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Received 20 February 2004 and in revised form 3 December 2004

We consider a problem (that follows directly from realization problem) on finding Mar-
kovian representations for a given family of Hilbert spaces such that each of these two
families provides exactly the same amount of information about some other family of
Hilbert spaces.

1. Introduction

The study of Granger causality has been mainly preoccupied with time series. We will
instead concentrate on continuous time processes. Many systems to which it is natural to
apply tests of causality take place in continuous time. For example, this is generally the
case within economy.

In the first part of this paper, we give a generalization of a causality relationship “G is
a cause of E within H” which (in terms of σ-algebras) was first given in [4] and which is
based on Granger’s definition of causality [2].

In the second part, we relate concepts of causality to the stochastic realization problem.
The approach adopted in this paper is that of [3]. However, since our results do not
depend on probability distribution, we deal with arbitrary Hilbert spaces instead of those
generated by Gaussian processes.

We suppose that it is known that a stochastic dynamic system (s.d.s.) S1 with known
outputs H causes, in a certain sense, behaviour of some other s.d.s. S2, whose states (or
some information about them) E are given. The main problem, to be formulated more
precisely below, is to determine Markovian representations G (as a state space of an s.d.s.
S1) for a family H such that family G provides exactly the same amount of information
about the family H as family E (see Definition 2.10).

It is clear that all the results of this paper can be extended on the σ-algebras generated
by finite-dimensional Gaussian random variables. But, in the case that σ-algebras are
arbitrary, the extensions of the proofs of this paper are nontrivial because one cannot
take an orthogonal complement with respect to a σ-algebra as one can with respect to
subspaces in a Hilbert space.
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2. Preliminary notions and definitions

Let F= (Ft), t ∈R, be a family of Hilbert spaces. We will think about Ft as the information
available at time t, or as a current information. Total information F<∞ carried by F is
defined by F<∞ = ∨t∈RFt, while past and future information of F at t is defined as F≤t =
∨s≤tFs and F≥t = ∨s≥tFs, respectively. It is to be understood that F<t = ∨s<tFs and F>t =
∨s>tFs do not have to coincide with F≤t and F≥t, respectively; F<t and F>t are sometimes
referred to as the real past and real future of F at t. Analogous notation will be used for
families H= (Ht), G= (Gt), E= (Et), and J= (Jt).

If F1 and F2 are arbitrary subspaces of a Hilbert space �, then P(F1|F2) will denote the
orthogonal projection of F1 onto F2 and F1�F2 will denote a Hilbert space generated by
all elements x− P(x|F2), where x ∈ F1. If F2 ⊆ F1, then F1 � F2 coincides with F1 ∩ F⊥2 ,
where F⊥2 is the orthogonal complement of F2 in �.

Possibly the weakest form of causality can be introduced in the following way.

Definition 2.1. It is said that H is submitted to G (and written as H⊆G) if H≤t ⊆G≤t for
each t.

It will be said that families H and G are equivalent (and written as H = G) if H ⊆ G
and G⊆H.

Definition 2.2. It is said that H is strictly submitted to G (and written as H≤G) if Ht ⊆Gt

for each t.

It is easy to see that strict submission implies submission and that the converse does
not hold.

The notions of minimality and maximality of families of Hilbert spaces are specified
in the following definition.

Definition 2.3. It will be said that F is a minimal (resp., strictly minimal) family having
a certain property if there is no family F∗ having the same property which is submitted
(resp., strictly submitted) to F.

It will be said that F is a maximal (resp., strictly maximal) family having a certain
property if there is no family F∗ having the same property such that family F is submitted
(resp., strictly submitted) to F∗.

It should be understood that a minimal (resp., strictly minimal) and maximal (resp.,
strictly maximal) family having a certain property are not necessarily unique.

An important tool in definition of the Hilbert space s.d.s. is the concept of conditional
orthogonality.

Definition 2.4 (compare with [7, 8] and conditional independence from [9]). If F1 and
F2 are arbitrary Hilbert spaces, then it is said that F is splitting for F1 and F2 or that F1

and F2 are conditionally orthogonal given F (and written as F1 ⊥ F2|F) if F1�F ⊥ F2�F.
When F is trivial, that is, F = {0}, this reduces to the usual orthogonality F1 ⊥ F2.

The following result gives an alternative way of defining splitting.

Lemma 2.5 (see [1, 9]). F1 ⊥ F2|F if and only if P(Fi|Fj ∨F)⊆ F for i, j = 1,2, i �= j.
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The following results concerning splitting will be used later (for the proof, see the given
reference).

Theorem 2.6 (see [3]). The space F is a minimal one such that F1 ⊥ F2|F if and only if
F = P(F1|S) for some space S such that F2 ⊆ S⊆ (F2∨P(F2|F1))⊕ (F1∨F2)⊥.

Corollary 2.7 (see [3]). The space F ⊆ F1 ∨ F2 is a minimal one such that F1 ⊥ F2|F if
and only if F = P(F1|S) for some space S such that F2 ⊆ S⊆ F2∨P(F2|F1).

In this paper, the following definition of Markovian property will be used.

Definition 2.8 (compare with [7, 8]). Family G will be called Markovian if P(G≥t|G≤t)=
Gt for each t.

Now we give a definition of an s.d.s. in terms of Hilbert spaces using conditional or-
thogonality relation. The characterizing property is the condition that past information
of outputs and states and future information of outputs and states are conditionally or-
thogonal given the current state.

Definition 2.9 (see [3] and compare with [9]). An s.d.s. is a set of two families, H (out-
puts) and G (states), that satisfy the condition

H<t ∨G<t ⊥H>t ∨G>t|Gt. (2.1)

For given family of outputs H, any family G satisfying (2.1) is called a realization of an
s.d.s. with those outputs.

It is clear that the realization of an s.d.s. is Markovian.
The next intuitively justifiable notion of causality has been proposed in [5].

Definition 2.10. It is said that G is a cause of E within H (and written as E|< G;H) if
E<∞ ⊆H≤∞, G⊆H and E<∞ ⊥H≤t|G≤t for each t.

Intuitively, E|< G;H means that, for arbitrary t, information about E<∞ provided by
H≤t is not “bigger” than that provided by G≤t. The meaning of this interpretation is spec-
ified in the next result.

Lemma 2.11 (see [1]). E|< G;H if and only if E<∞ ⊆ H<∞, G ⊆ H, and P(E<∞|H≤t) =
P(E<∞|G≤t) for each t.

A definition, analogous to Definition 2.10, formulated in terms of σ-algebras, was first
given in [4]; however, a strict Hilbert space version of the definition in [4] contains also
the condition E⊆H (instead of E<∞ ⊆H<∞) which does not have intuitive justification.

If G and H are such that G|< G;H, we will say that G is its own cause within H (com-
pare with [4]). It should be mentioned that the notion of subordination (as introduced
in [7, 8]) is equivalent to the notion of being one’s own cause, as defined here.

If G and H are such that G|< G; G∨H (where G∨H is a family determined by (G∨
H)t = Gt ∨Ht), we will say that H does not cause G. It is clear that the interpretation
of Granger causality is now that H does not cause G if G|< G; G∨H (see [4]). Without
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difficulty, it can be shown that this term and the term “H does not anticipate G” (as
introduced in [7, 8]) are identical.

3. Causality and stochastic dynamic systems

Suppose that an s.d.s. S1 causes, in a certain sense, behaviour of some other s.d.s. S2. It is
natural to assume that outputs H of system S1 can be registered and that some informa-
tion E about the states (or perhaps states themselves) of system S2 is given. Results that
we will prove will tell us under which conditions concerning the relationships between H
and E it is possible to find states G of system S1 which are in a certain causality relation-
ship in the sense of Definition 2.10 with H and E. More precisely, the following two cases
will be considered:

(i) states of an s.d.s. S1 are a cause of outputs of the same system within available
information about s.d.s. S2;

(ii) the available information about S2 is a cause of outputs of S1 within states of S1.

This paper is a continuation of the papers [1, 5, 6].
We consider different kinds of causality between families G, H, and E, while G and H

are in the same relationship, that is, G is a realization of an s.d.s. with outputs H in all
cases.

The following results give the solutions of the problem (i).

Theorem 3.1. Let H and E be such that P(Et|H<∞) ⊆ E≤t and P(E<t|H<∞) ⊥
H>t|P(Et|H<∞) for each t. If the family E is Markovian, then the family G, defined by

Gt = P
(
Et|H<∞

)
, t ∈R, (3.1)

is a minimal realization (of an s.d.s. with outputs H) that causes H within E.

Proof. From G≤t = P(E≤t|H<∞), it follows that H<∞ ⊥ E≤t|G≤t. Also, the definition of G
and the assumption P(Et|H<∞)⊆ E≤t imply G≤t ⊆ E≤t, which together with the previous
orthogonality relation means H|< G;E. The minimality of G follows from Theorem 2.6
and Corollary 2.7.

From G≤t ⊆ E≤t, the fact that P(G≥t|G≤t) = P(E≥t|G≤t) which follows from G<∞ =
H<∞, (3.1) and the assumption that E is Markovian, we get

P
(
G≥t|G≤t

)= P
(
E≥t|G≤t

)= P
(
P
(
E≥t|E≤t

)|G≤t
)= P

(
Et|G≤t

)
. (3.2)

The relation H|< G;E (because H<∞ = G<∞) particularly implies G<∞ �G≤t ⊥ Et, so
that (3.2) becomes

P
(
G≥t|G≤t

)= P
(
Et|G<∞

)= P
(
Et|H<∞

)=Gt, (3.3)

which means that G is Markovian. This fact with the assumption G<t ⊥ H>t|Gt gives
G≤t ⊥ H>t ∨ G≥t|Gt. However, since H<t ⊆ G≤t (which is an obvious consequence of
H|< G;E), the last relation implies that G is a realization of an s.d.s. with outputs H. �

If H is its own cause within E, we obtain a simpler version of the last result.
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Corollary 3.2. Let H be its own cause within E and P(E<t|H≤t) ⊥ H>t|P(Et|H≤t) for
each t. If E is Markovian, then the family G, defined by

Gt = P
(
Et
∣∣H≤t

)
, t ∈R, (3.4)

is a minimal realization (of an s.d.s. with outputs H) that causes H within E.

The following result does not require E to be Markovian but provides a realization
whose present information at t is equal to its total information accumulated up to t.

Theorem 3.3. Let H and E be such that H<∞ ⊆ E<∞ and P(Et|S)⊆ E≤t for each t where S
is some space such that H<∞ ⊆ S ⊆H<∞ ∨P(H<∞|E≤t). Family G is a minimal realization
(of an s.d.s. with outputs H) that causes H within E if and only if it is defined by

Gt = P
(
E≤t|S

)
, t ∈R. (3.5)

Proof. Let (3.5) hold. From Theorem 2.6 and Corollary 2.7, it follows that Gt is a minimal
space such that H<∞ ⊥ E≤t|Gt if and only if it is defined by (3.5). Since Gt =G≤t, it follows
that H<∞ ⊥ E≤t|G≤t, which because G⊆ E (it follows from the assumption P(Et|S)⊆ E<t
and (3.5)) is equivalent to H|< G;E.

From H ⊆ G (it is clear from (3.5)) and Gt = G≤t, it follows immediately that G is a
realization of an s.d.s. with outputs H.

The converse is trivial. �

The next example illustrates the above result.

Example 3.4. Let Z(t)=∑2
n=1

∫ t
0 gn(t,u)dZn(u), t ∈ [0,1], be a proper canonical represen-

tation of the process {Z(t), t ∈ [0,1]} (see [7, 8]) and let the process {X(t), t ∈ [0,1]}
be defined by X(t) = ∫ t0 h(u)dZ1(u), t ∈ [0,1]. Then FX≤t ⊆ FZ≤t for each t. Further, for
Y(t) = P(Z(t)|FX

<∞) = ∫ 1
0 g1(t,u)dZ1(u), t ∈ [0,1], we have that FY≤t ⊆ FZ≤t. According to

Theorem 3.3 (for H= FX = (FX
t ), t ∈ [0,1], FX

t = {c ·X(t), c ∈R}, E= FZ and Gt = FY ),
it follows that family FY

t = P(FZ≤t|FX
<∞), t ∈ [0,1], is a minimal realization (of an s.d.s.

with outputs FX≤t) that causes FX≤t within Z(t).

In the remaining part of the paper, we consider the problem (ii) formulated above.
In part (i), we considered realizations G such that G⊆ E, that is, the given family E is a

natural “framework” in which we find realizations G of an s.d.s. S1. However, in the case
(ii), where E⊆G, the family E is submitted to unknown family G, so that we will assume
that all considered families of Hilbert spaces are submitted to some given “framework”
family F of Hilbert spaces.

The following theorem considers the problem of determining the possible states G (of
an s.d.s. with outputs H) such that the family E is a cause of outputs H within G.

Theorem 3.5. (1) Let H and E be such that H ⊆ E. Each Markovian family G such that
E|< E;G and G<t ⊥H>t|Gt for each t is a realization (of an s.d.s. with outputs H) and E is a
cause of H within G.
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(2) Let H, E, and J be such that H⊆ E, as well as E|< E;J and P(J<t|E≤t)⊥H>t|P(Jt|E≤t)
for each t. If J is Markovian, then the family G, defined by

Gt = P
(
Jt|E≤t

)
, t ∈R, (3.6)

is minimal among the realizations (of an s.d.s. with outputs H) such that E is a cause of H
within G.

(3) If H ⊆ E and if given “framework” family F such that E|< E;F, then the family G,
defined by

Gt = F≤t, t ∈R, (3.7)

is strictly maximal among the realizations (of an s.d.s. with outputs H) such that E is a cause
of H within G.

Proof. (1) According to Lemma 2.5, the assumption G<t ⊥ H>t|Gt is equivalent to
P(H>t|G≤t)⊆Gt. From that and the assumption that G is Markovian family, we get

Gt = P
(
G≥t|G≤t

)= P
(
G≥t ∨H>t|G≤t

)
(3.8)

which is equivalent to G≤t ⊥ G≥t ∨H>t|Gt. However, since H<t ⊆ G≤t (which is an obvi-
ous consequence of H⊆ E and E|< E;G), the last relation means that G is a realization of
an s.d.s. with outputs H. From E|< E;G and H⊆ E, it follows that H|< E;G holds.

(2) From (3.6), it follows that G≤t = E≤t and immediately we get H|< E;G. According
to Definition 2.10, it is clear that the family G, defined by (3.6), is a minimal family such
that H|< E;G. From the assumptions that E|< E;J and the fact that J is Markovian, we
get P(G≥t|G≤t) = P(J≥t|E≤t) = P(P(J≥t|J≤t)|E≤t) = P(Jt|E≤t) = Gt which means that G
is Markovian. Now, according to part (1) of this theorem, it follows that the family G,
defined by (3.6), is a realization (of an s.d.s. with outputs H) such that H|< E;G.

(3) Since G≤t = F≤t, the assumption E|< E;F is equivalent to E|< E;G, so that because
of H⊆ E, it follows that H|< E;G. From Gt =G≤t and H⊆G, it immediately follows that
G is a realization of an s.d.s. with outputs H. From the fact that F is a “framework” family
(i.e., G⊆ F), it is clear that G is a strictly maximal realization with given properties.

It is easy to see that for given outputs H of an s.d.s. S1 and information E about an s.d.s.
S2, the family G, defined by (3.6), is not a unique minimal realization (of an s.d.s. S1) such
that H|< E;G. For each family J∗ ⊆ F which satisfies conditions from Theorem 3.5(2),
with G∗t = P(J∗t |E≤t), t ∈ R, is defined a minimal realization (of an s.d.s. S1) such that
H|< E;G∗. All these minimal realizations have the past information equivalent to E≤t,
t ∈R, but their present information at t is different. �

The next example shows that family G defined by (3.6) is not strictly minimal realiza-
tion of an s.d.s. with outputs H such that H|< E;G.
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Example 3.6. Let A and B be arbitrary Hilbert spaces and let H = (Ht), E = (Et), and
J= (Jt), t ∈ {1,2,3}, be defined by

H1 = A, H2 = B, H3 = A∨B,

E1 = A, E2 = B, E3 =A,

J1 =A, J2 =A∨B, J3 = B.

(3.9)

It is easy to see that J is Markovian, E|< E; J and P(J<t|E≤t)⊥H>t|P(Jt|E≤t) for each t.
If the family G is defined by (3.6), then

G1 = A, G2 = A∨B, G3 = B. (3.10)

According to Theorem 3.5(2), G is a minimal realization (of an s.d.s. with outputs H) and
H|< E;G. However, the family G∗ = (G∗t ), t ∈ {1,2,3}, defined by

G∗1 =A, G∗2 =A∨B, G∗3 = {0}, (3.11)

is another realization of the same s.d.s. and H|< E;G∗. Obviously, G∗ ≤G.
The problem of determining a strictly minimal realization G (of an s.d.s. with outputs

H) such that H|< E;G is still open. If it would be possible to find a strictly minimal family
Jm between families J∗ ⊆ F that satisfy conditions from Theorem 3.5(2), this strictly min-
imal family Jm would define a strictly minimal family Gm (with (3.6)) among all families
G of Theorem 3.5(2). It is clear that if there exists such strictly minimal family, it cannot
be necessarily unique, so that a strictly minimal realization with given properties is not
necessarily unique.

Remark 3.7. It is of interest to find conditions for the existence of realizations with certain
properties less restrictive than those obtained in this paper.
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