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A submodule A of a right R-module B is called s-pure if f ⊗R 1S is a monomorphism for
every simple left R-module S, where f : A→ B is the inclusion homomorphism. We estab-
lish some properties of s-pure submodules and use s-purity to characterize commutative
rings with every maximal ideal idempotent.

1. Introduction

Purity in module categories and its different generalizations have been present in the
literature since the 1960s. Apart from its special role in module theory, the importance of
purity increased during the last two decades through the developments of model theory
and the study of locally finitely presented categories (e.g., [2, 6]). In the module theory
context, that will be our framework, a purity of a particular interest is purity with respect
to a class of cyclic modules, that was introduced by Stenström [7]. Connected to that, the
present paper deals with purity with respect to the class of simple modules, previously
considered by the author in [3, 4].

We set some notation and terminology. Throughout the paper R denotes an associative
ring with nonzero identity and Mod-R denotes the category of right R-modules. The
injective hull of a right R-module A will be denoted by E(A).

Consider a short exact sequence in Mod-R

0−→ A
f−−→ B

g−→ C −→ 0. (1.1)

If f ⊗R 1S : A⊗R S→ B⊗R S is a monomorphism for every simple left R-module S, it is
said that the sequence (1.1) is s-pure. If f is the inclusion homomorphism and (1.1) is
s-pure, then A is said to be an s-pure submodule of B [7]. A right R-module A is called
absolutely s-pure if it is s-pure in every right R-module B that contains A as a submodule
[3].

Some characterizations of s-pure submodules and absolutely s-pure submodules were
established in [3, 4]. In this paper we investigate further properties of these notions. For
a commutative ring R, we show that every maximal ideal of R is idempotent if and only
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if every maximal submodule of an R-module is s-pure. Rings with the previous property
generalize commutative von Neumann regular rings.

2. s-purity

This section contains some further properties of s-pure submodules and absolutely s-pure
modules. The following characterization of absolutely s-pure modules will be frequently
used.

Proposition 2.1. Let A be a right R-module. Then the following statements are equivalent:

(i) A is absolutely s-pure;
(ii) A is s-pure in E(A).

Proof. It follows by [5, Proposition 1.7]. �

Example 2.2. It is known that a ring R is von Neumann regular if and only if every right
R-module is absolutely pure [8, Theorem 37.6]. Hence if R is a von Neumann regular
ring, every right R-module is absolutely s-pure.

Corollary 2.3. Let R be right hereditary. Then the class of absolutely s-pure right R-
modules is closed under homomorphic images.

Proof. Let A be an absolutely s-pure right R-module and let D be a submodule of A. The
class of short exact sequences

0−→ L
α−→M

β−→N −→ 0 (2.1)

of right R-modules, where Imα is an s-pure submodule of M, is a proper class of short
exact sequences in the terminology of [7]. Then, since A is s-pure in E(A), A/D is s-pure
in E(A)/D [7, Proposition 2.1]. But R is right hereditary, hence E(A)/D is injective. Now
by Proposition 2.1, it follows that A/D is absolutely s-pure. �

Denote by � the class of right R-modules A with the property that: for every s-pure
right ideal I of R, A is injective with respect to the inclusion homomorphism f : I → R. It
is clear that A∈� if and only if Ext1

R(R/I ,A)= 0 for every s-pure right ideal I of R.

Proposition 2.4. � is closed under extensions.

Proof. Let 0→ A→ B→ C→ 0 be a short exact sequence with A,C ∈� and let I be an
s-pure right ideal of R. We get the induced exact sequence

Ext1
R(R/I ,A)−→ Ext1

R(R/I ,B)−→ Ext1
R(R/I ,C). (2.2)

The first and the last Ext are zero by hypothesis, hence Ext1
R(R/I ,B) = 0, showing that

B ∈�. �

Theorem 2.5. The following statements are equivalent:

(i) every s-pure right ideal of R is projective;
(ii) � is closed under homomorphic images.
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Proof. (i)⇒(ii). Let B ∈� and let A be a submodule of B. Let I be an s-pure right ideal
of R. The exact sequence 0→ I → R→ R/I → 0 induces the exact sequence

Ext1
R(I ,A)−→ Ext2

R(R/I ,A)−→ Ext2
R(R,A). (2.3)

The first and the last Ext are clearly zero, hence Ext2
R(R/I ,A)= 0. Now the exact sequence

0→ A→ B→ B/A→ 0 induces the exact sequence

Ext1
R(R/I ,B)−→ Ext1

R(R/I ,B/A)−→ Ext2
R(R/I ,A). (2.4)

Since the first and the last Ext are zero because B ∈� and by what we have showed above,
Ext1

R(R/I ,B/A)= 0. Thus B/A∈�. Therefore the class � is closed under homomorphic
images.

(ii)⇒(i). Let I be an s-pure right ideal of R and let A be a right R-module. Then the
exact sequence 0→ A→ E(A)→ E(A)/A→ 0 induces the exact sequence

Ext1
R

(
R/I ,E(A)/A

)−→ Ext2
R(R/I ,A)−→ Ext2

R

(
R/I ,E(A)

)
. (2.5)

By hypothesis we have the first Ext zero, and clearly the last one is zero, hence Ext2
R(R/I ,

A)= 0. Now the exact sequence 0→ I → R→ R/I → 0 induces the exact sequence

Ext1
R(R,A)−→ Ext1

R(I ,A)−→ Ext2
R(R/I ,A). (2.6)

The first and the last Ext are zero, hence we get Ext1
R(I ,A)= 0, showing that I is projective.

�

Corollary 2.6. Let R be right hereditary. Then � is closed under homomorphic images.

Now we recall a basic characterization of s-pure submodules.

Proposition 2.7 [7, page 170]. Let A be a submodule of a right R-module B. Then the
following statements are equivalent:

(i) A is s-pure in B;
(ii) AM = A∩BM for every maximal left ideal M of R.

Corollary 2.8. Let I ⊆ J(R) be an idempotent right ideal of R, where J(R) is the Jacobson
radical of R. Then I is s-pure in R.

Proof. LetM be a maximal left ideal ofR. Then we have I ⊆M and I=I2⊆IM⊆I ∩M=I .
Hence IM = I ∩M. Now I is s-pure in R by Proposition 2.7. �

3. The commutative case

Throughout this section the ring R is assumed to be commutative. The following charac-
terization of s-pure short exact sequences will be very useful.

Proposition 3.1 [3, Corollary 4.5]. Consider the short exact sequence (1.1). Then the fol-
lowing statements are equivalent:

(i) the sequence (1.1) is s-pure;
(ii) every simple R-module S is injective with respect to f .
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Theorem 3.2. Let A be a submodule of an R-module B. Then the following statements are
equivalent:

(i) A is s-pure in B;
(ii) A/D is a direct summand of B/D for each maximal submodule D of A.

Proof. (i)⇒(ii). Suppose that A is s-pure in B and let D be a maximal submodule of A.
Then A/D is s-pure in B/D [7, Proposition 2.1]. Also, A/D is simple, hence by Proposition
3.1 A/D is a direct summand of B/D.

(ii)⇒(i). Assume that (ii) holds. Let S be a simple R-module and let p : A→ S be a
homomorphism. Without loss of generality, we may assume that p is an epimorphism.
Let f : A→ B and j : Ker p→ A be the inclusion homomorphisms, i : A/Ker p→ B/Ker p
the inclusion homomorphism induced by f , and w : A→ A/Ker p and v : B → B/Ker p
the natural homomorphisms. Then iw = v f . Since Ker p is a maximal submodule of A,
A/Ker p is a direct summand of B/Ker p by hypothesis. Let q : B/Ker p→ A/Ker p be the
canonical projection. Since w j = p j = 0, there exists an isomorphism h : S→ A/Ker p
such that hp = w. Thus we obtain the following commutative diagram in Mod-R with
the first row and the column exact:

0

Ker p

j

0 A
f

w
p

B
v

S
h

A/Ker p
i

B/Ker p

0

(3.1)

Let g = h−1qv. Then g f = h−1qv f = h−1qiw = h−1w = p. Hence S is injective with respect
to f . By Proposition 3.1, A is s-pure in B. �

Corollary 3.3. Let A be an R-module such that A/D is injective for every maximal sub-
module D of A. Then A is absolutely s-pure.

Proof. Under the hypothesis, A/D is a direct summand of E(A)/D for every maximal
submodule D of A. By Theorem 3.2, A is s-pure in E(A). Now by Proposition 2.1, A is
absolutely s-pure. �

Corollary 3.4. Let R be hereditary and let A be an R-module. Then the following state-
ments are equivalent:

(i) A is absolutely s-pure;
(ii) A/D is injective for every maximal submodule D of A.
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Proof. (i)⇒(ii). Suppose that A is absolutely s-pure. Let D be a maximal submodule of A.
Since R is hereditary, E(A)/D is injective. By Proposition 2.1 and Theorem 3.2, A/D is a
direct summand of E(A)/D, hence injective.

(ii)⇒(i). By Corollary 3.3. �

Theorem 3.5. Consider the short exact sequence (1.1). Then the following statements are
equivalent:

(i) the sequence (1.1) is s-pure;
(ii) for every commutative diagram in Mod-R

B
g

v

C

α

E(S)
p

E(S)/S

(3.2)

where S is a simple R-module and p : E(S)→ E(S)/S is the natural homomorphism, there
exists a homomorphism γ : C→ E(S) such that pγ = α.

Proof. (i)⇒(ii). Suppose that the sequence (1.1) is s-pure and consider the commutative
diagram (3.2). It can be completed to the following commutative diagram in Mod-R with
exact rows:

0 A
f

β

B
g

v

C

α

0

0 S
h

E(S)
p

E(S)/S 0

(3.3)

where h : S→ E(S) is the inclusion homomorphism. By Proposition 3.1, S is injective with
respect to f . Hence there exists a homomorphism δ : B→ S such that δ f = β. Then there
exists a homomorphism γ : C→ E(S) such that pγ = α [8, Lemma 7.16].

(ii)⇒(i). Assume that (ii) holds. Let S be a simple R-module and let β : A→ S be a ho-
momorphism. Let h : S→ E(S) be the inclusion homomorphism and let p : E(S)→ E(S)/S
be the natural homomorphism. By the injectivity of E(S), there exists a homomorphism
v : B→ E(S) such that v f = hβ. Thus we can construct a commutative diagram (3.3) with
exact rows. By hypothesis, there exists a homomorphism γ : C→ E(S) such that pγ = α.
Then there exists a homomorphism δ : B→ S such that δ f = β [8, Lemma 7.16]. Now by
Proposition 3.1, the sequence (1.1) is s-pure. �

For a commutative R the result of Corollary 2.8 can be strengthened as follows.

Proposition 3.6. Every idempotent ideal of R is s-pure.

Proof. Let I be an idempotent ideal of R and let M be a maximal ideal of R. If I � M,
then I +M = R, hence IM = I ∩M. If I ⊆M, then I = I2 ⊆ IM ⊆ I ∩M = I , hence IM =
I ∩M. Now I is s-pure in R by Proposition 2.7. �

Now we recall an auxiliary result.



496 s-pure submodules

Proposition 3.7 [1, Corollary 1.4.3]. The following statements are equivalent for a right
R-module E:

(i) E is injective with respect to every inclusion homomorphism M → R, where M is a
maximal right ideal of R;

(ii) E is injective with respect to every inclusion homomorphism A→ B, where A is a
submodule of a right R-module B and B/A is semiartinian.

Theorem 3.8. The following statements are equivalent:

(i) every maximal ideal of R is idempotent;
(ii) every maximal ideal of R is s-pure in R;

(iii) if A is a submodule of an R-module B such that B/A is semiartinian, then A is s-pure
in B;

(iv) every maximal submodule A of an R-module B is s-pure in B.

Proof. (i)⇒(ii). By Proposition 3.6.
(ii)⇒(i). Assume that (ii) holds. Let M be a maximal ideal of R. Then M is s-pure in R,

hence M2 =M by Proposition 2.7.
(ii)⇒(iii). Assume that (ii) holds. Let M be a maximal ideal of R, S a simple R-module,

and f : M→ R the inclusion homomorphism. Then M is s-pure in R. By Proposition 3.1,
S is injective with respect to f . By Proposition 3.7, S is injective with respect to every
inclusion homomorphism A→ B, where A is a submodule of an R-module B such that
B/A is semiartinian. Now apply again Proposition 3.1.

(iii)⇒(iv). Assume that (iii) holds. Let A be a maximal submodule of an R-module B.
Then B/A is clearly semiartinian. Now A is s-pure in B by hypothesis.

(iv)⇒(ii). Clear. �

Remark 3.9. Clearly, Theorem 3.8 holds for a commutative von Neumann regular ring.

Corollary 3.10. Let R be semiartinian such that every maximal ideal of R is idempotent.
Then R is von Neumann regular.

Proof. Let I be an ideal of R. Then R/I is semiartinian. By Theorem 3.8, I is s-pure in
R. By Proposition 3.1, every simple R-module S is injective with respect to the inclusion
homomorphism I → R. Hence S is injective. It follows that R is von Neumann regular.

�

Example 3.11. Let R= KΛ for some field K and some infinite set Λ. Then R is von Neu-
mann regular and not semiartinian. Since in a commutative von Neumann regular ring
every prime ideal is maximal, there exists a nonzero ideal I of R such that R/I is not semi-
artinian. But I is s-pure in R. Hence the converse of condition (iii) of Theorem 3.8 does
not hold.
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