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A double inequality involving the constant e is proved by using an inequality between the
logarithmic mean and arithmetic mean. As an application, we generalize the weighted
Carleman-type inequality.

1. Introduction

Let p > 1 and an ≥ 0 with 0 <
∑∞

n=1 a
p
n <∞. Then

∞∑
n=1

(
a1 + a2 + ···+ an

n

)p

<

(
p

p− 1

)p ∞∑
n=1

a
p
n. (1.1)

The constant (p/(p− 1))p is the best possible.
Inequality (1.1) is due to Hardy [6, page 239].

Replacing an in (1.1) by a
1/p
n for n∈N, we obtain

∞∑
n=1

(
a

1/p
1 + a

1/p
2 + ···+ a

1/p
n

n

)p

<

(
p

p− 1

)p ∞∑
n=1

an. (1.2)

In (1.2), letting p→∞, then the following Carleman inequality [6, page 249] is de-
duced:

∞∑
n=1

(
a1a2 ···an

)1/n
< e

∞∑
n=1

an, (1.3)

where an ≥ 0 for n∈N and 0 <
∑∞

n=1 an <∞. The constant e is the best possible.
Carleman’s inequality (1.3) was generalized in [6, page 256] by Hardy as follows. Let

an ≥ 0, λn > 0, Λn =
∑n

m=1 λm for n∈N, and 0 <
∑∞

n=1 λnan <∞, then

∞∑
n=1

λn
(
aλ1

1 aλ2
2 ···aλnn

)1/Λn < e
∞∑
n=1

λnan. (1.4)
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Note that inequality (1.4) is usually referred to as a Carleman-type inequality or weighted
Carleman-type inequality. In his original paper [5], Hardy himself said that it was Pölya
who pointed out this inequality to him.

In several recent papers [2, 4, 11, 12, 13, 14, 15], some strengthened and generalized
results of (1.3) and (1.4) have been given by estimating the weight coefficient (1 + 1/n)n.

For information about the history of both Hardy’s inequality and Carleman-type in-
equalities, please refer to [7, 9].

In this note, we will give a generalization of (1.4) as follows.

Theorem 1.1. Let 0 < λn+1 ≤ λn with Λn =
∑n

m=1 λm ≥ 1 and limn→∞Λn =∞, and let an ≥
0 for n∈N satisfying 0 <

∑∞
n=1 λnan <∞. Then for 0 < p ≤ 1,

∞∑
n=1

λn+1
(
aλ1

1 aλ2
2 ···aλnn

)1/Λn

≤ 1
p

∞∑
n=1

[(
1 +

1
Λn/λn

)pΛn/λn

λna
p
nΛ

p−1
n

( n∑
k=1

λk
(
ckak

)p)(1−p)/p]
,

(1.5)

in particular,

∞∑
n=1

λn+1
(
aλ1

1 aλ2
2 ···aλnn

)1/Λn

<
ep

p

∞∑
n=1

[(
1− 1− 2/e

Λn/λn

)p

λna
p
nΛ

p−1
n

( n∑
k=1

λk
(
ckak

)p)(1−p)/p]
,

(1.6)

where

cλkk =
(
Λk+1

)Λk

(
Λk
)Λk−1

. (1.7)

Remark 1.2. In particular, taking in (1.6) p = 1, we obtain the following strengthened
Hardy’s inequality:

∞∑
n=1

λn+1
(
aλ1

1 aλ2
2 ···aλnn

)1/Λn < e
∞∑
n=1

(
1− 1− 2/e

Λn/λn

)
λnan. (1.8)

Taking in (1.8) λn ≡ 1, we obtain the following strengthened Carleman’s inequality:

∞∑
n=1

(
a1a2 ···an

)1/n
< e

∞∑
n=1

(
1− 1− 2/e

n

)
an. (1.9)

2. Lemma

The well-known arithmetic mean A(a,b) and logarithmic mean L(a,b) of two positive
numbers a and b are defined, respectively, for a= b by A(a,b)= L(a,b)= a and for a �= b



Chao-Ping Chen et al. 477

by

A(a,b)= a+ b

2
, L(a,b)= b− a

lnb− lna
. (2.1)

For a �= b, we have

L(a,b) < A(a,b). (2.2)

See [1] and the references therein.

Lemma 2.1. Let x ≥ 1 be a real number. Then

e
(

1− 1/2
x

)
<
(

1 +
1
x

)x
≤ e

(
1− 1− 2/e

x

)
. (2.3)

The constants 1/2 and 1− 2/e are best possible.

Proof. Inequality (2.3) is equivalent to

1− 2
e
≤ x

[
1− 1

e

(
1 +

1
x

)x]
<

1
2
. (2.4)

Define a function f for x > 0 by

f (x)= x

[
1− 1

e

(
1 +

1
x

)x]
. (2.5)

In order to prove (2.4), it is sufficient to show that the function f is strictly increasing on
[1,∞) and with

f (1)= 1− 2
e

, lim
x→∞ f (x)= 1

2
. (2.6)

The following proof shows that in fact f ′(x) > 0 holds on (0,∞).
Easy computation yields

e f ′(x)= e− [1 + xg(x)
](

1 +
1
x

)x
, (2.7)

where

g(x)= ln
(

1 +
1
x

)
− 1
x+ 1

= 1
L(x,x+ 1)

− 1
x+ 1

. (2.8)

Now we are in a position to prove f ′(x) > 0, which is equivalent to

h(x)= [1 + xg(x)
](

1 +
1
x

)x
< e. (2.9)
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Differentiation yields

h′(x)=
[
xg2(x) + 2g(x)− 1

(x+ 1)2

](
1 +

1
x

)x
. (2.10)

In the following we show h′(x) > 0. Clearly, the equation

xt2 + 2t− 1
(x+ 1)2

= 0 (2.11)

has two roots

t1,2 = −(x+ 1)±√(x+ 1)2 + x

x(x+ 1)
. (2.12)

To prove h′(x) > 0, it is sufficient to show that

−(x+ 1) +
√

(x+ 1)2 + x

x(x+ 1)
= t2 < g(x)= 1

L(x,x+ 1)
− 1
x+ 1

, (2.13)

which is equivalent to

√
(x+ 1)2 + x− 1

x(x+ 1)
<

1
L(x,x+ 1)

. (2.14)

Inequality (2.14) holds based on the following fact:

√
(x+ 1)2 + x− 1

x(x+ 1)
<

2
2x+ 1

= 1
A(x,x+ 1)

<
1

L(x,x+ 1)
. (2.15)

Hence, the function h is increasing on (0,∞), and then h(x) < limx→∞h(x) = e. This
means f ′(x) > 0, and then

1− 2
e
= f (1) < lim

x→∞ f (x). (2.16)

Using Maclaurin formula

(1 + t)1/t = e− e

2
t+ o(t), (2.17)

we have

lim
n→∞ f (n)= lim

x→∞ f (x)= lim
t→0+

f
(

1
t

)
= lim

t→0+

(et)/2 + o(t)
et

= 1
2
. (2.18)

The proof of Lemma 2.1 is complete. �

Remark 2.2. There are other very sharp estimates of the crucial factor (1 + 1/n)n in [8]
and the references therein.
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3. Proof of Theorem 1.1

By the power mean inequality, we have

n∏
m=1

α
qm
m ≤

( n∑
m=1

qmα
p
m

)1/p

, (3.1)

where p ≥ 0, αm ≥ 0, and qm > 0 for m∈N with
∑n

m=1 qm = 1.
Let cm > 0, αm = cmam, and qm = λm/Λm, then we obtain

(
c1a1

)λ1/Λn
(
c2a2

)λ2/Λn ···(cnan)λn/Λn ≤
(

1
Λn

n∑
m=1

λm
(
cmam

)p)1/p

. (3.2)

Further, we have

∞∑
n=1

λn+1
(
aλ1

1 aλ2
2 ···aλnn

)1/Λn

=
∞∑
n=1

λn+1

(
c1a1

)λ1/Λn
(
c2a2

)λ2/Λn ···(cnan)λn/Λn

(
cλ1

1 cλ2
2 ···cλnn

)1/Λn

≤
∞∑
n=1

λn+1(
cλ1

1 cλ2
2 ···cλnn

)1/Λn

(
1
Λn

n∑
m=1

λm
(
cmam

)p)1/p

.

(3.3)

By the following inequality (see [3, 10])

( n∑
m=1

zm

)t

≤ t
n∑

m=1

zm

( m∑
k=1

zk

)t−1

, (3.4)

where t ≥ 1 is constant and zm ≥ 0 for m∈N, it is easy to see that

(
1
Λn

n∑
m=1

λm
(
cmam

)p)1/p

≤ 1
Λn

( n∑
m=1

λm
(
cmam

)p)1/p

≤ 1
pΛn

n∑
m=1

λm
(
cmam

)p( m∑
k=1

λk
(
ckak

)p)(1−p)/p

,

(3.5)

where Λn ≥ 1 and 0 < p ≤ 1. Thus, we obtain from (3.3) and (3.5) that

∞∑
n=1

λn+1
(
aλ1

1 aλ2
2 ···aλnn

)1/Λn

≤ 1
p

∞∑
n=1

λn+1

Λn
(
cλ1

1 cλ2
2 ···cλnn

)1/Λn

n∑
m=1

λm
(
cmam

)p( m∑
k=1

λk
(
ckak

)p)(1−p)/p

= 1
p

∞∑
m=1

λm
(
cmam

)p ∞∑
n=m

(
λn+1

Λn
(
cλ1

1 cλ2
2 ···cλnn

)1/Λn

)( m∑
k=1

λk
(
ckak

)p)(1−p)/p

.

(3.6)
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Choosing cλ1
1 cλ2

2 ···cλnn = (Λn+1)Λn for n∈N and setting Λ0 = 0, we get from 0 < λn+1 ≤
λn that

cn =
[(

Λn+1
)Λn

(
Λn
)Λn−1

]1/λn

=
(

1 +
λn+1

Λn

)Λn/λn

Λn ≤
(

1 +
λn
Λn

)Λn/λn

Λn. (3.7)

This implies that

∞∑
n=1

λn+1
(
aλ1

1 aλ2
2 ···aλnn

)1/Λn

≤ 1
p

∞∑
m=1

λm
(
cmam

)p ∞∑
n=m

λn+1

ΛnΛn+1

( m∑
k=1

λk
(
ckak

)p)(1−p)/p

= 1
p

∞∑
m=1

λm
(
cmam

)p ∞∑
n=m

(
1
Λn
− 1
Λn+1

)( m∑
k=1

λk
(
ckak

)p)(1−p)/p

= 1
p

∞∑
m=1

λm
(
cmam

)p 1
Λm

( m∑
k=1

λk
(
ckak

)p)(1−p)/p

≤ 1
p

∞∑
m=1

(
1 +

1
Λm/λm

)pΛm/λm

λma
p
mΛ

p−1
m

( m∑
k=1

λk
(
ckak

)p)(1−p)/p

.

(3.8)

Hence, we obtain from the above inequality and Lemma 2.1 that

∞∑
n=1

λn+1
(
aλ1

1 aλ2
2 ···aλnn

)1/Λn

<
ep

p

∞∑
n=1

(
1− 1− 2/e

Λn/λn

)p

λna
p
nΛ

p−1
n

( n∑
k=1

λk
(
ckak

)p)(1−p)/p

.

(3.9)

The last inequality holds strictly since the right-hand inequality of (2.3) is valid if and
only if n= 1. The proof is complete.
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