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We characterize the transformation, defined for every copula C, by Ch(x, y) :=
h[−1](C(h(x),h(y))), where x and y belong to [0,1] and h is a strictly increasing and con-
tinuous function on [0,1]. We study this transformation also in the class of quasi-copulas
and semicopulas.

1. Introduction

The notion of copula was introduced by Sklar [24] who proved the theorem that now
bears his name; it is commonly used in probability and statistics (see, for instance, [19,
22, 23]). Later, in order to characterize a class of operations on distribution functions
that derive from operations on random variables defined on the same probability space,
Alsina et al. [1] introduced the notion of quasi-copula (see also [12, 20, 27]). On the con-
trary, the notion of semicopula is recent [3, 8] and arises from a statistical application:
the study of multivariate aging through the analysis of the Schur concavity of the survival
function (see [2, 25]). Semicopulas generalize triangular norms (briefly t-norms), intro-
duced by K. Menger in order to extend the triangle inequality from the setting of metric
spaces to probabilistic metric spaces, and successfully used in probability theory, mathe-
matical statistics, and fuzzy logic [15, 22]. We refer to our paper [8] for the properties of
semicopulas. Here we recall that a semicopula is a function S : [0,1]2 → [0,1] that satisfies
the following two conditions:

∀x in [0,1] S(x,1)= S(1,x)= x,

S(x, y) is increasing in each place.
(1.1)

As a consequence of (1.1), given a semicopula S, one has, for all x and y in [0,1],

Z(x, y)≤ S(x, y)≤M(x, y), (1.2)

where M(x, y)=min{x, y} and

Z(x, y)=
0, (x, y)∈ [0,1[2,

min{x, y}, elsewhere.
(1.3)
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If a semicopula C is 2-increasing, namely, for all x,x′, y, y′ in ]0,1] with x ≤ x′ and
y ≤ y′, C satisfies the inequality

C(x′, y′)−C(x, y′)−C(x′, y) +C(x, y)≥ 0, (1.4)

then it is a copula (see [19]).
If a semicopula Q satisfies the 1-Lipschitz condition, namely,

∀x,x′, y, y′ ∈ [0,1],
∣∣Q(x, y)−Q(x′, y′)

∣∣≤ |x− x′|+ |y− y′|, (1.5)

then it is a quasi-copula.
If a semicopula T is both commutative

∀x, y in [0,1], T(x, y)= T(y,x), (1.6)

and associative

∀x, y,z in [0,1], T
(
T(x, y),z

)= T
(
x,T(y,z)

)
, (1.7)

then it is a t-norm (see [15, 22]).
The class � of semicopulas strictly includes the class � of quasi-copulas, which, in its

turn, strictly includes the class � of copulas, � ⊂ � ⊂ �. Moreover, we will denote by
�E and �C, respectively, the subsets of commutative (i.e., exchangeable) and continuous
semicopulas. The class �C strictly includes � and �E strictly includes the set � of t-norms
(see [8, 9]).

Notice that the notion of semicopula is new in a statistical context but is not new in
general, since it has appeared in other contexts several times.

The first appearance of which we are aware is in [22, Definition 7.1.5], where the au-
thors introduce the set � of binary operations on [0,1] that are nondecreasing in each
place and have 1 as the neutral element. By the way, at the same time, they also introduce
the subset �C of all the functions T ∈� that satisfy (1.5), namely, the set of quasi-copulas!

Then it was again “introduced” in [26] under the name of t-seminorm. Finally, in
other words, a semicopula is a binary aggregation operator with neutral element 1 [4] or
a conjunctor [14].

In Section 2, we will study transformations of semicopulas via a continuous and strictly
increasing function on [0,1]. In Sections 3 and 4, these transformations will be charac-
terized, respectively, on the class of copulas and quasi-copulas.

2. The transform of semicopulas

Given a function h : [0,1]→ [0,1] that is continuous and strictly increasing with h(1)= 1,
its pseudoinverse is the function h[−1] : [0,1]→ [0,1] defined for all t ∈ [0,1] by

h[−1](t) :=
h−1(t), h(0)≤ t ≤ 1,

0, 0≤ t ≤ h(0).
(2.1)
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We denote by Θ the set of all the functions h so defined and we will also consider the sub-
set Θi of Θ defined by those h∈Θ for which h(0)= 0; the functions in Θi are invertible
and the pseudoinverse coincides with the inverse of h, h[−1] = h−1.

Proposition 2.1. For all h and g in Θ,

(a) h[−1] is continuous and strictly increasing in [h(0),1];
(b) for all t ∈ [0,1], h[−1](h(t))= t and h(h[−1](t))=max{t,h(0)};
(c) (h◦ g)[−1] = g[−1] ◦h[−1].

Proof. Statements (a) and (b) are easily proved. In order to prove (c), let h and g be in Θ.
Then, for all t ∈ [0,1], one has

(h◦ g)[−1](t)=
(h◦ g)−1(t), t ∈ [(h◦ g)(0),1

]
,

0, otherwise,

g[−1](h[−1](t)
)=

g−1
(
h[−1](t)

)
, g(0)≤ h[−1](t)≤ 1,

0, otherwise,

=
g−1

(
h−1(t)

)
, t ∈D,

0, otherwise,

(2.2)

where

D := {t ∈ [h(0),1
]

: g(0)≤ h[−1](t)≤ 1
}= [(h◦ g)(0),1

]
, (2.3)

which proves assertion (c). �

More details on pseudoinverses can be found in [15, Chapter 3]. The following theo-
rem is basic for what follows and for the applications.

Theorem 2.2. For all h∈Θ and S∈�, the function Sh : [0,1]2 → [0,1], defined, for all x
and y in [0,1], by

Sh(x, y) := h[−1](S(h(x),h(y)
))

, (2.4)

is a semicopula. Moreover, if S is continuous, also its transform Sh is continuous.

Proof. If t is in [0,1], then

Sh(t,1)= h[−1](S(h(t),h(1)
))= h[−1](h(t)

)= t = Sh(1, t). (2.5)

Let x,x′, y be in [0,1] with x ≤ x′. Then

h(x)≤ h(x′)=⇒ S
(
h(x),h(y)

)≤ S
(
h(x′),h(y)

)
=⇒ h[−1](S(h(x),h(y)))≤ h[−1](S(h(x′),h(y)

))
,

(2.6)

namely, x 
→ Sh(x, y) is increasing; similarly, one proves that y 
→ Sh(x, y) is increasing.
�
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Theorem 2.2 introduces a mapping Ψ : �×Θ→� defined, for all x and y in [0,1], by

Ψ(S,h)(x, y) := h[−1](S(h(x),h(y)
))
. (2.7)

We will often set

ΨhS :=Ψ(S,h). (2.8)

The set {Ψh,h ∈ Θ} is closed with respect to the composition operator ◦. Moreover,
given h,g ∈Θ, for all S∈�, one has(

Ψg ◦Ψh
)(
S(x, y)

)=Ψ
(
Ψ(S,h),g

)
(x, y)= g[−1](ΨhS

(
g(x),g(y)

))
= g[−1](h[−1]S

(
(h◦ g)(x),(h◦ g)(y)

))
= (h◦ g)[−1](S((h◦ g)(x),(h◦ g)(y)

))=Ψh◦gS(x, y).

(2.9)

The identity mapping in �, which coincides with Ψid[0,1] , is, obviously, the neutral element
of the composition operator ◦ in {Ψh,h∈Θ}. Notice that only if h∈Θi, does Ψh admit
an inverse function given by Ψ−1

h =Ψh−1 . Notice also that the mapping Ψ : �×Θi→� is
the action of the group Θi on �. Moreover, for all h∈Θ, one has ΨhM =M and ΨhZ = Z.

Remark 2.3. If Π(x, y)= xy is the copula of independence, then, for all h∈Θ, ΨhΠ is an
Archimedean and continuous t-norm; moreover, the operation Ψ gives rise to the whole
family �C of continuous Archimedean t-norms (written with a multiplicative generator),

�C =
{
ΨhΠ : h∈Θ

}
. (2.10)

We recall that an Archimedean t-norm T can be represented in the form

T(x, y)= g[−1](g(x) + g(y)
)
, (2.11)

where g is an additive generator, or in the form

T(x, y)= h[−1](h(x)h(y)
)
, (2.12)

where h is a multiplicative generator.

In the class � of semicopulas, one can introduce the usual pointwise order: for all
S,S′ ∈�, one puts S≺ S′ if S(x, y)≤ S′(x, y), for all x, y ∈ [0,1].

Proposition 2.4. Given S and S′ in �, and h in Θ,

(a) the operation Ψ is order-preserving in the first place, that is, if S ≺ S′, then ΨhS ≺
ΨhS′;

(b) if ΨhS≺ΨhS′, then S(x, y)≤ S′(x, y) for all (x, y)∈ [h(0),1]2.

Definition 2.5. A subset � of � is said to be stable (or closed) with respect to (or under)
Ψ if the image of �×Θ under Ψ is contained in �, Ψh�⊂� for every h∈Θ.

It is easily proved that the subsets �E and �C are closed under Ψ. Moreover, the fol-
lowing result can be proved (see also [15, 22]).
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Proposition 2.6. The class � of all t-norms is closed under Ψ.

Proof. For each h∈Θ and T ∈�, it suffices to show that the function Th :=ΨhT , defined
by

∀x, y ∈ [0,1] Th(x, y) := h[−1](T(h(x),h(y)
))

, (2.13)

is associative, namely, it satisfies (1.7). Set δ := h(0)≥ 0. Then, if s, t, and u all belong to
[0,1], simple calculations lead to the following two expressions:

Th
[
Th(s, t),u

]= h[−1]T
[
T
(
h(s),h(t)

)∨ δ,h(u)
]
,

Th
[
s,Th(t,u)

]= h[−1]T
[
h(s),T

(
h(t),h(u)

)∨ δ
]
.

(2.14)

If T(h(s),h(t))≤ δ, then one has

Th
[
Th(s, t),u

]= h[−1](T(δ,h(u)
))≤ h[−1](δ)= 0, (2.15)

and either

Th
[
s,Th(t,u)

]= h[−1](T(h(s),T
(
h(t),h(u)

)))
= h[−1](T(T(h(s),h(t)

)
,h(u)

))
≤ h[−1](T(δ,h(u)

))≤ h[−1](δ)= 0

(2.16)

or

Th
[
s,Th(t,u)

]= h[−1](T(h(s),δ
))≤ h[−1](δ)= 0. (2.17)

Therefore the associativity equation holds.
If T[h(s),h(t)] > δ, the considerations are analogous. �

The proof of the following proposition is immediate and will therefore not be repro-
duced here.

Proposition 2.7. The class �C is closed under Ψ. In particular, if g is a multiplicative gen-
erator of the Archimedean and continuous t-norm A, then g ◦h is a multiplicative generator
of ΨhA.

It follows from the definition of the operator Ψ that ΨhC is a semicopula for all h∈Θ
and for every copula C ∈�. However, it is easily checked that ΨhC need not be a copula.
In order to see this, take C =Π so that Remark 2.3 ensures that ΨhΠ is an Archimedean
and continuous t-norm for every h∈Θ. Now it suffices to recall that a t-norm is a copula
if, and only if, its additive generator is convex [22, Theorem 6.3.3] and, then, to choose h
in such a way that the corresponding additive generator t 
→ ϕ(t)=− lnh(t) is not convex;
thus ΨhΠ is not a copula. For example, let h be in Θ defined by h(t) := t2 for all t ∈ [0,1].
Let W be the lower Fréchet bound defined by W(x, y) :=max{x+ y− 1,0} for all x, y in
[0,1]. Then

Wh(x, y)= h−1(W(
h(x),h(y)

))= √max
{
x2 + y2− 1,0

}
, (2.18)
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namely,

Wh(x, y)=
0, x2 + y2 ≤ 1,√

x2 + y2− 1, otherwise.
(2.19)

The function Wh is one of a family of t-norms [22, page 72]. One has

Wh

([
6

10
,1
]2
)
=Wh(1,1)−Wh

(
1,

6
10

)
−Wh

(
6

10
,1
)

+Wh

(
6

10
,

6
10

)
=− 2

10
< 0,

(2.20)

then, in view of [12, Proposition 3], Wh is not a quasi-copula.
So, the image ΨhC of a copula should be neither a copula nor a quasi-copula, so that

neither the family � of all copulas nor that � of all quasi-copulas are stable under Ψ.

3. The transform of copulas

Given a copula C and a function h∈Θ, the transform of C is defined on [0,1]2 by

Ch(x, y) := h[−1](C(h(x),h(y)
))
. (3.1)

Theorem 3.1. For each h∈Θ, the following statements are equivalent:

(a) h is concave;
(b) for every copula C, the transform (3.1) is a copula.

Proof. (a)⇒(b). It suffices to show that Ch satisfies inequality (1.4). To this end, let x1, y1,
x2, y2 be points of [0,1] such that x1 ≤ x2 and y1 ≤ y2. Then the points si (i = 1,2,3,4),
defined by

s1 = C
(
h
(
x1
)
,h
(
y1
))

, s2 = C
(
h
(
x1
)
,h
(
y2
))

,

s3 = C
(
h
(
x2
)
,h
(
y1
))

, s4 = C
(
h
(
x2
)
,h
(
y2
))

,
(3.2)

satisfy

s1 ≤min
{
s2,s3

}≤max
{
s2,s3

}≤ s4, s1− s2− s3 + s4 ≥ 0. (3.3)

By using the notations of [17], one has (s3,s2)≺w (s4,s1), where ≺w is the weak majoriza-
tion ordering. Because h[−1] is convex, continuous, and increasing, it follows from Tomic’s
theorem (see [17, (4.B.2)]) that

h[−1](s3
)

+h[−1](s2
)≤ h[−1](s4

)
+h[−1](s1

)
, (3.4)

namely, inequality (1.4) holds.
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(b)⇒(a). It suffices to show that h[−1] is Jensen-convex, that is,

∀s, t ∈ [0,1] h[−1]
(
s+ t

2

)
≤ h[−1](s) +h[−1](t)

2
, (3.5)

because, then, h[−1] is convex and, hence, h is concave.
Without loss of generality consider the copula W and points s and t in [0,1] with s≤ t.

If (s+ t)/2 is in [0,h(0)], then (3.5) is immediate. If (s+ t)/2 is in ]h(0),1], then one has

W
(
s+ 1

2
,
s+ 1

2

)
= s, W

(
t+ 1

2
,
t+ 1

2

)
= t,

W
(
s+ 1

2
,
t+ 1

2

)
= s+ t

2
=W

(
t+ 1

2
,
s+ 1

2

)
.

(3.6)

There are points x1 and x2 in [0,1] such that

h
(
x1
)= 1 + s

2
, h

(
x2
)= 1 + t

2
. (3.7)

Since Wh is a copula, it satisfies inequality (1.4):

Wh
(
x1,x1

)−Wh
(
x1,x2

)−Wh
(
x2,x1

)
+Wh

(
x2,x2

)≥ 0; (3.8)

as a consequence, one has

h[−1](s)−h[−1]
(
s+ t

2

)
−h[−1]

(
s+ t

2

)
+h[−1](t)≥ 0, (3.9)

which is the desired conclusion. �

The set of concave functions in Θ will be denoted by ΘC. It is easy to prove that, for
all h,g ∈ΘC, λh+ (1− λ)g (λ∈ [0,1]) and h ◦ g are in ΘC. Moreover, if h is in ΘC, then
h(tα) and (h(t))α are in ΘC for all α∈ ]0,1[. For instance, the following functions are in
ΘC:

(a) h(x)= x1/α and h−1(x)= xα with α≥ 1;
(b) h(x)= sin(πx/2) and h−1(x)= (2/π)arcsinx;
(c) h(x)= (4/π)arctanx and h−1(x)= tan(πx/4).

Theorem 3.1 introduces, for all h∈ΘC, a mapping

Ψh : �−→�, C 
−→ΨhC := Ch, (3.10)

which verifies the properties given in the proposition below.

Proposition 3.2. The following propertis hold:

(a) for every h and g in ΘC, Ψh ◦Ψg =Ψg◦h;
(b) if {Cn} is a sequence of copulas that converges pointwise to a copula C and h ∈ΘC,

then {Cn
h} converges pointwise to Ch;
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(c) Ψh is continuous, in the sense that, for every ε > 0, there exists δ > 0 such that, for
A,B ∈�, ‖A−B‖∞ < δ implies ‖ΨhA−ΨhB‖∞ < ε; here

‖A−B‖∞ :=max
{∣∣A(x, y)−B(x, y)

∣∣ : (x, y)∈ [0,1]2}; (3.11)

(d) Ψh is convex, in the sense that, for every copulas A and B and for λ∈ [0,1], Ψh(λA+
(1− λ)B)≺ λΨhA+ (1− λ)ΨhB.

As in Section 2, a subset � of � is said to be stable with respect to Ψ if the image of
�×ΘC under Ψ is contained in �, Ψ(�×ΘC) ⊂�. By using the properties of their
generators, it is easily proved that the class of Archimedean and Archimax copulas are
stable (for these notions, see [5, 11]).

Example 3.3. Let C be a copula and let r be a function defined on [0,1] by r(t)= at + b,
with a,b ∈ ]0,1[, a+ b = 1. Then r[−1](t)=max{0,(t− b)/a} and one has

Cr(x, y)=


1
a

[
C
(
ax+ b,ay + b

)− b
]
, C

(
ax+ b,ay + b

)≥ b,

0, otherwise.
(3.12)

The copula Cr is said to be linear transform of C.

Remark 3.4. An interesting probabilistic interpretation of formula (3.1) was presented
in [13]: if h(t) = t1/n for some n ≥ 1, then Ch is the copula associated with compo-
nentwise maxima, X = max(X1, . . . ,Xn) and Y = max(Y1, . . . ,Yn) of a random sample
(X1,Y1), . . . , (Xn,Yn) from some arbitrary distribution with underlying copula C.

Power transformation of copulas was introduced in the theory of extreme value distri-
butions [5, 6, 18]; recently Klement et al. [16] have studied the copulas that are invariant
under power transformations and under increasing bijections.

Remark 3.5. Let H be a bivariate distribution function with unidimensional marginals F
and G and let h be a strictly increasing function in ΘC. From the proof of Theorem 3.1, it
is easily proved that the function

H̃(x, y)= h
(
H(x, y)

)
, (x, y)∈R2

, (3.13)

is a bivariate distribution function with marginals h(F) and h(G) and with copula Ch−1 .
Transformations of type (3.13) were used in the field of insurance pricing [10, 28] and
they are also called distorted probability measures in the context of nonadditive probabili-
ties [7].

We conclude this section with an open problem. Let C be a fixed copula. What is the
subset Θ(C) of Θ, depending on C, that ensures that Ch is still a copula for all h∈Θ(C)?
For example, if C is an Archimedean copula with additive generator ϕ, it is easily shown
that Ch is a copula if, and only if, ϕ ◦ h is convex. In this way, the two following remarks
can be useful.

Remark 3.6. For a given copula C, its transform Ch may be a copula even though h is not
concave. For instance, let h be the function defined on [0,1] by h(t) = t2. Then h is not
concave, but Πh =Π is obviously a copula.
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Remark 3.7. For a given copula C, the transforms Ch and Cg may be equal, Ch = Cg , even
though the functions h and g are not equal, h �= g. For instance, we consider the copula
W and let h be the function defined on [0,1] by h(t) = (t + 1)/2. Then Wh =W and
Wid =W , but id �= h.

4. The transform of quasi-copulas

Given a quasi-copula (z1,z2) 
→Q(z1,z2) and a function h∈Θ, the transform of Q is de-
fined on [0,1]2 by

Qh
(
x1,x2

)
:= h[−1](Q(h(x1

)
,h
(
x2
)))

. (4.1)

Lemma 4.1. Under the above assumptions, Qh is a quasi-copula if, and only if, for almost
all (x1,x2) in [0,1]2 and for i= 1,2,

h′
(
xi
) ·DiQ

(
h
(
x1
)
,h
(
x2
))≤ h′

(
h[−1](Q(h(x1

)
,h
(
x2
))))

, (4.2)

where DiQ = ∂Q/∂zi (i= 1,2) exist a.e. on [0,1].

Proof. For almost all (x1,x2) in [0,1]2 and for i= 1,2, one has

DiQh
(
x1,x2

)= h′
(
xi
) ·DiQ

(
h
(
x1
)
,h
(
x2
))

h′
(
h[−1]

(
Q
(
h
(
x1
)
,h
(
x2
)))) . (4.3)

Since Qh satisfies the boundary conditions and is increasing in each place, in view of [21,
Theorem 2.1], Qh is a quasi-copula if, and only if, |DiQh| ≤ 1, namely, if, and only if, the
condition (4.2) holds. �

Lemma 4.2. If h is in ΘC, then Qh is a quasi-copula.

Proof. For all x, y in [0,1], one has

x = h[−1](Q(h(x),1
))≥ h[−1](Q(h(x),h(y)

))
, (4.4)

then, since h′ is decreasing a.e. on [0,1], and since the partial derivatives of Q are smaller
than, or equal to, 1,

h′(x) ·DiQ
(
h(x),h(y)

)≤ h′(x)≤ h′
(
h[−1](Q(h(x),h(y)

)))
(i= 1,2), (4.5)

that is, the condition (4.2). �

Connecting the above lemma and the proof of Theorem 3.1(part (b)⇒(a)), one has
the following theorem.

Theorem 4.3. For each h∈Θ, the following statements are equivalent:

(a) h is concave;
(b) for every quasi-copula Q, Qh is a quasi-copula, namely, Ψh : �→�.
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