theorem there exist $(f_0, \ldots, f_m) \in (L^{p'}(d\nu))^{m+1}$ such that for all $(\varphi_0, \ldots, \varphi_m) \in (L^p(d\nu))^{m+1}$,

$$\mathfrak{B}(\varphi_0,\ldots,\varphi_m) = \sum_{k=0}^m \int_{\mathbb{R}^n} \int_0^\infty f_k(r,x)\varphi_k(r,x)d\nu(r,x).$$
(4.13)

By means of relation (4.3), we deduce that for $\varphi \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$, we have

$$\langle T, \varphi \rangle = \sum_{k=0}^{m} \int_{\mathbb{R}^n} \int_0^\infty f_k(r, x) \varphi_k(r, x) d\nu(r, x) = \sum_{k=0}^{m} \langle L^k T_{f_k}, \varphi \rangle.$$
(4.14)

This completes the proof of Theorem 4.1.

PROPOSITION 4.2. Let $p \ge 2$. Then for all $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$, there exist $m \in \mathbb{N}$ and $F \in L^p(d\gamma)$ such that

$$\mathscr{F}(T) = T_{(1+\mu^2+2\|\lambda\|^2)^m F}.$$
(4.15)

Proof. Let $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$. From Theorem 4.1 there exist $m \in \mathbb{N}$ and $(f_0, \ldots, f_m) \in (L^{p'}(d\nu))^{m+1}$, p' = p/(p-1), such that

$$T = \sum_{k=0}^{m} L^k T_{f_k}.$$
 (4.16)

Consequently

$$\mathcal{F}(T) = \sum_{k=0}^{m} \mathcal{F}(L^{k}T_{f_{k}}) = \sum_{k=0}^{m} (\mu^{2} + 2\|\lambda\|^{2})^{k} \mathcal{F}(T_{f_{k}}).$$
(4.17)

By using relation (3.4) we get (4.15), where

$$F = \sum_{k=0}^{m} \frac{(\mu^2 + 2\|\lambda\|^2)^k}{(1 + \mu^2 + 2\|\lambda\|^2)^m} \mathcal{F}(\check{f}_k),$$
(4.18)

which proves the result.

PROPOSITION 4.3. Let $T \in S'_*(\mathbb{R} \times \mathbb{R}^n)$, then $T \in \mathcal{M}'_2(\mathbb{R} \times \mathbb{R}^n)$ if and only if there exist $m \in \mathbb{N}$ and $F \in L^2(d\gamma)$ such that (4.15) holds.

Proof. From Proposition 4.2, we deduce that if $T \in \mathcal{M}'_2(\mathbb{R} \times \mathbb{R}^n)$, then there exist $m \in \mathbb{N}$ and $F \in L^2(d\gamma)$ verifying (4.15). Conversely, suppose that (4.15) holds with $F \in L^2(d\gamma)$. Since \mathcal{F} is an isometric isomorphism from $L^2(d\nu)$ onto $L^2(d\gamma)$, then there exists $G \in L^2(d\nu)$ such that $\mathcal{F}(G) = F$ and from relation (3.4) we have

$$\mathscr{F}(T_{\check{G}}) = T_F. \tag{4.19}$$

Consequently

$$\mathscr{F}(T) = \mathscr{F}((I+L)^m T_{\check{G}}), \tag{4.20}$$

thus

$$T = \sum_{k=0}^{m} C_m^k L^k T_{\check{G}},$$
(4.21)

and Theorem 4.1 implies that $T \in \mathcal{M}'_2(\mathbb{R} \times \mathbb{R}^n)$.

We denote by

- (A) D_{*}(ℝ×ℝⁿ) the space of infinitely differentiable functions on ℝ×ℝⁿ, even with respect to the first variable and with compact support, equipped with its usual topology;
- (B) for a > 0, $\mathfrak{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n)$ the subspace of $\mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$ consisting of function f such that supp $f \subset B(0,a) = \{(r,x) \in \mathbb{R} \times \mathbb{R}^n, r^2 + ||x||^2 \le a^2\};$
- (C) for a > 0, $\mathfrak{D}'_{*,a}(\mathbb{R} \times \mathbb{R}^n)$ the dual space of $\mathfrak{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n)$;
- (D) for a > 0 and $m \in \mathbb{N}$, $\mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$ the space of function $f : \mathbb{R} \times \mathbb{R}^n \to \mathbb{C}$ of class C^{2m} on $\mathbb{R} \times \mathbb{R}^n$, even with respect to the first variable and with support in B(0, a), normed by

$$N_{\infty,m}(f) = \max_{0 \le k \le m} ||L^k(f)||_{\infty,\nu}.$$
(4.22)

PROPOSITION 4.4. Let a > 0 and $m \in \mathbb{N}$. Then there exists $p_o \in \mathbb{N}$ such that for every $p \in \mathbb{N}$, $p \ge p_o$, it is possible to find $\varphi_p \in \mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$ and $\psi_p \in \mathfrak{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n)$ satisfying

$$\delta = (I+L)^p T_{\varphi_p} + T_{\psi_p} \tag{4.23}$$

in $S'_*(\mathbb{R} \times \mathbb{R}^n)$.

Proof. Let $p \ge n + 1$ and g_p the function defined by

$$\forall (\mu, \lambda) \in \mathbb{R} \times \mathbb{R}^n, \quad g_p(\mu, \lambda) = \widetilde{\mathscr{F}}\left(\frac{1}{\left(1 + r^2 + \|x\|^2\right)^p}\right)(\mu, \lambda). \tag{4.24}$$

Using relation (2.7), we deduce that there exists $p_o \in \mathbb{N}$ such that for all $p \ge p_o$ the function g_p is of class C^{2m} on $\mathbb{R} \times \mathbb{R}^n$ (e.g., we can choose $p_o = 3n + 1 + 2m$).

Now, we prove that the function g_p is infinitely differentiable on $\mathbb{R} \times \mathbb{R}^n \setminus \{(0,...,0)\}$. The function g_p can be written as

$$g_p(\mu,\lambda) = \frac{1}{2^{n-1/2}\Gamma(n+1/2)} \int_0^\infty \frac{1}{\left(1+s^2\right)^p} j_{n-1/2} \left(s\sqrt{\mu^2 + \|\lambda\|^2}\right) s^{2n} ds.$$
(4.25)

By relation (2.6) and Fubini's theorem we get

$$g_{p}(\mu,\lambda) = \frac{1}{2^{n-1/2}\sqrt{\pi}\Gamma(n)} \int_{-1}^{1} (1-t^{2})^{n-1} \left[\int_{0}^{\infty} \frac{\cos\left(ts\sqrt{\mu^{2}+\|\lambda\|^{2}}\right)}{(1+s^{2})^{p}} s^{2n} ds \right] dt$$

$$= \frac{1}{2^{n-3/2}\sqrt{\pi}\Gamma(n)} \int_{0}^{1} (1-t^{2})^{n-1} h_{p}\left(t\sqrt{\mu^{2}+\|\lambda\|^{2}}\right) dt,$$
(4.26)

where

$$h_p(u) = \int_0^\infty \frac{\cos(su)}{(1+s^2)^p} s^{2n} ds = \frac{1}{2} \int_{-\infty}^\infty \frac{e^{isu}}{(1+s^2)^p} s^{2n} ds.$$
(4.27)

By standard calculus, we have

$$\int_{0}^{\infty} \frac{\cos(su)}{(1+s^{2})^{p}} s^{2n} ds = e^{-u} P(u)$$
(4.28)

with

$$P(u) = \frac{\pi}{2^{2p-1}} \sum_{k=0}^{p-1} \frac{C_{2p-2-k}^{p-1}}{k!} (2u)^k.$$
(4.29)

On the other hand, we have

$$h_p(u) = (-1)^n \left(\frac{d}{du}\right)^{2n} \left(\frac{1}{2} \int_{-\infty}^{\infty} \frac{e^{isu}}{(1+s^2)^p} ds\right),\tag{4.30}$$

then, we get

$$\forall u \ge 0, \quad h_p(u) = Q_p(u)e^{-u}, \tag{4.31}$$

where Q_p is a real polynomial. Since h_p is an even function on \mathbb{R} , then we deduce that

$$\forall u \in \mathbb{R}, \quad h_p(u) = k_p(|u|), \tag{4.32}$$

where k_p is the infinitely differentiable function defined on \mathbb{R} by

$$k_p(u) = Q_p(u)e^{-u}.$$
 (4.33)

Now, the function

$$u \longrightarrow F_p(u) = \frac{1}{2^{n-3/2}\sqrt{\pi}\Gamma(n)} \int_0^1 (1-t^2)^{n-1} k_p(tu) dt$$
(4.34)

is infinitely differentiable on $\mathbb R$ and we have

$$g_p(\mu,\lambda) = F_p\left(\sqrt{\mu^2 + \|\lambda\|^2}\right). \tag{4.35}$$

This shows that the function g_p is infinitely differentiable on $\mathbb{R} \times \mathbb{R}^n \setminus \{(0,...,0)\}$, even with respect to the first variable.

Let $\gamma \in \mathfrak{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n)$ such that

$$\forall (r,x) \in \mathbb{R} \times \mathbb{R}^n, \quad r^2 + x^2 \le \frac{a^2}{4}, \quad \gamma(r,x) = 1.$$
(4.36)

Since $(I + L)^p T_{g_p} = \delta$, we get

$$\gamma (I+L)^p T_{g_p} = (I+L)^p T_{g_p} = \delta.$$
(4.37)

On the other hand, by using the fact that the function g_p is infinitely differentiable on $\mathbb{R} \times \mathbb{R}^n \setminus \{(0, ..., 0)\}$, we deduce that the function

$$\varphi_p(r,x) = (\gamma - 1)(I + L)^p g_p + (I + L)^p ((1 - \gamma)g_p)$$
(4.38)

belongs to the space $\mathfrak{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n)$.

Moreover, from relation (4.37), we have

$$T_{(\gamma-1)(I+L)^{p}g_{p}} = (\gamma-1)(I+L)^{p}T_{g_{p}} = 0, \qquad (4.39)$$

and this implies by using relation (4.38) that

$$T_{\varphi_p} = T_{(I+L)^p((1-\gamma)g_p)} = (I+L)^p T_{((1-\gamma)g_p)}.$$
(4.40)

Hence,

$$T_{\varphi_p} + (I+L)^p T_{\gamma g_p} = (I+L)^p T_{g_p} = \delta,$$
(4.41)

and this completes the proof of the proposition by taking $\psi_p = \gamma g_p$.

To prove the main result of this section, that is, Theorem 4.7, we will define some new families of norms on the space $\mathfrak{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n)$. We use these norms to prove that the elements of all bounded subset $B' \subset \mathfrak{D}'_{*,a}(\mathbb{R} \times \mathbb{R}^n)$ can be continuously extended on the space $\mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$.

For
$$f \in \mathcal{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n), a > 0$$
,
(A) $P_m(f) = \max_{k+|\alpha| \le m} \|(\partial/\partial r)^k D^{\alpha} f\|_{\infty,\nu}$,
(B) $\widetilde{P}_m(f) = \max_{k+|\alpha| \le m} \|l^k D^{\alpha} f\|_{\infty,\nu}$,
(C) $N_{p,m}(f) = \max_{0 \le k \le m} \|L^k(f)\|_{p,\nu}, p \in [1,\infty]$,

where l is defined by relation (1.3).

LEMMA 4.5. (i) For all $m \in \mathbb{N}$, there exists $c_1 > 0$ such that

$$\forall \varphi \in \mathfrak{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n), \quad P_m(\varphi) \le c_1 \widetilde{P}_m(\varphi). \tag{4.42}$$

(ii) For all $m \in \mathbb{N}$, there exist $c_2 > 0$ and $m' \in \mathbb{N}$ such that

$$\forall \varphi \in \mathfrak{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n), \quad \widetilde{P}_m(\varphi) \le c_2 N_{p,m'}(\varphi).$$
(4.43)

Proof. (i) Let $m \in \mathbb{N}$, and $\varphi \in \mathcal{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n)$. By induction on k we have

$$\left(\frac{\partial}{\partial r}\right)^{k} D^{\alpha} \varphi(r, x) = \sum_{s=0}^{k} P_{s}(r) \left(\frac{\partial}{\partial r^{2}}\right)^{s} D^{\alpha} \varphi(r, x), \qquad (4.44)$$

where P_s is a real polynomial. On the other hand, and also by induction, we deduce that for all $s \ge 1$,

$$\left(\frac{\partial}{\partial r^2}\right)^s D^\alpha \varphi(r,x) = \int_0^1 \cdots \int_0^1 l^s D^\alpha \varphi(rt_1,\ldots,t_s,x) t_1^{n+2(s-1)},\ldots,t_s^n dt_1,\ldots,dt_s.$$
(4.45)

From relations (4.44) and (4.45), it follows that there exists $c_{a,m} > 0$ satisfying

$$P_m(\varphi) \le c_{a,m} \widetilde{P}_m(\varphi). \tag{4.46}$$

(ii) Let $p \in [1, \infty]$, $m \in \mathbb{N}$, and $m_1 \in \mathbb{N}$ such that

$$\left\|\frac{1}{\left(1+\mu^{2}+\|\lambda\|^{2}\right)^{m_{1}}}\right\|_{1,\nu}<\infty,$$
(4.47)

then, for all $(k, \alpha) \in \mathbb{N} \times \mathbb{N}^n$, $k + |\alpha| \le m$, we have

$$\begin{split} ||l^{k}D^{\alpha}\varphi||_{\infty,\nu} &= ||\widetilde{\mathscr{F}}^{-1}(\widetilde{\mathscr{F}}(l^{k}D^{\alpha}\varphi))||_{\infty,\nu} \\ &\leq ||\widetilde{\mathscr{F}}(l^{k}D^{\alpha}\varphi)||_{1,\nu} \\ &\leq ||\mu^{2k}\lambda^{\alpha}\widetilde{\mathscr{F}}(\varphi)||_{1,\nu} \\ &\leq ||(1+\mu^{2}+||\lambda||^{2})^{m}\widetilde{\mathscr{F}}(\varphi)||_{1,\nu} \\ &= \left\|\frac{1}{(1+\mu^{2}+||\lambda||^{2})^{m_{1}}}\widetilde{\mathscr{F}}((I+L)^{m+m_{1}}\varphi)\right\|_{1,\nu} \\ &\leq \left\|\frac{1}{(1+\mu^{2}+||\lambda||^{2})^{m_{1}}}\right\|_{1,\nu} ||\widetilde{\mathscr{F}}((I+L)^{m+m_{1}}\varphi)||_{\infty,\nu} \\ &\leq \left\|\frac{1}{(1+\mu^{2}+||\lambda||^{2})^{m_{1}}}\right\|_{1,\nu} ||(I+L)^{m+m_{1}}\varphi||_{1,\nu}, \end{split}$$
(4.48)

and by Holder's inequality, we get

$$\begin{split} \left\| \left\| l^{k} D^{\alpha} \varphi \right\|_{\infty, \nu} &\leq \left\| \frac{1}{\left(1 + \mu^{2} + \|\lambda\|^{2} \right)^{m_{1}}} \right\|_{1, \nu} \left(\nu(B(0, a)) \right)^{1/p'} \left\| \left(I + L \right)^{m+m_{1}} \varphi \right\|_{p, \nu} \\ &\leq \left\| \frac{1}{\left(1 + \mu^{2} + \|\lambda\|^{2} \right)^{m_{1}}} \right\|_{1, \nu} \left(\nu(B(0, a)) \right)^{1/p'} 2^{m+m_{1}} N_{p, m+m_{1}}(\varphi), \end{split}$$

$$(4.49)$$

which implies that

$$\widetilde{P}_{m}(\varphi) \leq 2^{m+m_{1}} \left(\nu(B(0,a)) \right)^{1/p'} \left\| \frac{1}{\left(1+\mu^{2}+\|\lambda\|^{2}\right)^{m_{1}}} \right\|_{1,\nu} N_{p,m+m_{1}}(\varphi),$$
(4.50)

and the proof of the lemma is complete.

THEOREM 4.6. Let a > 0 and B' a weakly^{*} bounded set of $\mathfrak{D}'_{*,a}(\mathbb{R} \times \mathbb{R}^n)$. Then, there exists $m \in \mathbb{N}$ such that the elements of B' can be continuously extended to $\mathcal{W}^m_a(\mathbb{R} \times \mathbb{R}^n)$. Moreover, the family of these extensions is equicontinuous.

Proof. Let $p \in [1, \infty]$. Since B' is weakly^{*} bounded in $D'_{*,a}(\mathbb{R} \times \mathbb{R}^n)$, then from [14] and Lemma 4.5 there exist a positive constant c and $m \in \mathbb{N}$ such that for all $T \in B'$, for all $\varphi \in D_{*,a}(\mathbb{R} \times \mathbb{R}^n)$,

$$\left|\left\langle T,\varphi\right\rangle\right| \le cN_{p,m}(\varphi). \tag{4.51}$$

We consider the mappings

$$A: \mathcal{W}_{a}^{m}(\mathbb{R} \times \mathbb{R}^{n}) \longrightarrow \left(L^{p}(d\nu)\right)^{m+1},$$

$$\varphi \longmapsto \left(L^{k}\varphi\right)_{0 \le k \le m},$$

$$(4.52)$$

and for all $T \in B'$,

$$L_T: A(D_{*,a}(\mathbb{R} \times \mathbb{R}^n)) \longrightarrow \mathbb{C},$$

$$\langle L_T, A\varphi \rangle = \langle T, \varphi \rangle.$$
(4.53)

From relation (4.51), we deduce that for all $\varphi \in D_{*,a}(\mathbb{R} \times \mathbb{R}^n)$,

$$\left|\left\langle L_{T},A\varphi\right\rangle\right| \leq c \left|\left|A\varphi\right|\right|_{\left(L^{p}(d\nu)\right)^{m+1}}.$$
(4.54)

This means that L_T is a continuous functional on the subspace $A(D_{*,a}(\mathbb{R} \times \mathbb{R}^n))$ of the space $(L^p(d\nu))^{m+1}$ and that for all $T \in B'$,

$$\left|\left|L_{T}\right|\right|_{A(D_{*,a}(\mathbb{R}\times\mathbb{R}^{n}))} = \sup_{\left|\left|A\varphi\right|\right|_{(L^{p}(d_{\gamma}))^{m+1}} \le 1} \left|\left\langle L_{T},A\varphi\right\rangle\right| \le c.$$
(4.55)

From the Hahn-Banach theorems, L_T can be continuously extended on $(L^p(d\nu))^{m+1}$, denoted again by L_T . Furthermore, for all $T \in B'$,

$$||L_T||_{(L^p(d\nu))^{m+1}} = \sup_{\|\psi\|_{(L^p(d\nu))^{m+1}} \le 1} |\langle L_T, \psi \rangle| = ||L_T||_{A(D_{*,a}(\mathbb{R} \times \mathbb{R}^n))} \le c.$$
(4.56)

Now, from the Riez theorem, there exists $(f_{T,k})_{0 \le k \le m} \subset L^{p'}(d\nu)$ such that for all $\psi = (\psi_0, \dots, \psi_m) \in (L^p(d\nu))^{m+1}$,

$$\langle L_T, \psi \rangle = \sum_{k=0}^m \int_{\mathbb{R}^n} \int_0^\infty f_{T,k}(r,x) \psi_k(r,x) d\nu$$
(4.57)

with

$$||L_T||_{(L^p(d\nu))^{m+1}} = \max_{0 \le k \le m} ||f_{T,k}||_{p',\nu}.$$
(4.58)

Thus, from (4.56) it follows that for all $T \in B'$, for all $k \in \mathbb{N}$, $0 \le k \le m$,

$$\||f_{T,k}\||_{p',\nu} \le c. \tag{4.59}$$

In particular, for $\varphi \in \mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$ we have

$$\langle L_T, A\varphi \rangle = \sum_{k=0}^m \int_{\mathbb{R}} \int_0^\infty f_{T,k}(r,x) L^k(\varphi)(r,x) d\nu(r,x).$$
(4.60)

Using Holder's inequality and relation (4.59), we get for all $T \in B'$, for all $\varphi \in \mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$,

$$\left|\left\langle L_T, A\varphi\right\rangle\right| \le (m+1)c \left[\nu(B(0,a))\right]^{1/p} N_{\infty,m}(\varphi).$$

$$(4.61)$$

This shows that the mapping $L_T oA$ is a continuous extension of T on $\mathcal{W}^m_a(\mathbb{R} \times \mathbb{R}^n)$ and that the family $\{L_T oA\}_{T \in B'}$ is equicontinuous, when applied to $\mathcal{W}^m_a(\mathbb{R} \times \mathbb{R}^n)$. This completes the proof of Theorem 4.6.

In the following, we will give a new characterization of the space $\mathcal{M}'_{p}(\mathbb{R}\times\mathbb{R}^{n})$.

THEOREM 4.7. Let $T \in S'_*(\mathbb{R} \times \mathbb{R}^n)$, $p \in [1, \infty[, p' = p/(p-1)]$. Then $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$ if and only if for every $\varphi \in \mathcal{D}_*(\mathbb{R} \times \mathbb{R}^n)$, the function $T * \varphi$ belongs to the space $L^{p'}(d\nu)$, where

$$T * \varphi(r, x) = \langle T, \tau_{(r, -x)} \breve{\varphi} \rangle.$$
(4.62)

Proof. Let $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$. From Theorem 4.1, there exist $m \in \mathbb{N}$ and $f_0, \ldots, f_m \in L^{p'}(d\nu)$ such that

$$T = \sum_{k=0}^{m} L^k T_{f_k},$$
(4.63)

in $\mathcal{M}'_p(\mathbb{R}\times\mathbb{R}^n)$. Thus, for every $\varphi \in \mathfrak{D}_*(\mathbb{R}\times\mathbb{R}^n)$,

$$T * \varphi = \sum_{k=0}^{m} T_{f_k} * L^k \varphi = \sum_{k=0}^{m} f_k * L^k \varphi.$$
(4.64)

Since, for all $k \in \mathbb{N}$, $0 \le k \le m$, $f_k \in L^{p'}(d\nu)$ and $L^k \varphi \in L^1(d\nu)$, then from inequality (2.24), we deduce that $f_k * L^k \varphi \in L^{p'}(d\nu)$. This implies that the function $T * \varphi$ belongs to the space $L^{p'}(d\nu)$.

Conversely, let $T \in S'_*(\mathbb{R} \times \mathbb{R}^n)$ such that for every $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$ the function $T * \varphi$ belongs to the space $L^{p'}(d\nu)$. For φ, ψ in $\mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$, we have

$$\langle T_{T*\varphi}, \psi \rangle = \langle T, \varphi * \check{\psi} \rangle = \langle T, \psi * \check{\varphi} \rangle = \langle T_{T*\psi}, \varphi \rangle.$$
(4.65)

From Holder's inequality and using the hypothesis, we obtain

$$\left|\left\langle T_{T*\varphi},\psi\right\rangle\right| \le \|T*\psi\|_{p',\nu}\|\varphi\|_{p,\nu},\tag{4.66}$$

from which we deduce that the set

$$B' = \{T_{T*\varphi}, \varphi \in \mathcal{D}_*(\mathbb{R} \times \mathbb{R}^n); \|\varphi\|_{p,\nu} \le 1\}$$

$$(4.67)$$

is bounded in $\mathcal{D}'_*(\mathbb{R} \times \mathbb{R}^n)$.

Now, using Theorem 4.6, it follows that for all a > 0 there exists $m \in \mathbb{N}$ such that for all $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$, $\|\varphi\|_{p,\nu} \leq 1$, the mapping $T_{T*\varphi}$ can be continuously extended on the space $\mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$ and the family of these extensions is equicontinuous, which means that there exists c > 0 such that for all $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$, $\|\varphi\|_{p,\nu} \leq 1$, for all $\psi \in \mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$,

$$\left|\left\langle T_{T*\varphi},\psi\right\rangle\right| \le cN_{\infty,m}(\psi). \tag{4.68}$$

This involves that for all $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$, for all $\psi \in \mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$,

$$\left|\left\langle T_{T*\varphi},\psi\right\rangle\right| \le cN_{\infty,m}(\psi)\|\varphi\|_{p,\nu}.$$
(4.69)

On the other hand, we have for all $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$, for all $\psi \in \mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$,

$$\langle T_{T*\varphi},\psi\rangle = \langle T*T_{\psi},\breve{\varphi}\rangle,$$
(4.70)

where for all $\varphi \in S_*(\mathbb{R} \times \mathbb{R}^n)$,

$$\langle T * T_{\psi}, \varphi \rangle = \langle T, T_{\psi} * \varphi \rangle = \langle T, \psi * \varphi \rangle.$$
(4.71)

Relations (4.69) and (4.70) lead to for all $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$,

$$\left|\left\langle T * T_{\psi}, \varphi \right\rangle\right| \le c N_{\infty, m}(\psi) \|\varphi\|_{p, \nu}.$$
(4.72)

This last inequality shows that the functional $T * T_{\psi}$ can be continuously extended on the space $L^{p}(d\nu)$ and from Riez's theorem, there exists $g \in L^{p'}(d\nu)$ such that

$$T * T_{\psi} = T_g. \tag{4.73}$$

Furthermore, from Proposition 4.4, there exist $s \in \mathbb{N}$, $\psi_s \in \mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$, and $\varphi_s \in \mathcal{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n)$ satisfying

$$\delta = (I+L)^s T_{\psi_s} + T_{\varphi_s},\tag{4.74}$$

then

$$T = (I+L)^{s} (T * T_{\psi_{s}}) + T * T_{\varphi_{s}} = (I+L)^{s} (T * T_{\psi_{s}}) + T_{T * \varphi_{s}}.$$
(4.75)

We complete the proof by using the hypothesis, relation (4.73), and Theorem 4.1. \Box

In the following, we will give a characterization of the bounded sets in $\mathcal{M}'_p(\mathbb{R}\times\mathbb{R}^n)$.

THEOREM 4.8. Let $p \in [1, \infty[$ and let B' be a subset of $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$. The following assertions are equivalent:

- (i) B' is weakly bounded in $\mathcal{M}'_{p}(\mathbb{R} \times \mathbb{R}^{n})$,
- (ii) there exist c > 0 and $m \in \mathbb{N}$ such that for every $T \in B'$, it is possible to find $f_{0,T}, \ldots, f_{m,T} \subset L^{p'}(d\nu)$ satisfying

$$T = \sum_{k=0}^{m} L^{k} T_{f_{k}} \quad with \max_{0 \le k \le m} ||f_{k}||_{p', \nu} \le c,$$
(4.76)

(iii) for every $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$, the set $\{T * \varphi\}_{T \in B'}$ is bounded in $L^{p'}(d\nu)$.

Proof. (1) Suppose that B' is weakly^{*} bounded in $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$, then from [14] B' is equicontinuous. There exist c > 0 and $m \in \mathbb{N}$ such that

$$\forall T \in B', \ \forall f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n), \quad |\langle T, f \rangle| \le c\gamma_{m,p}(f).$$
(4.77)

As in the proof of Theorem 4.6, we consider the mappings

$$A: \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n) \longrightarrow (L^p(d\nu))^{m+1},$$

$$f \longmapsto (f, g_1, \dots, g_m)$$
(4.78)

with

$$L^k T_f = T_{g_k}, \quad 0 \le k \le m,$$
 (4.79)

and for all $T \in B'$,

$$L_T : A(\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)) \longrightarrow \mathbb{C},$$

$$\langle L_T, A(f) \rangle = \langle T, f \rangle.$$
(4.80)

Then, relation (4.77) implies that for all $\varphi \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$,

$$\left|L_T(A\varphi)\right| \le c \|A\varphi\|_{(L^p(d\nu))^{m+1}}.$$
(4.81)

Using Hahn-Banach's theorem and Riez's theorem, we deduce that L_T can be continuously extended on $(L^p(d\nu))^{m+1}$, denoted again by L_T , and that there exists $(f_{T,k})_{0 \le k \le m} \subset L^{p'}(d\nu)$ verifying for all $\psi = (\psi_0, \dots, \psi_m) \in (L^p(d\nu))^{m+1}$,

$$\langle L_T, \psi \rangle = \sum_{k=0}^m \int_{\mathbb{R}^n} \int_0^\infty f_{T,k}(r,x) \psi_k(r,x) d\nu(r,x)$$
(4.82)

with

$$||L_T||_{(L^p(d\nu))^{m+1}} = \max_{0 \le k \le m} ||f_{T,k}||_{p',\nu} \le c.$$
(4.83)

In particular, if $\psi = A(f), f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$,

$$\langle L_T, A(f) \rangle = \langle T, f \rangle = \sum_{k=0}^m \langle L^k T_{f_{T,k}}, f \rangle.$$
(4.84)

This proves that $(i) \Rightarrow (ii)$.

(2) Suppose that there exist c > 0 and $m \in \mathbb{N}$ such that for every $T \in B'$ we can find $f_{0,T}, \ldots, f_{m,T} \subset L^{p'}(d\nu)$ satisfying

$$T = \sum_{k=0}^{m} L^{k} T_{f_{T,k}}, \qquad \max_{0 \le k \le m} ||f_{T,k}||_{p',\nu} \le c.$$
(4.85)

Then for all $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$, for all $T \in B'$,

$$\langle T, f \rangle = \sum_{k=0}^{m} \int_{\mathbb{R}^n} \int_0^\infty f_{T,k}(r,x) g_k(r,x) d\nu(r,x), \qquad (4.86)$$

consequently, for all $T \in B'$, for all $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$,

$$\left|\langle T, f \rangle\right| \le (m+1)c\gamma_{m,p}(f),\tag{4.87}$$

which means that the set B' is weakly^{*} bounded in $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$ and proves that (ii) \Rightarrow (i).

(3) Suppose that (ii) holds. Let $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$, then from Theorem 4.7 we know that for all $T \in B'$, the function $T * \varphi$ belongs to the space $L^{p'}(d\nu)$. But

$$T * \varphi = \sum_{k=0}^{m} T_{f_k} * L^k \varphi, \qquad (4.88)$$

consequently, for all $T \in B'$,

$$||T * \varphi||_{p',\nu} \le (m+1)c\gamma_{m,p}(\varphi).$$
 (4.89)

This shows that the set $\{T * \varphi\}_{T \in B'}$ is bounded in $L^{p'}(d\nu)$ and therefore (ii) involves (iii).

(4) Suppose that (iii) holds. Let $T \in B'$; for all $\varphi, \psi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$, we have

$$\left|\left\langle T_{T*\varphi},\psi\right\rangle\right| = \left|\left\langle T_{T*\psi},\varphi\right\rangle\right| \le \|T*\psi\|_{p',\nu}\|\varphi\|_{p,\nu},\tag{4.90}$$

from which we deduce that the set

$$B' = \{T_{T*\varphi}, T \in B', \varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n); \|\varphi\|_{p,\nu} \le 1\}$$

$$(4.91)$$

is bounded in $\mathfrak{D}'_*(\mathbb{R} \times \mathbb{R}^n)$.

Now, using Theorem 4.6, it follows that for all a > 0, there exists $m \in \mathbb{N}$ such that for all $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$, $\|\varphi\|_{p,\nu} \leq 1$, and $T \in B'$, the mapping $T_{T*\varphi}$ can be continuously extended on the space $\mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$ and the family of these extensions is equicontinuous,

which means that there exists c > 0 satisfying for all $T \in B'$, for all $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$; for all $\psi \in \mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$, (4.69) holds. On the other hand, for every $T \in B'$, we have for all $\varphi \in \mathfrak{D}_*(\mathbb{R} \times \mathbb{R}^n)$, for all $\psi \in \mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$, (4.70) holds. From relations (4.69) and (4.70), we deduce that the functional $T * T_{\psi}$ can be continuously extended on the space $L^p(d\nu)$ and from Riez's theorem, there exist $g_{T,\psi} \in L^{p'}(d\nu)$ such that

$$T * T_{\psi} = T_{g_{T,\psi}}.$$
 (4.92)

However, relations (4.69) and (4.70) involve that for all $T \in B'$,

$$||g_{T,\psi}||_{p',\psi} \le cN_{\infty,m}(\psi).$$
 (4.93)

Again by Proposition 4.4, it follows that there exist $s \in \mathbb{N}$, $\psi_s \in \mathcal{W}_a^m(\mathbb{R} \times \mathbb{R}^n)$, and $\varphi_s \in \mathcal{D}_{*,a}(\mathbb{R} \times \mathbb{R}^n)$ verifying for all $T \in B'$,

$$T = T * \delta = (I + L)^{s} (T * T_{\psi_{s}}) + T_{T * \varphi_{s}}, \qquad (4.94)$$

and by relation (4.92) we get

$$T = (I+L)^{s} T_{g_{T,s}} + T_{T*\varphi_{s}}.$$
(4.95)

Thus, from the hypothesis we obtain,

$$\forall T \in B', \quad \left\| T * \varphi_s \right\|_{p', \gamma} \le c_s, \tag{4.96}$$

and using relation (4.93), we have

$$\forall T \in B', \quad \left| \left| g_{T,s} \right| \right|_{p',\nu} \le c N_{\infty,m}(\varphi_s). \tag{4.97}$$

This completes the proof.

5. Convolution product on the space $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n) \times M_r(\mathbb{R} \times \mathbb{R}^n)$

In this section, we define and study a convolution product on the space $\mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n) \times M_r(\mathbb{R} \times \mathbb{R}^n)$, $1 \le r \le p < \infty$, where $M_r(\mathbb{R} \times \mathbb{R}^n)$ is the closure of the space $S_*(\mathbb{R} \times \mathbb{R}^n)$ in $\mathcal{M}_r(\mathbb{R} \times \mathbb{R}^n)$.

PROPOSITION 5.1. Let $p \in [1, \infty[$. For every $(r, x) \in [0, \infty[\times \mathbb{R}^n]$, the operator $\tau_{(r,x)}$ given by Definition 2.2(*i*), is a continuous mapping from $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$ into itself.

Proof. Let $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$ and $g_k \in L^p(d\nu)$ such that

$$T_{g_k} = L^k T_f, \quad k \in \mathbb{N}.$$
(5.1)

Then for all $\varphi \in S_*(\mathbb{R} \times \mathbb{R}^n)$,

$$\langle L^k T_{\tau_{(r,x)}f}, \varphi \rangle = \langle T_{\tau_{(r,-x)}} \check{g}_k, \varphi \rangle.$$
(5.2)

Since the operator $\tau_{(r,x)}$ is continuous from $L^p(d\nu)$ into itself, we deduce that for all $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$ and $(r,x) \in [0, \infty[\times \mathbb{R}^n]$, the function $\tau_{(r,x)}f$ belongs to the space $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$. Moreover,

$$\gamma_{m,p}(\tau_{(r,x)}f) = \max_{0 \le k \le m} ||\tau_{(r,-x)}\check{g}_k||_{p,\nu} \le \max_{0 \le k \le m} ||g_k||_{p,\nu} = \gamma_{m,p}(f),$$
(5.3)

which shows that the operator $\tau_{(r,x)}$ is continuous from $\mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$ into itself.

Definition 5.2. A convolution product of $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$ and $f \in \mathcal{M}_p(\mathbb{R} \times \mathbb{R}^n)$ is defined by for all $(r, x) \in [0, \infty[\times \mathbb{R}^n]$,

$$T * f(r, x) = \langle T, \tau_{(r, -x)} \check{f} \rangle.$$
(5.4)

Let $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$; $T = \sum_{k=0}^m L^k T_{f_k}$ with $\{f_k\}_{0 \le k \le m} \subset L^{p'}(d\nu)$ and $\phi \in M_r(\mathbb{R} \times \mathbb{R}^n)$, $1 \le r \le p$, then for all $k \in \mathbb{N}$, there exists $\phi_k \in L^r(d\nu)$ such that $T_{\phi_k} = L^k T_{\phi}$. From inequality (2.24), it follows that for $0 \le k \le m$, the function $f_k * \phi_k$ belongs to the space $L^q(d\nu)$ with 1/q = 1/r + 1/p' - 1 = 1/r - 1/p and by using the density of $S_*(\mathbb{R} \times \mathbb{R}^n)$ in $M_r(\mathbb{R} \times \mathbb{R}^n)$, we deduce that the expression $\sum_{k=0}^m f_k * \phi_k$ is independent of the sequence $\{f_k\}_{0 \le k \le m}$. Then, we put

$$T * \phi = \sum_{k=0}^{m} f_k * \phi_k.$$
 (5.5)

This allows us to say that

$$\mathcal{M}'_{p}(\mathbb{R}\times\mathbb{R}^{n})*M_{r}(\mathbb{R}\times\mathbb{R}^{n})\subset L^{q}(d\nu).$$
(5.6)

LEMMA 5.3. Let $1 \le r \le p < \infty$, $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$, and $\phi \in M_r(\mathbb{R} \times \mathbb{R}^n)$. Then, for all $k \in \mathbb{N}$

$$L^k T_{T*\phi} = T_{T*\phi_k} \tag{5.7}$$

with $T_{\phi_k} = L^k T_{\phi}$.

Proof. If $\phi \in S_*(\mathbb{R} \times \mathbb{R}^n)$, then the function $T * \phi$ is infinitely differentiable and we have

$$L^{k}(T_{T*\phi}) = T_{L^{k}(T*\phi)} = T_{T*L^{k}\phi}.$$
(5.8)

Therefore, the result follows from the density of $S_*(\mathbb{R} \times \mathbb{R}^n)$ in $M_r(\mathbb{R} \times \mathbb{R}^n)$. \square PROPOSITION 5.4. Let $1 \le r \le p < \infty$ and $q \in [1, \infty]$ such that

$$\frac{1}{q} = \frac{1}{r} - \frac{1}{p}.$$
(5.9)

Then for every $T \in \mathcal{M}'_{p}(\mathbb{R} \times \mathbb{R}^{n})$, the mapping

$$\phi \longrightarrow T * \phi$$
 (5.10)

is continuous from $M_r(\mathbb{R} \times \mathbb{R}^n)$ *into* $\mathcal{M}_q(\mathbb{R} \times \mathbb{R}^n)$.

Proof. Let $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$; $T = \sum_{k=0}^m L^k T_{f_k}$ with $\{f_k\}_{0 \le k \le m} \subset L^{p'}(d\nu)$, then for $\phi \in M_r(\mathbb{R} \times \mathbb{R}^n)$, $1 \le r \le p$, and by using relation (5.5), we get $T * \phi = \sum_{k=0}^m f_k * \phi_k$, where $\phi_k \in L^r(d\nu)$ and

$$T_{\phi_k} = L^k T_{\phi}. \tag{5.11}$$

From Lemma 5.3, we have for all $s \in \mathbb{N}$, for all $\phi \in M_r(\mathbb{R} \times \mathbb{R}^n)$,

$$L^{s}T_{T*\phi} = T_{T*\phi_{s}}.$$
(5.12)

Using relation (5.6), we deduce that the function $T * \phi$ belongs to the space $\mathcal{M}_q(\mathbb{R} \times \mathbb{R}^n)$. On the other hand, from relation (5.12), we obtain

$$\gamma_{l,q}(T * \phi) = \max_{0 \le s \le l} ||T * \phi_s||_{q,\nu}.$$
(5.13)

According to relation (5.12), we have

$$T * \phi_s = \sum_{k=0}^{m} f_k * \phi_{k+s}, \tag{5.14}$$

consequently,

$$||T * \phi_s||_{q,\nu} \le \sum_{k=0}^m ||f_k||_{p',\nu} ||\phi_{k+s}||_{r,\nu} \le \left(\sum_{k=0}^m ||f_k||_{p',\nu}\right) \gamma_{m+l,r}(\phi).$$
(5.15)

Hence

$$\gamma_{l,q}(T * \phi) \le \left(\sum_{k=0}^{m} ||f_k||_{p',\nu}\right) \gamma_{m+l,r}(\phi),$$
(5.16)

which proves the result.

Definition 5.5. Let $1 \le p, q, r < \infty$ such that (5.9) holds. A convolution product of $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$ and $S \in \mathcal{M}'_q(\mathbb{R} \times \mathbb{R}^n)$ is defined by for all $\phi \in M_r(\mathbb{R} \times \mathbb{R}^n)$,

$$\langle S * T, \phi \rangle = \langle S, T * \phi \rangle. \tag{5.17}$$

From this definition and Proposition 5.4 we deduce the following result.

PROPOSITION 5.6. Let $1 \le p, q, r < f \infty$ such that (5.9) holds. Then, for all $T \in \mathcal{M}'_p(\mathbb{R} \times \mathbb{R}^n)$ and $S \in \mathcal{M}'_q(\mathbb{R} \times \mathbb{R}^n)$, the functional S * T is continuous on $M_r(\mathbb{R} \times \mathbb{R}^n)$.

References

- S. Abdullah, On convolution operators and multipliers of distributions of L^p-growth, J. Math. Anal. Appl. 183 (1994), no. 1, 196–207.
- S. Abdullah and S. Pilipović, *Bounded subsets in spaces of distributions of L^p-growth*, Hokkaido Math. J. 23 (1994), no. 1, 51–54.
- [3] L. E. Andersson, On the determination of a function from spherical averages, SIAM J. Math. Anal. 19 (1988), no. 1, 214–232.
- [4] J. Barros-Neto, *An Introduction to the Theory of Distributions*, Pure and Applied Mathematics, vol. 14, Marcel Dekker, New York, 1973.
- [5] J. J. Betancor and B. J. González, Spaces of D_LP-type and the Hankel convolution, Proc. Amer. Math. Soc. 129 (2001), no. 1, 219–228.
- [6] J. A. Fawcett, Inversion of n-dimensional spherical averages, SIAM J. Appl. Math. 45 (1985), no. 2, 336–341.
- [7] H. Hellsten and L. E. Andersson, *An inverse method for the processing of synthetic aperture radar data*, Inverse Problems 3 (1987), no. 1, 111–124.
- [8] M. Herberthson, A numerical implementation of an inversion formulas for CARABAS raw data, Internal Report D 30430-3.2, National Defense Research Institute, FOA, Box 1165; S-581 11, Linköping, Sweden, 1986.
- [9] N. N. Lebedev, Special Functions and Their Applications, Dover Publications, New York, 1972.
- [10] M. M. Nessibi, L. T. Rachdi, and K. Trimèche, *Ranges and inversion formulas for spherical mean operator and its dual*, J. Math. Anal. Appl. **196** (1995), no. 3, 861–884.
- [11] L. T. Rachdi and K. Trimèche, Weyl transforms associated with the spherical mean operator, Analysis and Applications 1 (2003), no. 2, 141–164.
- [12] L. Schwartz, *Theory of Distributions. I*, Hermann, Paris, 1957.
- [13] _____, *Theory of Distributions. II*, Hermann, Paris, 1959.
- [14] F. Trèves, Topological Vector Spaces, Distributions and Kernels, Academic Press, New York, 1967.
- [15] G. N. Watson, A Treatise on the Theory of Bessel Functions, 2nd ed., Cambridge University Press, Cambridge, 1966.

M. Dziri: Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis, 1060 Tunis, Tunisia

E-mail address: moncef.dziri@iscae.rnu.tn

M. Jelassi: Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis, 1060 Tunis, Tunisia

E-mail address: mouradjelassi@fst.rnu.tn

L. T. Rachdi: Department of Mathematics, Faculty of Sciences of Tunis, University of Tunis, 1060 Tunis, Tunisia

E-mail address: lakhdartannech.rachdi@fst.rnu.tn