UNIT GROUPS OF CUBE RADICAL ZERO COMMUTATIVE COMPLETELY PRIMARY FINITE RINGS

CHITENG'A JOHN CHIKUNJI

Received 1 July 2004

A completely primary finite ring is a ring *R* with identity $1 \neq 0$ whose subset of all its zero divisors forms the unique maximal ideal *J*. Let *R* be a commutative completely primary finite ring with the unique maximal ideal *J* such that $J^3 = (0)$ and $J^2 \neq (0)$. Then $R/J \cong GF(p^r)$ and the characteristic of *R* is p^k , where $1 \le k \le 3$, for some prime *p* and positive integer *r*. Let $R_o = GR(p^{kr}, p^k)$ be a Galois subring of *R* and let the annihilator of *J* be J^2 so that $R = R_o \oplus U \oplus V$, where *U* and *V* are finitely generated R_o -modules. Let nonnegative integers *s* and *t* be numbers of elements in the generating sets for *U* and *V*, respectively. When s = 2, t = 1, and the characteristic of *R* is *p*; and when t = s(s+1)/2, for any fixed *s*, the structure of the group of units R^* of the ring *R* and its generators are determined; these depend on the structural matrices (a_{ij}) and on the parameters *p*, *k*, *r*, and *s*.

Notations

Throughout this paper, *R* will denote a finite ring, unless otherwise stated, *J* will denote the Jacobson radical of *R*, and we will denote the Galois ring $GR(p^{nr}, p^n)$ of characteristic p^n and order p^{nr} by R_o , for some prime *p*, and positive integers *n*, *r*.

We denote the group of units of *R* by R^* and a cyclic group of order π by $\epsilon(\pi)$. If *g* is an element of R^* , then o(g) denotes its order, and $\langle g \rangle$ denotes the cyclic group generated by *g*. Furthermore, for a subset *A* of *R* or R^* , |A| will denote the number of elements in *A*. The ring of integers modulo the number *n* will be denoted by \mathbb{Z}_n , and the characteristic of *R* will be denoted by char*R*.

1. Introduction

In [6], Fuchs asked for a characterization of abelian groups which could be groups of units of a ring. This question was noted to be too general for a complete answer [12], and a natural course is to restrict the classes of groups or rings to be considered.

Let *R* be a ring and let R^* denote its multiplicative group of unit elements. All local rings *R* with R^* cyclic were determined by Gilmer [8] and this case was also considered by Ayoub [1] (also proofs are given in [10, 11]). Pearson and Schneider have found all

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:4 (2005) 579–592 DOI: 10.1155/IJMMS.2005.579

R where R^* is generated by two elements. Clark [4] has investigated R^* where the ideals form a chain and has shown that if $p \ge 3$, $n \ge 2$, and $r \ge 2$, then the units of the Galois ring $GR(p^{nr}, p^n)$ are a direct sum of a cyclic group of order $p^r - 1$ and *r* cyclic groups of order $p^n - 1$ (this was also done independently by Raghavendran [11]). In fact, Raghavendran described the structure of the multiplicative group of every Galois ring. Stewart in [12] considered a related problem to that asked by Fuchs [6] by proving that for a given finite group *G* (not necessarily abelian), there are, up to isomorphism, only finitely many directly indecomposable finite rings having group of units isomorphic to *G*.

Ganske and McDonald [7] provided a solution for R^* when the local ring R has Jacobson radical J such that $J^2 = (0)$ by showing that

$$R^* = \left(\bigoplus_{i=1}^{nt} \epsilon(p) \right) \oplus \epsilon(|K| - 1),$$
(1.1)

where $n = \dim_K(J/J^2)$, $|K| = p^t$, and $\epsilon(\pi)$ denotes the cyclic group of order π .

In [5], Dolzan found all nonisomorphic rings with a group of units isomorphic to a group G with n elements, where n is a power of a prime or any product of prime powers, not divisible by 4; and also found all groups with n elements which can be groups of units of a finite ring, a contribution to Stewart's problem [12]. More recently, X.-D. Hou et al. gave an algorithmic method for computing the structure of the group of units of a finite commutative chain ring and further strengthening the known result by listing a set of linearly independent generators for the group of units.

The present paper focuses on the group of units R^* of a commutative completely primary finite ring R with unique maximal ideal J such that $R/J \cong GF(p^r)$, $J^3 = (0)$, and $J^2 \neq (0)$ so that the characteristic of R is p^k , where $1 \le k \le 3$; and further identifies sets of generators for R^* .

In particular, let $R_o = GR(p^{kr}, p^k)$ be a Galois subring of R and let the annihilator of J be J^2 so that $R = R_o \oplus U \oplus V$, where U and V are finitely generated R_o -modules. Let nonnegative integers s and t be numbers of elements in the generating sets for U and V, respectively. When s = 2, t = 1, and char R = p, and when t = s(s+1)/2, for any fixed s, the structure of the group of units R^* of the ring R and its generators have been determined; these depend on the structural matrices (a_{ij}) and on the parameters p, k, r, and s.

2. Preliminaries

We refer the reader to [2] for the general background of completely primary finite rings R with maximal ideals J such that $J^3 = \{0\}$ and $J^2 \neq \{0\}$. Let R be a completely primary finite ring with maximal ideal J such that $J^3 = \{0\}$ and $J^2 \neq \{0\}$. Let R be a completely primary finite ring with maximal ideal J such that $J^3 = \{0\}$ and $J^2 \neq \{0\}$. Then R is of order p^{nr} and the residue field R/J is a finite field $GF(p^r)$, for some prime p and positive integers n, r. The characteristic of R is p^k , where k is an integer such that $1 \le k \le 3$. Let $GR(p^{kr}, p^k)$ be the Galois ring of characteristic p^k and order p^{kr} , that is, $GR(p^{kr}, p^k) = \mathbb{Z}_{p^k}[x]/(f)$, where $f \in \mathbb{Z}_{p^k}[x]$ is a monic polynomial of degree r whose image in $\mathbb{Z}_p[x]$ is irreducible. Then, it can be deduced from the main theorem in [4] that R has a coefficient subring R_o of the form $GR(p^{kr}, p^k)$ which is clearly a maximal Galois subring of R. Moreover, there

exist elements $m_1, m_2, \ldots, m_h \in J$ and automorphisms $\sigma_1, \ldots, \sigma_h \in Aut(R_o)$ such that

$$R = R_o \oplus \sum_{i=1}^h R_o m_i \tag{2.1}$$

(as R_o -modules), $m_i r = r^{\sigma_i} m_i$, for every $r \in R_o$ and any i = 1, ..., h. Further, $\sigma_1, ..., \sigma_h$ are uniquely determined by R and R_o . The maximal ideal of R is

$$J = pR_o \oplus \sum_{i=1}^{h} R_o m_i.$$
(2.2)

It is worth noting that *R* contains an element *b* of multiplicative order $p^r - 1$ and that $R_o = \mathbb{Z}_{p^k}[b]$ (see, e.g., [2, Result 1.3]).

The following results will be useful.

PROPOSITION 2.1. Let R be a completely primary finite ring (not necessarily commutative). Then the group of units R^* of R contains a cyclic subgroup $\langle b \rangle$ of order $p^r - 1$, and R^* is a semidirect product of 1 + J and $\langle b \rangle$.

Proof. Obviously, the group of units R^* of R is R - J, $|R^*| = p^{(n-1)r}(p^r - 1)$, and $\phi : R \to R/J$ induces a surjective multiplicative group homomorphism $\phi : R^* \to (R/J)^*$. Since ker $\phi = J$, we have ker $\phi = 1 + J$. In particular, 1 + J is a normal subgroup of R^* .

Let $\langle \beta \rangle = (R/J)^*$, and let $b_o \in \varphi^{-1}(\beta)$. Then, the multiplicative order of b_o is a multiple of $p^r - 1$ and a divisor of $|R - J| = p^{nr} - p^{(n-1)r} = p^{(n-1)r}(p^r - 1)$; hence, of the form $p^s(p^r - 1)$. But then $b = b_o^{p^s}$ has multiplicative order $p^r - 1$ and $\varphi(b_o^{p^s}) = \beta^{p^s}$, which is still a generator of $(R/J)^*$, since $(p^s, p^r - 1) = 1$.

Finally, since $|R^*| = |1 + J| \cdot |\langle b \rangle|$, and $(1 + J) \cap \langle b \rangle = 1$, we have $R^* = (1 + J) \cdot \langle b \rangle$, hence, $R^* = (1 + J) \times_{\theta} \langle b \rangle$, a semidirect product.

PROPOSITION 2.2. Let R be a completely primary finite ring (not necessarily commutative). Then the group of units R^* is solvable.

Proof. That R^* is a solvable group follows from the fact that 1 + J is a normal *p*-subgroup of R^* , and $R^*/(1+J)$ is cyclic.

LEMMA 2.3. Let *R* be a completely primary finite ring (not necessarily commutative). If *G* is a subgroup of R^* of order $p^r - 1$, then *G* is conjugate to $\langle b \rangle$ in R^* .

Proof. This follows from key properties of *p*-solvable groups contained in the variation of Sylow's theorem, due to Philip Hall, since the order of *G* is prime to its index in R^* (see, e.g., [9, Theorem 8.2 page 25]).

PROPOSITION 2.4. Let *R* be a completely primary finite ring (not necessarily commutative). If R^* contains a normal subgroup of order $p^r - 1$, then the set $K_o = \langle b \rangle \cup \{0\}$ is contained in the center of the ring *R*.

Proof. By Lemma 2.3, $\langle b \rangle$ is normal in R^* and since 1 + J is a normal subgroup of R^* with $|\langle b \rangle \cap (1 + J)| = 1$, it follows that $\langle b \rangle$ and 1 + J commute elementwise. Hence, *b* lies in the center of *R*.

PROPOSITION 2.5. Let R be a completely primary finite ring. Then, $(1 + J^i)/(1 + J^{i+1}) \cong J^i/J^{i+1}$ (the left-hand side as a multiplicative group and the right-hand side as an additive group).

Proof. Consider the map

$$\eta: (1+J^i)/(1+J^{i+1}) \longrightarrow J^i/J^{i+1}$$
(2.3)

defined by

$$(1+x)(1+J^{i+1}) \longrightarrow x+J^{i+1}.$$
 (2.4)

 \square

Then it is easy to see that η is an isomorphism.

Remark 2.6 (see [3, Result 2.7]). Let *R* be a completely primary finite ring of characteristic p^k and with Jacobson radical *J*. Let R_o be a Galois subring of *R*. If $m \in J$ and p^t is the additive order of *m*, for some positive integer *t*, then $|R_om| = p^{tr}$.

Proof. Apply the fact that

$$R_o m \cong R_o / p^t R_o. \tag{2.5}$$

Now let *R* be a commutative completely primary finite ring with maximal ideal *J* such that $J^3 = (0)$ and $J^2 \neq (0)$. In [2], the author gave constructions describing these rings for each characteristic and for details, we refer the reader to [2, Sections 4 and 6].

If *R* is a commutative completely primary finite ring with maximal ideal *J* such that $J^3 = (0)$ and $J^2 \neq (0)$, then from Constructions A and B [2],

$$R = R_o \oplus U \oplus V \oplus W, \tag{2.6}$$

$$J = pR_o \oplus U \oplus V \oplus W, \tag{2.7}$$

where the R_o -modules U, V, and W are finitely generated. The structure of R is characterized by the invariants p, n, r, d, s, t, and λ ; and the linearly independent matrices (a_{ij}^k) defined in the multiplication. Let $\operatorname{ann}(J)$ denote the two-sided annihilator of J in R. Notice that since $J^2 \subseteq \operatorname{ann}(J)$, we can write $R = R_o \oplus U \oplus M$, and hence, $J = pR_o \oplus U \oplus M$, where $M = V \oplus W$, and the multiplication in R may be written accordingly. It is therefore easy to see that the description of rings of this type reduces to the case where $\operatorname{ann}(J)$ coincides with J^2 . Therefore, when investigating the structure of the group of units of this type of rings for a given order, say p^{nr} , where $\operatorname{ann}(J)$ does not coincide with J^2 , we will first write all the rings of this type of order $\leq p^{nr}$, where $\operatorname{ann}(J)$ coincides with J^2 .

In what follows, we assume that $ann(J) = J^2$.

Let $R_o = GR(p^{kr}, p^k)(1 \le k \le 3)$ and let nonnegative integers *s* and *t* be numbers of elements in the generating sets $\{u_1, \ldots, u_s\}$ and $\{v_1, \ldots, v_t\}$ for finitely generated R_o -modules *U* and *V*, respectively, where $t \le s(s+1)/2$. Assume that u_1, u_2, \ldots, u_s and v_1, \ldots, v_t are commuting indeterminates. Then $R = R_o \oplus U \oplus V$.

By Proposition 2.1, and since *R* is commutative,

$$R^* = \langle b \rangle \cdot (1+J) \cong \langle b \rangle \times (1+J), \tag{2.8}$$

a direct product.

Again, notice that since *R* is of order p^{nr} and $R^* = R - J$, it is easy to see that $|R^*| = p^{(n-1)r}(p^r - 1)$ and $|1 + J| = p^{(n-1)r}$, so that 1 + J is an abelian *p*-group. Thus, $R^* \cong$ (abelian *p*-group) × (cyclic group of order |R/J| - 1).

Our goal is to determine the structure and identify a set of generators of the multiplicative abelian p-group 1 + J.

3. The group 1 + J

Now let *R* be a commutative completely primary finite ring with maximal ideal *J* such that $J^3 = (0)$ and $J^2 \neq (0)$. Let 1 + J be the abelian *p*-subgroup of the unit group R^* .

The group 1 + J has a filtration $1 + J \supset 1 + J^2 \supset 1 + J^3 = \{1\}$ with filtration quotients $(1 + J)/(1 + J^2)$ and $(1 + J^2)/\{1\} = 1 + J^2$ isomorphic to the additive groups J/J^2 and J^2 , respectively.

Remark 3.1. Notice that $1 + J^2$ is a normal subgroup of 1 + J. But, in general, 1 + J does not have a subgroup which is isomorphic to the quotient $(1 + J)/(1 + J^2)$ as may be illustrated by the following example.

Example 3.2. Let $R = \mathbb{Z}_{p^3}$, where p is an odd prime. Then $J = p\mathbb{Z}_{p^3}$, $\operatorname{ann}(J) = J^2$, and $1 + J \cong \mathbb{Z}_{p^2}$, $1 + J^2 \cong \mathbb{Z}_p$, $(1 + J)/(1 + J^2) \cong \mathbb{Z}_p$.

Remark 3.3. In view of the above remark and example, we investigate the structure of 1 + J by considering various subgroups of 1 + J.

3.1. The case when s = 2, t = 1, and char R = p. Suppose s = 2, t = 1, and char R = p. Let $R_o = \mathbb{F}_q = GF(p^r)$, the Galois field of $q = p^r$ elements. Then

$$R = \mathbb{F}_q \oplus \mathbb{F}_q u_1 \oplus \mathbb{F}_q u_2 \oplus \mathbb{F}_q \nu, \tag{3.1}$$

the Jacobson radical

$$J = \mathbb{F}_q u_1 \oplus \mathbb{F}_q u_2 \oplus \mathbb{F}_q v, \tag{3.2}$$

$$J^2 = \mathbb{F}_q v. \tag{3.3}$$

The multiplication in *R* is given by

$$u_1^2 = a_{11}v, \qquad u_1u_2 = u_2u_1 = a_{12}v, \qquad u_2^2 = a_{22}v,$$
 (3.4)

where $a_{ij} \in \mathbb{F}_q$. The elements a_{ij} form a nonzero symmetric matrix

$$\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
(3.5)

since $J^2 \neq (0)$.

Since R^* is a direct product of the cyclic group $\langle b \rangle$ of order $p^r - 1$ and the group 1 + J of order p^{3r} , it suffices to determine the structure of 1 + J.

In this case,

$$1+J = 1 + \mathbb{F}_q u_1 \oplus \mathbb{F}_q u_2 \oplus \mathbb{F}_q v, \tag{3.6}$$

and since *s* and *t* are fixed, the structure of 1 + J now depends on the prime *p*, the integer *r*, and the structural matrix $\binom{a_{11}}{a_{21}} \binom{a_{12}}{a_{22}}$. We investigate this by considering cases depending on the type of the structural matrix.

Let $\varepsilon_1, \varepsilon_2, \dots, \varepsilon_r$ be elements of \mathbb{F}_q with $\varepsilon_1 = 1$ so that $\overline{\varepsilon_1}, \overline{\varepsilon_2}, \dots, \overline{\varepsilon_r}$ form a basis for \mathbb{F}_q regarded as a vector space over its prime subfield \mathbb{F}_p .

Case (i). Suppose that $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & 0 \end{pmatrix}$, with $a \neq 0$. Then

$$1+J \cong \begin{cases} \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r}, & \text{if char } R = 2, \\ \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r}, & \text{if char } R = p \neq 2. \end{cases}$$
(3.7)

To see this, we consider the two cases separetely. So, suppose that p = 2. We first note the following results:

$$1 + \varepsilon_i u_1 \in 1 + J, \quad (1 + \varepsilon_i u_1)^4 = 1, \quad (1 + \varepsilon_i u_2)^2 = 1, \quad g^4 = 1, \; \forall g \in 1 + J.$$
 (3.8)

For positive integers k_i , l_i , with $k_i \le 4$, $l_i \le 2$, we assert that

$$\prod_{i=1}^{r} \left\{ \left(1 + \varepsilon_{i} u_{1}\right)^{k_{i}} \right\} \cdot \prod_{i=1}^{r} \left\{ \left(1 + \varepsilon_{i} u_{2}\right)^{l_{i}} \right\} = 1$$
(3.9)

will imply $k_i = 4$ for all i = 1, ..., r; and $l_i = 2$ for all i = 1, ..., r.

If we set $F_i = \{(1 + \varepsilon_i u_1)^k | k = 1, ..., 4\}$ for all i = 1, ..., r; and $G_i = \{(1 + \varepsilon_i u_2)^l | l = 1, 2\}$ for all i = 1, ..., r, we see that F_i , G_i are all cyclic subgroups of the group 1 + J and that these are of the precise orders indicated by their definition. The argument above will show that the product of 2r subgroups F_i and G_i is direct. So, their product will exhaust the group 1 + J.

When *p* is an odd prime, we have to consider the equation

$$\prod_{i=1}^{r} \left\{ \left(1 + \varepsilon_{i} u_{1}\right)^{k_{i}} \right\} \cdot \prod_{i=1}^{r} \left\{ \left(1 + \varepsilon_{i} u_{2}\right)^{l_{i}} \right\} \cdot \prod_{i=1}^{r} \left\{ \left(1 + \varepsilon_{i} \nu\right)^{m_{i}} \right\} = 1$$
(3.10)

and as each element in 1 + J raised to the power *p* equals 1, we see that 1 + J will be an elementary abelian group.

Case (ii). Suppose that $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} 0 & a \\ a & 0 \end{pmatrix}$, with $a \neq 0$. Then

$$1 + J \cong \mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r, \tag{3.11}$$

for every $p = \operatorname{char} R$. In this case, we consider the equation

$$\prod_{i=1}^{r} \left\{ \left(1 + \varepsilon_{i} u_{1}\right)^{k_{i}} \right\} \cdot \prod_{i=1}^{r} \left\{ \left(1 + \varepsilon_{i} u_{2}\right)^{l_{i}} \right\} \cdot \prod_{i=1}^{r} \left\{ \left(1 + \varepsilon_{i} \nu\right)^{m_{i}} \right\} = 1$$
(3.12)

and the integers k_i , l_i , m_i will imply $k_i = l_i = m_i = p$ for all i = 1, ..., r.

If we set $F_i = \{(1 + \varepsilon_i u_1)^k | k = 1, ..., p\}$ for all i = 1, ..., r; $G_i = \{(1 + \varepsilon_i u_2)^l | l = 1, ..., p\}$ for all i = 1, ..., r; and $H_i = \{(1 + \varepsilon_i v)^m | m = 1, ..., p\}$ for all i = 1, ..., r, we see that F_i , G_i , and H_i are all cyclic subgroups of the group 1 + J and that these are all of order p. The product of the 3r subgroups F_i , G_i , and H_i is direct. So, their product will exhaust the group 1 + J.

Case (iii). Suppose now that $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a & b \\ b & 0 \end{pmatrix}$, with *a* and *b* being nonzero. Then

$$1+J \cong \begin{cases} \mathbb{Z}_{4}^{r} \times \mathbb{Z}_{2}^{r}, & \text{if char } R = 2, \\ \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r} \times \mathbb{Z}_{p}^{r}, & \text{if char } R = p \neq 2. \end{cases}$$
(3.13)

The argument is similar to that in Case (i).

Case (iv). Suppose $\binom{a_{11}}{a_{21}} \binom{a_{12}}{a_{22}} = \binom{a}{0} \binom{b}{b}$, with *a* and *b* being nonzero. Then $u_1^2 = av$, $u_2^2 = bv$, and $u_1u_2 = u_2u_1 = 0$.

If char $R = p \neq 2$, then $o(1 + \varepsilon_i u_1) = o(1 + \varepsilon_i u_2) = p(i = 1,...,r)$. Moreover, for every i = 1,...,r, $\langle 1 + \varepsilon_i u_1 \rangle \cap \langle 1 + \varepsilon_i u_2 \rangle = \{1\}$. Also, $o(1 + \varepsilon_i v) = p$, and the element $1 + \varepsilon_i v$ (i = 1,...,r) generates a cyclic subgroup of order p.

If char R = 2, then in 1 + J, we see that $o(1 + \varepsilon_i u_1) = 4$ and for each ε_i , by considering the element $1 + \varepsilon_i u_1 + \varepsilon_i u_2 + \varepsilon_i v$ of order 2, one obtains the direct product

$$1+J = \prod_{i=1}^{r} \langle 1+\varepsilon_{i}u_{1} \rangle \times \prod_{i=1}^{r} \langle 1+\varepsilon_{i}u_{1}+\varepsilon_{i}u_{2}+\varepsilon_{i}v \rangle.$$
(3.14)

Hence,

$$1+J \cong \begin{cases} \mathbb{Z}_4^r \times \mathbb{Z}_2^r, & \text{if char } R = 2, \\ \mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r, & \text{if char } R = p \neq 2. \end{cases}$$
(3.15)

Case (v). Finally, suppose that $\begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix} = \begin{pmatrix} a & b \\ b & c \end{pmatrix}$, with a, b, and c being nonzero. Then $u_1^2 = av$, $u_2^2 = cv$, and $u_1u_2 = u_2u_1 = bv$. In this case, it is easy to verify that

$$1+J \cong \begin{cases} \mathbb{Z}_4^r \times \mathbb{Z}_2^r, & \text{if char } R = 2, \\ \mathbb{Z}_p^r \times \mathbb{Z}_p^r \times \mathbb{Z}_p^r, & \text{if char } R = p \neq 2. \end{cases}$$
(3.16)

The number of cases involved in determining the structure of 1 + J for larger values of *s* and for t < s(s+1)/2 compels us to investigate the problem by considering the extreme case when the invariant t = s(s+1)/2, and to leave the other cases for subsequent work.

3.2. The case when t = s(s+1)/2, for *s* fixed. Suppose that t = s(s+1)/2 for a fixed non-negative integer *s*. Let $u_1, u_2, ..., u_s$ be commuting indeterminates over the Galois ring $R_o = GR(p^{kr}, p^k)$, where $1 \le k \le 3$. Then it is easy to verify that

$$R = R_o \oplus \sum_{i=1}^{s} R_o u_i \oplus \sum_{i,j=1}^{s} R_o u_i u_j, \qquad (3.17)$$

where

$$u_i u_j = u_j u_i, \quad u_i^3 = u_i^2 u_j = u_i u_j^2 = 0, \quad \text{for every } i, j = 1, \dots, s,$$
 (3.18)

is a commutative completely primary finite ring with Jacobson radical

$$J = pR_o \oplus \sum_{i=1}^{s} R_o u_i \oplus \sum_{i,j=1}^{s} R_o u_i u_j;$$
(3.19)

$$J^{2} = pR_{o} \oplus \sum_{i,j=1}^{s} R_{o}u_{i}u_{j} \quad \text{or} \quad J^{2} = p^{2}R_{o} \oplus \sum_{i,j=1}^{s} R_{o}u_{i}u_{j}; \quad J^{3} = (0). \quad (3.20)$$

In this case, the linearly independent matrices (a_{ij}^k) defined in the multiplication of *R* are the t = s(s+1)/2, $s \times s$ symmetric matrices with 1's in the (i, j)th and (j, i)th positions, and zeros elsewhere.

It follows clearly that

$$1 + J = 1 + pR_o \oplus \sum_{i=1}^{s} R_o u_i \oplus \sum_{i,j=1}^{s} R_o u_i u_j,$$
(3.21)

and it can easily be deduced that every element x of 1 + J has a unique expression of the form

$$x = 1 + pa_o + \sum_{i=1}^{s} a_i u_i + \sum_{i,j=1}^{s} a_{ij} u_i u_j,$$
(3.22)

where a_o , a_i , $a_{ij} = a_{ji}$ are in $K = R_o/pR_o$.

Let *s* be a fixed nonnegative integer and suppose that t = s(s+1)/2. If char R = p, then

$$|R| = p^{((s^2 + 3s + 2)/2)r}, \qquad |J| = p^{((s^2 + 3s)/2)r}$$
(3.23)

because $|R_o u_i| = p^r$ (for each i = 1, ..., s) and $|R_o u_i u_j| = p^r$ (for i, j = 1, ..., s); thus

$$|1+J| = p^{((s^2+3s)/2)r}.$$
(3.24)

If char $R = p^2$, then

$$|R| = p^{((s^2 + 5s + 4)/2)r}, \qquad |J| = p^{((s^2 + 5s + 2)/2)r}$$
(3.25)

because $|R_o| = p^{2r}$, $|pR_o| = p^r$, $|R_ou_i| = p^{2r}$, if $pu_i \neq 0$ (for each i = 1,...,s) and $|R_ou_iu_j| = p^r$ (for i, j = 1,...,s) (see Remark 2.6), and thus

$$|1+J| = p^{((s^2+5s+2)/2)r}.$$
(3.26)

Finally, if char $R = p^3$, then

$$|R| = p^{((s^2 + 5s + 6)/2)r}, \qquad |J| = p^{((s^2 + 5s + 4)/2)r}$$
(3.27)

because $|R_o| = p^{3r}$, $|pR_o| = p^{2r}$ and if $pu_i \neq 0$, $|R_ou_i| = p^{2r}$ (because $p^2u_i = 0$) (for each i = 1, ..., s) and $|R_ou_iu_j| = p^r$ (for i, j = 1, ..., s) (see Remark 2.6 and also because $pu_iu_j = 0$), and hence,

$$|1+J| = p^{((s^2+5s+4)/2)r}.$$
(3.28)

PROPOSITION 3.4. If char $R = p^k$, where k = 2 or 3, then 1 + J contains $1 + pR_o$ as its subgroup.

Proof. We only show the case for char $R = p^2$, the other case follows easily from this. Now, each element of $1 + pR_o$ is of the form 1 + pr, for every $r \in R_o$, and for any two elements $1 + pr_1$ and $1 + pr_2$, we have

$$(1+pr_1)(1+pr_2) = 1+p(r_1+r_2)$$
(3.29)

which is clearly an element of $1 + pR_o$.

PROPOSITION 3.5. For each pair u_i , u_j with $i \neq j$ and $u_i u_j = u_j u_i$, $1 + R_o u_i u_j$ is a subgroup of 1 + J.

Proof. It is easy to see that $1 + R_o u_i u_j$ is a subgroup of 1 + J because for any two elements $1 + r_1 u_i u_j$ and $1 + r_2 u_i u_j$ in $1 + R_o u_i u_j$, we have

$$(1+r_1u_iu_j)(1+r_2u_iu_j) = 1+(r_1+r_2)u_iu_j \in 1+R_ou_iu_j$$
(3.30)

since $(u_i u_j)^2 = 0$.

PROPOSITION 3.6. For every i = 1, ..., s, $1 + R_o u_i + R_o u_i^2$ is a subgroup of 1 + J.

Proof. Obviously,

$$(1+r_1u_i+r_2u_i^2)(1+s_2u_i+s_2u_i^2) = 1+(r_1+s_1)u_i+(r_1s_1+r_2+s_2)u_i^2$$
(3.31)

lies in $1 + R_o u_i + R_o u_i^2$, for any pair $1 + r_1 u_i + r_2 u_i^2$ and $1 + s_2 u_i + s_2 u_i^2$ of elements in $1 + R_o u_i + R_o u_i^2$.

In view of Remark 2.6 and Propositions 3.4, 3.5, and 3.6, we may now state the following.

 \square

PROPOSITION 3.7. Let $1 + pR_o$, $1 + R_ou_i + R_ou_i^2$, and $1 + R_ou_iu_j$ be the subgroups of 1 + J defined above. Then

$$|1 + pR_o| = \begin{cases} p^r, & \text{if char } R = p^2, \\ p^{2r}, & \text{if char } R = p^3, \end{cases}$$
(3.32)

$$|1 + R_o u_i + R_o u_i^2| = \begin{cases} p^{2r}, & \text{if char } R = p, \\ p^{3r}, & \text{if char } R = p^2, \\ p^{3r}, & \text{if char } R = p^3, \end{cases}$$
(3.33)

$$|1 + R_o u_i u_j| = p^r, (3.34)$$

for every characteristic of R.

PROPOSITION 3.8. The group 1 + J is a direct product of the subgroup $1 + pR_o$, s subgroups $1 + R_o u_i + R_o u_i^2$, and s(s - 1)/2 subgroups $1 + R_o u_i u_i$, where $i \neq j$ and $u_i u_j = u_j u_i$.

Proof. This follows from the fact that $1 + pR_o$, $1 + R_ou_i + R_ou_i^2$, and $1 + R_ou_iu_j$ are subgroups of 1 + J, intersection of any pair of these subgroups is trivial (for every *i*, *j* = 1,...,*s*), and by Proposition 3.7,

$$|1+J| = |1+pR_o| \times \prod_{i=1}^{s} |1+R_ou_i+R_ou_i^2| \times \prod_{i\neq j=1}^{s} |1+R_ou_iu_j|.$$
(3.35)

3.2.1. The structure of $1 + pR_o$. The structure of $1 + pR_o$ is completely determined by Raghavendran in [11]. For convenience of the reader, we state here the results useful for our purpose. For detailed proofs, refer to [11, Theorem 9].

We take *r* elements $\varepsilon_1, \ldots, \varepsilon_r$ in R_o with $\varepsilon_1 = 1$ such that the set $\{\overline{\varepsilon_1}, \ldots, \overline{\varepsilon_r}\}$ is a basis of the quotient ring R_o/pR_o regarded as a vector space over its prime subfield GF(p). Then we have the following.

PROPOSITION 3.9 [11, Theorem 9]. If char $R_o = p^2$, then $1 + pR_o$ is a direct product of r cyclic groups $\langle 1 + p\varepsilon_i \rangle$, each of order p, for any prime p.

PROPOSITION 3.10 [11, Theorem 9]. Let char $R_o = p^3$. If p = 2, then $1 + pR_o$ is a direct product of 2 cyclic groups $\langle -1 + 4\varepsilon_1 \rangle$ and $\langle 1 + 4\varepsilon_1 \rangle$, each of order 2, and (r - 1) cyclic groups $\langle 1 + 2\varepsilon_j \rangle (j = 2,...,r)$, each of order 4. If $p \neq 2$, then $1 + pR_o$ is a direct product of r cyclic groups $\langle 1 + p\varepsilon_j \rangle (j = 1,...,r)$, each of order p^2 .

3.2.2. The structure of $1 + R_o u_i + R_o u_i^2$. We now consider the structure of the subgroup $1 + R_o u_i + R_o u_i^2$ of the *p*-group 1 + J. We first note that if char $R_o = p$, then $R_o = GF(p^r)$ the field of p^r elements, if char $R_o = p^2$, then R_o is the Galois ring $GR(p^{2r}, p^2)$ of order p^{2r} , and if char $R_o = p^3$, $R_o = GR(p^{3r}, p^3)$ the Galois ring of order p^{3r} .

We choose *r* elements $\varepsilon_1, \ldots, \varepsilon_r$ in R_o with $\varepsilon_1 = 1$ such that the set $\{\overline{\varepsilon_1}, \ldots, \overline{\varepsilon_r}\}$ is a basis of the quotient ring R_o/pR_o regarded as a vector space over its prime subfield GF(p). Then we have the following.

 \square

PROPOSITION 3.11. Let char $R_o = p$. If p = 2, then $1 + R_o u_i + R_o u_i^2$ is a direct product of r cyclic groups $\langle 1 + \varepsilon_j u_i \rangle (j = 1, ..., r)$, each of order 4. If $p \neq 2$, then $1 + R_o u_i + R_o u_i^2$ is a direct product of 2r cyclic groups $\langle 1 + \varepsilon_j u_i \rangle$ and $\langle 1 + 2\varepsilon_j u_i \rangle (j = 1, ..., r)$, each of order p.

Proof. If char $R_o = 2$, then $\langle 1 + \varepsilon_j u_i \rangle$ is of order 4, for every j = 1, ..., r and for any i = 1, ..., s, and hence

$$\prod_{j=1}^{r} |\langle 1 + \varepsilon_{j} u_{i} \rangle| = 4^{r} = 2^{2r} = |1 + R_{o} u_{i} + R_{o} u_{i}^{2}|.$$
(3.36)

Therefore, the product $\prod_{i=1}^{r} \langle 1 + \varepsilon_i u_i \rangle$ is direct.

Similarly, if char $R_o = p \neq 2$, the elements $1 + \varepsilon_i u_i$ and $1 + 2\varepsilon_i u_i$ are each of order p,

$$\langle 1 + \varepsilon_j u_i \rangle \cap \langle 1 + 2\varepsilon_j u_i \rangle = \{1\},$$
 (3.37)

for every $j = 1, \ldots, r$, and

$$\prod_{j=1}^{r} |\langle 1 + \varepsilon_{j} u_{i} \rangle| \cdot \prod_{j=1}^{r} |\langle 1 + 2\varepsilon_{j} u_{i} \rangle| = p^{r} \cdot p^{r} = p^{2r} = |1 + R_{o} u_{i} + R_{o} u_{i}^{2}|, \qquad (3.38)$$

hence

$$1 + R_o u_i + R_o u_i^2 = \prod_{j=1}^r \langle 1 + \varepsilon_j u_i \rangle \times \prod_{j=1}^r \langle 1 + 2\varepsilon_j u_i \rangle, \qquad (3.39)$$

a direct product.

PROPOSITION 3.12. Let char $R_o = p^2$. If p = 2, then $1 + R_o u_i + R_o u_i^2$ is a direct product of r cyclic groups $\langle 1 + 2\varepsilon_j u_i \rangle$, each of order 2, and r cyclic groups $\langle 1 + 3\varepsilon_j u_i \rangle (j = 1,...,r)$, each of order 4. If $p \neq 2$, then $1 + R_o u_i + R_o u_i^2$ is a direct product of r cyclic groups $\langle 1 + p\varepsilon_j u_i \rangle$, each of order p, and r cyclic groups $\langle 1 + \varepsilon_j u_i \rangle (j = 1,...,r)$, each of order p^2 .

Proof. Suppose char $R_o = p^2$. If p = 2, $\langle 1 + 2\varepsilon_j u_i \rangle$ is of order 2 and $\langle 1 + 3\varepsilon_j u_i \rangle$ is of order 4,

$$\langle 1+2\varepsilon_j u_i \rangle \cap \langle 1+3\varepsilon_j u_i \rangle = \{1\}, \tag{3.40}$$

for every j = 1, ..., r and any i = 1, ..., s. Since

$$\prod_{j=1}^{r} |\langle 1+2\varepsilon_{j}u_{i}\rangle| \cdot \prod_{j=1}^{r} |\langle 1+3\varepsilon_{j}u_{i}\rangle| = 2^{r} \cdot 4^{r} = 2^{3r} = |1+R_{o}u_{i}+R_{o}u_{i}^{2}|, \qquad (3.41)$$

it follows that

$$1 + R_o u_i + R_o u_i^2 = \prod_{j=1}^r \langle 1 + 2\varepsilon_j u_i \rangle \times \prod_{j=1}^r \langle 1 + 3\varepsilon_j u_i \rangle$$
(3.42)

is a direct product.

If $p \neq 2$, it is easy to check that $|\langle 1 + p\varepsilon_j u_i \rangle| = p$, $|\langle 1 + \varepsilon_j u_i \rangle| = p^2$ and

$$\langle 1 + p\varepsilon_j u_i \rangle \cap \langle 1 + \varepsilon_j u_i \rangle = \{1\},$$
 (3.43)

for every j = 1, ..., r and any i = 1, ..., s. Since

$$\prod_{j=1}^{r} |\langle 1 + p\varepsilon_{j}u_{i}\rangle| \cdot \prod_{j=1}^{r} |\langle 1 + \varepsilon_{j}u_{i}\rangle| = p^{r} \cdot (p^{2})^{r} = p^{3r} = |1 + R_{o}u_{i} + R_{o}u_{i}^{2}|, \quad (3.44)$$

it follows that the product

$$1 + R_o u_i + R_o u_i^2 = \prod_{j=1}^r \langle 1 + 2\varepsilon_j u_i \rangle \times \prod_{j=1}^r \langle 1 + 3\varepsilon_j u_i \rangle$$
(3.45)

is direct.

PROPOSITION 3.13. Let char $R_o = p^3$. If p = 2, then $1 + R_o u_i + R_o u_i^2$ is a direct product of r cyclic groups $\langle 1 + \varepsilon_j u_i^2 \rangle$, each of order 2, and r cyclic groups $\langle 1 + \varepsilon_j u_i \rangle (j = 1,...,r)$, each of order 4. If $p \neq 2$, then $1 + R_o u_i + R_o u_i^2$ is a direct product of r cyclic groups $\langle 1 + \varepsilon_j u_i^2 \rangle$, each of order p, and r cyclic groups $\langle 1 + \varepsilon_j u_i^2 \rangle$, each of order p, and r cyclic groups $\langle 1 + \varepsilon_j u_i \rangle (j = 1,...,r)$, each of order p^2 .

Proof. Similar to the proofs of Propositions 3.11 and 3.12.

3.2.3. The structure of $1 + R_o u_i u_j$. Choose *r* elements $\varepsilon_1, \ldots, \varepsilon_r$ in R_o with $\varepsilon_1 = 1$ such that the elements $\overline{\varepsilon_1}, \ldots, \overline{\varepsilon_r}$ form a basis of the quotient ring R_o/pR_o regarded as a vector space over its prime subfield GF(p). Then we have the following.

PROPOSITION 3.14. The group $1 + R_o u_i u_j$ is a direct product of r cyclic groups $\langle 1 + \varepsilon_l u_i u_j \rangle (l = 1,...,r)$, each of order p, for any characteristic $p^k (1 \le k \le 3)$ of R.

Proof. We first note that if the characteristic of *R* is p^k , where $1 \le k \le 3$, then $pu_iu_j = 0$. Hence, $|1 + R_o u_i u_j| = p^r$. Also, for any $x \in 1 + R_o u_i u_j$, $x^p = 1$.

Now, for *r* elements $\varepsilon_1, \ldots, \varepsilon_r \in R_o$ defined above, since for any $\nu \neq \mu$,

$$\langle 1 + \varepsilon_{\nu} u_i u_j \rangle \cap \langle 1 + \varepsilon_{\mu} u_i u_j \rangle = 1,$$
 (3.46)

the result follows.

We now state the main results of this section.

THEOREM 3.15. Let char R = p. If p = 2, then 1 + J is a direct product of (s(s - 1)/2)r cyclic groups, each of order 2, and sr cyclic groups, each of order 4. If $p \neq 2$, then 1 + J is a direct product of $((s^2 + 3s)/2)r$ cyclic groups, each of order p.

Proof. This follows from Propositions 3.11 and 3.14 and by the fact that the order of 1 + J is $p^{((s^2+3s)/2)r}$.

THEOREM 3.16. Let char $R = p^2$. Then 1 + J is a direct product of $((s^2 + s + 2)/2)r$ cyclic groups, each of order p, and sr cyclic groups, each of order p^2 , for any prime p.

 \square

Proof. This follows from Propositions 3.9, 3.12, and 3.14 and from the fact that the order of 1 + J is $p^{((s^2+5s+2)/2)r}$.

THEOREM 3.17. Let char $R = p^3$. If p = 2, then 1 + J is a direct product of $2 + ((s^2 + s)/2)r$ cyclic groups, each of order 2, and r - 1 + sr cyclic groups, each of order 4. If $p \neq 2$, then 1 + J is a direct product of $((s^2 + s)/2)r$ cyclic groups, each of order p, and (s + 1)r cyclic groups, each of order p^2 .

Proof. First observe that the order of 1 + J is $p^{((s^2+5s+4)/2)r}$. By Propositions 3.10, 3.13, and 3.14, the result follows.

4. The Main theorem

By Proposition 2.1, the group of units R^* of R contains a cyclic subgroup $\langle b \rangle$ of order $p^r - 1$, and R^* is a direct product of 1 + J and $\langle b \rangle$. Moreover, the structure of 1 + J has been determined in Section 3 (Theorems 3.15, 3.16, and 3.17). We thus have the following result.

THEOREM 4.1. The group of units R^* , of a commutative completely primary finite ring R with maximal ideal J such that $J^3 = (0)$ and $J^2 \neq (0)$, and with invariants p, k, r, s, and t, where t = s(s+1)/2, is a direct product of cyclic groups as follows:

(i) *if* char R = p, *then*

$$R^* \cong \begin{cases} \mathbb{Z}_{2^r-1} \times (\mathbb{Z}_4^r)^s \times (\mathbb{Z}_2^r)^\gamma, & \text{if } p = 2, \\ \mathbb{Z}_{p^r-1} \times (\mathbb{Z}_p^r)^s \times (\mathbb{Z}_p^r)^s \times (\mathbb{Z}_p^r)^\gamma, & \text{if } p \neq 2, \end{cases}$$

$$(4.1)$$

(ii) *if* char $R = p^2$, *then*

$$R^* \cong \begin{cases} \mathbb{Z}_{2^r-1} \times \mathbb{Z}_2^r \times (\mathbb{Z}_2^r)^s \times (\mathbb{Z}_2^r)^s \times (\mathbb{Z}_2^r)^\gamma, & \text{if } p = 2, \\ \mathbb{Z}_{p^r-1} \times \mathbb{Z}_p^r \times (\mathbb{Z}_p^r)^s \times (\mathbb{Z}_{p^2}^r)^s \times (\mathbb{Z}_p^r)^\gamma, & \text{if } p \neq 2, \end{cases}$$

$$(4.2)$$

(iii) *if* char $R = p^3$, *then*

$$R^* \cong \begin{cases} \mathbb{Z}_{2^r-1} \times \mathbb{Z}_2 \times \mathbb{Z}_2 \times \mathbb{Z}_4^{r-1} \times (\mathbb{Z}_2^r)^s \times (\mathbb{Z}_4^r)^s \times (\mathbb{Z}_2^r)^\gamma, & \text{if } p = 2, \\ \mathbb{Z}_{p^r-1} \times \mathbb{Z}_{p^2}^r \times (\mathbb{Z}_p^r)^s \times (\mathbb{Z}_{p^2}^r)^s \times (\mathbb{Z}_p^r)^\gamma, & \text{if } p \neq 2, \end{cases}$$
(4.3)

where $\gamma = (s^2 - s)/2$.

Proof. Follows from Propositions 2.1 and 3.9 through 3.14 and Theorems 3.15, 3.16, and 3.17. \Box

Remark 4.2. The structure of the multiplicative groups of commutative completely primary finite rings *R* with maximal ideals *J* such that $J^3 = (0)$ and $J^2 \neq (0)$, for which t < s(s+1)/2 for a fixed nonnegative integer *s*, will be considered in subsequent work.

References

- [1] C. W. Ayoub, On finite primary rings and their groups of units, Compositio Math. 21 (1969), 247–252.
- [2] C. J. Chikunji, On a class of finite rings, Comm. Algebra 27 (1999), no. 10, 5049–5081.
- [3] _____, On a class of rings of order p^5 , Math. J. Okayama Univ. 45 (2003), 59–71.
- W. E. Clark, A coefficient ring for finite non-commutative rings, Proc. Amer. Math. Soc. 33 (1972), 25–28.
- [5] D. Dolzan, Group of units in a finite ring, J. Pure Appl. Algebra 170 (2002), no. 2-3, 175–183.
- [6] L. Fuchs, *Abelian Groups*, 3rd ed., International Series of Monographs on Pure and Applied Mathematics, Pergamon Press, New York, 1960.
- [7] G. Ganske and B. R. McDonald, *Finite local rings*, Rocky Mountain J. Math. 3 (1973), no. 4, 521–540.
- [8] R. W. Gilmer Jr., Finite rings having a cyclic multiplicative group of units, Amer. J. Math. 85 (1963), 447–452.
- [9] D. Gorenstein, R. Lyons, and R. Solomon, *The Classification of the Finite Simple Groups*, vol. 40, Mathematical Surveys and Monographs, no. 1, American Mathematical Society, Rhode Island, 1994.
- [10] K. R. Pearson and J. E. Schneider, *Rings with a cyclic group of units*, J. Algebra 16 (1970), 243– 251.
- [11] R. Raghavendran, *Finite associative rings*, Compositio Math. 21 (1969), 195–229.
- [12] I. Stewart, *Finite rings with a specified group of units*, Math. Z. **126** (1972), 51–58.

Chiteng'a John Chikunji: Department of Mathematics, University of Transkei, Private Bag X1, Umtata 5117, South Africa

E-mail address: chikunji@getafix.utr.ac.za