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A smoothing property in multistep backward difference method for a linear parabolic
problem in Hilbert space has been proved, where the operator is selfadjoint, positive def-
inite with compact inverse. By using the solutions computed by a multistep backward
difference method for the parabolic problem, we introduce an approximation scheme
for time derivative. The nonsmooth data error estimate for the approximation of time
derivative has been obtained.

1. Introduction

Consider the nonhomogeneous linear parabolic equation

ut +Au= f , for t > 0, with u(0)= v, (1.1)

in a Hilbert space H with norm ‖ · ‖, inner product (·,·), where ut = du/dt and A is
a linear, selfadjoint, positive definite, not necessarily bounded operator with a compact
inverse, densely defined in �(A) ⊂H , where v ∈H and f is a function of t with values
in H .

Since A−1 is compact, we assume that A has eigenvalues {λj}∞j=1 and a corresponding
basis of orthonormal eigenfunctions {ϕj}∞j=1. For any arbitrary function g(λ), defined on
the spectrum σ(A)= {λj}∞j=1 of A, the operator norm of g(A) can be computed by

∥∥g(A)
∥∥= sup

j

∣∣g(λj
)∣∣= sup

λ∈σ(A)

∣∣g(λ)
∣∣, (1.2)

which will be used frequently in this paper.
Let Un, n≥ 0, be an approximation of the solution u(tn) of (1.1) at time tn = nk, where

k is the time step. We introduce the backward difference operator ∂̄p, p ≥ 1, by

∂̄pU
n =

p∑
j=1

k j−1

j
∂̄ jUn, where ∂̄Un = Un−Un−1

k
. (1.3)
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It is easy to see that, for any smooth real-valued function u,

ut
(
tn
)= ∂̄pu

n +O
(
kp
)
, as k→ 0, with un = u

(
tn
)
. (1.4)

With U0, . . . ,Up−1 given, we define our approximate solution Un by

∂̄pU
n +AUn = f n, for n≥ p, where f n = f

(
tn
)
. (1.5)

It is well known from the theory for numerical solution of ordinary differential equa-
tions, see, for example, Hairer and Wanner [4], that this method is A(θ)-stable for some
θ = θp > 0 when p ≤ 6. The theory of stability and error estimates for the approximation
of the solution of (1.1) by a multistep method in both constant and variable time-step
cases have been well developed, see Becker [1], Bramble et al. [2], Crouzeix [3], Hansbo
[6], LeRoux [7, 8], Palencia and Garcia-Archilla [9], Savaré [10], and Thomée [11], and
the references therein.

The purpose of this paper is to consider the smoothing property in multistep backward
difference method and time derivative approximation of (1.1). The similar results in
single-step methods for homogeneous parabolic problems in general Banach space have
been studied, for example, by Hansbo [5, 6] and Yan [12, 13].

We obtain, in Theorem 2.1, the following smoothing property in multistep backward
difference method: if Un is the solution of (1.5) with f = 0, then we have, with p ≤ 6,

∥∥∂̄pUn
∥∥≤ Ct−1

n

p−1∑
j=0

∥∥U j
∥∥, for n≥ 2p, U0,U1, . . . ,Up−1 ∈H. (1.6)

We introduce the norm |v|s = (Asv,v)1/2, s∈R, defined by

|v|2s =
∞∑
j=1

λsj
(
v,ϕj

)2
<∞, for s∈R, (1.7)

where {λj ,ϕj}∞j=1 is the eigensystem of the operator A. We see that | · |0 = ‖·‖.
It is natural to approximate the time derivative ut(tn) of the solution of (1.1) by

∂̄pUn (n ≥ 2p), where Un, n ≥ p, is computed by the multistep backward difference
method (1.5). Approximating ut(tn) by ∂̄pUn, we obtain, in Theorem 3.3, with n≥ 2p,

t
2p+2
n

∥∥∂̄pUn−ut
(
tn
)∥∥2 ≤ C

2p−1∑
j=p

(∣∣U j −uj
∣∣2
−2p + k2p+2

∥∥A(U j −uj
)∥∥2

)
+Ck2pG(u),

(1.8)

where

G(u)=
∫ tn

0

(∣∣u(p+1)(s)
∣∣2
−2p−1 + s2p+2

∣∣u(p+1)(s)
∣∣2

1 + s2
∣∣ut(s)∣∣2

1

)
ds+ t3

2p

∣∣ut(t2p)∣∣2
1. (1.9)

In the case of f ≡ 0, if the discrete initial values satisfy, with U0 = v,
∣∣U j −uj

∣∣−2p + kp+1
∥∥A(U j −uj

)∥∥≤ Ckp‖v‖, for p ≤ j ≤ 2p− 1, v ∈H , (1.10)
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for some suitable discrete starting values U0,U1, . . . ,Up−1, then, in Corollary 3.4, we get

∥∥∂̄pUn−ut
(
tn
)∥∥≤ Ckpt

−p−1
n ‖v‖, for n≥ 2p. (1.11)

We also discuss the starting value approximation in the case of p = 2. For suitable
initial approximation U0,U1, we can prove, with U0 = v ∈H ,

3∑
j=2

(∣∣U j −uj
∣∣−4 + k3

∥∥A(U j −uj
)∥∥)≤ Ck2

(
‖v‖+

∥∥ f (0)
∥∥+

∫ t j

0

∥∥ f ′(τ)
∥∥dτ). (1.12)

Thus, in the case of p = 2, our error estimate reads, with U0 = v ∈H ,

∥∥∂̄2U
n−ut

(
tn
)∥∥≤ Ck2t−3

n

(
‖v‖+

∥∥ f (0)
∥∥+

∫ t3

0

∥∥ f ′(τ)
∥∥dτ +K(u)

)
, n≥ 4, (1.13)

where

K(u)2 =
∫ tn

0

(∣∣u(3)(s)
∣∣2
−5 + s6

∣∣u(3)(s)
∣∣2

1 + s2
∣∣ut(s)∣∣2

1

)
ds+ t3

4

∣∣ut(t4)∣∣2
1. (1.14)

By C and c we denote large and small positive constants independent of the functions
and parameters concerned, but not necessarily the same at different occurrences. When
necessary for clarity, we distinguish constants by subscripts.

2. Smoothing properties

In this section, we will show the smoothing properties for the multistep backward dif-
ference method. Before showing this, we first discuss some properties of the backward
difference operator ∂̄p defined by (1.3). We first note that (1.3) can be written in another
form as

∂̄pU
n = k−1

p∑
ν=0

cνU
n−ν, (2.1)

where the coefficients cν are independent of k. Introducing P(x)=∑p
ν=0 cνxν, it is easy to

check that (1.4) is equivalent to

P
(
e−λ
)− λ=O

(
λp+1), as λ−→ 0. (2.2)

In fact, with u(t)= et in (1.4), we have

P
(
e−k

)− k =O
(
kp+1), as k −→ 0, (2.3)

replacing k by λ, we show (2.2). On the other hand, if (2.2) holds, (1.4) follows from
Taylor expansion of ∂̄pun at tn.



526 Smoothing properties for linear parabolic equations

For p = 1, (1.5) reduces to the backward Euler method

Un−Un−1

k
+AUn = f n, for n≥ 1, (2.4)

and the starting value is U0 = v.
For p = 2, we have

(
(3/2)Un− 2Un−1 + (1/2)Un−2

)
k

+AUn = f n, for n≥ 2, (2.5)

and both U0 and U1 are needed to start the procedure.
Bramble et al. [2] obtain the following stability result, that is, with Un the solution of

(1.5),

∥∥Un
∥∥≤ C

p−1∑
j=0

∥∥U j
∥∥+Ck

n∑
j=p

∥∥ f j∥∥, for n≥ p. (2.6)

In this paper, we first show the smoothing property for the multistep backward difference
method.

Theorem 2.1. Let p ≤ 6. Then there is a constant C, independent of the positive definite
operator A, such that for the solution Un of (1.5) with f = 0,

∥∥∂̄pUn
∥∥≤ Ct−1

n

p−1∑
j=0

∥∥U j
∥∥, for n≥ 2p. (2.7)

To prove this theorem, we need the following lemma from Thomée [11, Lemma 10.3].

Lemma 2.2. The solution of (1.5) may be written, with f = 0, as

Un =
p−1∑
s=0

βns(kA)Us, for n≥ p, (2.8)

where with λ > 0, P(ζ)=∑p
ν=0 cνζν, the βns(λ) are defined by,

βns(λ)=
p∑

j=p−s
βn−s− j(λ)cj ,

∞∑
j=0

βj(λ)ζ j := (P(ζ) + λ
)−1

, (2.9)

where it is assumed that βn−s− j(λ)= 0 in the case n− s− j < 0.
If p ≤ 6, there are positive constants c, C, and λ0 such that

∣∣βj(λ)
∣∣≤


Ce

−c jλ, for 0 < λ≤ λ0,

Cλ−1e−c j , for λ≥ λ0.
(2.10)
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Proof of Theorem 2.1. By (2.8) and (2.1), we find that

∂̄pU
n = k−1

p∑
ν=0

cν

p−1∑
s=0

β(n−ν)s(kA)Us =
p−1∑
s=0

[
k−1

p∑
ν=0

cνβ(n−ν)s(kA)

]
Us. (2.11)

By (2.8), we see that n− ν≥ p for any 0≤ ν≤ p, which implies that n must be larger than
or equal to 2p, that is, n ≥ 2p. Since ∂̄pUn is linearly dependent on Us (0 ≤ s ≤ p− 1),
it suffices to consider separately the cases when Ul 
= 0, 0 ≤ l ≤ p− 1, and Us = 0, 0 ≤
s ≤ p− 1, s 
= l. In other words, we need to show, for Ul 
= 0, 0 ≤ l ≤ p− 1, and Us = 0,
0≤ s≤ p− 1, s 
= l,

∥∥∂̄pUn
∥∥≤ Ct−1

n

∥∥Ul
∥∥. (2.12)

We first consider the case 0 < l ≤ p− 1. By Lemma 2.2, we have

∂̄pU
n = k−1

p∑
ν=0

cν
(
β(n−ν)lU

l
)

= k−1
p∑

ν=0

cν

( p∑
j=p−l

βn−ν−l− j(kA)cj

)
Ul

= k−1
p∑

j=p−l

( p∑
ν=0

cνβn−ν−l− j(kA)

)
cjU

l, for 0 < l ≤ p− 1.

(2.13)

We remark that n− ν− l− j may be negative. In this case, we assume that βn−ν−l− j(λ)= 0.
By Lemma 2.3, we have

p∑
ν=0

cνβn−ν−l− j(λ)=−λβn−l− j(λ). (2.14)

Thus

∂̄pU
n = k−1

p∑
j=p−l

(− kAβn−l− j(kA)
)
cjU

l, (2.15)

and (2.12) will follow from

∥∥∥∥∥k−1
p∑

j=p−l

(− kAβn−l− j(kA)
)
cj

∥∥∥∥∥≤ Ct−1
n . (2.16)

In view of (1.2), (2.16) may be written as, for 0 < l ≤ p− 1,

∣∣∣∣∣nλ
p∑

j=p−l
βn−l− j(λ)

∣∣∣∣∣≤ C, for λ∈ σ(kA). (2.17)
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Now we show (2.17). By (2.10). We have, for small λ, 0≤ λ≤ λ0,

∣∣∣∣∣nλ
p∑

j=p−l
βn−l− j(λ)

∣∣∣∣∣≤ C
p∑

j=p−l
nλe−c(n−l− j)λ ≤ C, (2.18)

and, for large λ, λ > λ0,

∣∣∣∣∣nλ
p∑

j=p−l
βn−l− j(λ)

∣∣∣∣∣≤ C
p∑

j=p−l
ne−c(n−l− j) ≤ C, for λ≥ λ0. (2.19)

Hence (2.17) holds.
It remains to consider the case l = 0. We have, by Lemma 2.2,

∂̄pU
n = k−1

p∑
ν=0

cν
(
β(n−ν)0U

0)= k−1

( p∑
ν=0

cνβn−ν−p(kA)

)
cpU

0. (2.20)

Thus in this case, (2.12) will follow from

∥∥∥∥∥k−1
p∑

ν=0

(
cνβn−ν−p(kA)

)
cp

∥∥∥∥∥≤ Ct−1
n . (2.21)

By (1.2), (2.21) may be written as

n

∣∣∣∣∣
p∑

ν=0

cνβn−ν−p(λ)

∣∣∣∣∣≤ C, for λ∈ σ(kA), n≥ 2p, (2.22)

or, using (2.14),

∣∣nλβn−p(λ)
∣∣≤ C, for λ∈ σ(kA), n≥ 2p, (2.23)

which we will now prove. For small 0≤ λ < λ0, we have, by (2.10),

∣∣nλβn−p(λ)
∣∣≤ (nλe−cnλ)ecpλ ≤ C. (2.24)

For λ > λ0, using again (2.10), we have,

∣∣nλβn−p(λ)
∣∣≤ C

(
ne−cn

)
ecp ≤ C. (2.25)

Thus (2.23) holds. Together these estimates complete the proof of Theorem 2.1. �

Lemma 2.3. Let p ≤ 6. Let βm(λ), m≥ 0, and cm, 0≤m≤ p, be defined as in Lemma 2.2.
Then, for any n≥ 2p, 0 < l ≤ p− 1, p− l ≤ j ≤ p,

(
c0 + λ

)
βn−l− j(λ) + c1βn−l− j−1(λ) + ···+ cpβn−l− j−p(λ)= 0, (2.26)

where it is assumed that βn−l− j−ν(λ)= 0 in the case of n− l− j− ν < 0 for 0≤ ν≤ p.
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Proof. By (2.9), we have

(
P(ζ) + λ

)( ∞∑
j=0

βj(λ)ζ j
)
= 1, (2.27)

that is,

(
c0 + λ+ c1ζ

1 + c2ζ
2 + ···)(β0(λ) +β1(λ)ζ +β2(λ)ζ2 + ···)= 1. (2.28)

Comparing with the coefficients of ζ j , j = 0,1,2, . . . , we get

(
c0 + λ

)
β0(λ)= 1,(

c0 + λ
)
β1(λ) + c1β0(λ)= 0,

...(
c0 + λ

)
βp(λ) + c1βp−1(λ) + ···+ cpβ0(λ)= 0,(

c0 + λ
)
βp+1(λ) + c1βp(λ) + ···+ cpβ1(λ)= 0,

...

(2.29)

which implies that, for any m≥ 1 (not m= 0),

(
c0 + λ

)
βm(λ) + c1βm−1(λ) + ···+ cpβm−p(λ)= 0, (2.30)

where βm−ν = 0 if m− ν < 0 for 1≤ ν≤ p.
Note that n− l− j ≥ 1 since n≥ 2p, 0 < l ≤ p− 1, p− l ≤ j ≤ p. Thus we obtain (2.26)

by replacing m with n− l− j in (2.30). The proof is complete. �

3. Error estimates

In this section, we will show the error estimates for the approximation ∂̄pUn of the time
derivative ut(tn) in nonsmooth data cases.

We first recall the following stability result, see Thomée [11, Theorem 10.4].

Lemma 3.1. Let p ≤ 6 and s≥ 0, and let Un be the solution of (1.5). Then, with C indepen-
dent of the positive definite operator A,

tsn
∥∥Un

∥∥2
+ k

n∑
j=p

tsj
∣∣U j

∣∣2
1 ≤ C

p−1∑
j=0

(∣∣U j
∣∣2
−s + ks

∥∥U j
∥∥2
)

+Ck
n∑
j=p

(∣∣ f j∣∣2
−s−1 + tsj

∣∣ f j∣∣2
−1

)
, for n≥ p.

(3.1)
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By shifting the origin, we have the following generalization of Lemma 3.1.

Lemma 3.2. Let p ≤ 6 and s≥ 0, and let Un be the solution of (1.5). Assume that m≥ p and
Um−p, . . . ,Um−1 are given. Then, with C independent of the positive definite operator A,

tsn
∥∥Un

∥∥2
+ k

n∑
j=m

tsj
∣∣U j

∣∣2
1 ≤ C

m−1∑
j=m−p

(∣∣U j
∣∣2
−s + ks

∥∥U j
∥∥2
)

+Ck
n∑

j=m

(∣∣ f j∣∣2
−s−1 + tsj

∣∣ f j∣∣2
−1

)
, for n≥m.

(3.2)

We have the following error estimate of time derivative approximation in nonsmooth
data case.

Theorem 3.3. Let p ≤ 6 and let Un and u be the solutions of (1.5) and (1.1), respectively.
Then, with n≥ 2p,

t
2p+2
n

∥∥∂̄pUn−ut
(
tn
)∥∥2 ≤ C

2p−1∑
j=p

(∣∣U j −uj
∣∣2
−2p + k2p+2

∥∥A(U j −uj
)∥∥2

)
+Ck2pG(u),

(3.3)

where

G(u)=
∫ tn

0

(∣∣u(p+1)(s)
∣∣2
−2p−1 + s2p+2

∣∣u(p+1)(s)
∣∣2

1 + s2
∣∣ut(s)∣∣2

1

)
ds+ t3

2p

∣∣ut(t2p)∣∣2
1. (3.4)

Proof. The error εn = ∂̄pUn−ut(tn) (n≥ p) satisfies

∂̄pε
n +Aεn =−τn, where τn = A

(
∂̄pu

(
tn
)−ut

(
tn
))

, for n≥ 2p. (3.5)

Applying Lemma 3.2 with s= 2p+ 2, m= 2p, we have, for n≥ 2p,

t
2p+2
n

∥∥εn∥∥2 ≤ C
2p−1∑
j=p

(∣∣ε j∣∣2
−2p−2 + k2p+2

∥∥ε j∥∥2
)

+Ck
n∑

j=2p

(∣∣τ j
∣∣2
−2p−3 + t

2p+2
j

∣∣τ j
∣∣2
−1

)
.

(3.6)

We now estimate the term k
∑n

j=2p |τ j|2−2p−3. We will show that, with any norm ‖ · ‖
in H ,

∥∥∂̄pu(t j)−ut
(
t j
)∥∥≤ Ckp−1

∫ t j

t j−p

∥∥u(p+1)(s)
∥∥ds, for j ≥ 2p. (3.7)

Assuming this, we have

∣∣τ j
∣∣2
−2p−3 ≤ Ck2p−1

∫ t j

t j−p

∣∣u(p+1)(s)
∣∣2
−2p−1ds, for j ≥ 2p. (3.8)
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Thus

k
n∑

j=2p

∣∣τ j
∣∣2
−2p−3 ≤ Ck2p

n∑
j=2p

∫ t j

t j−p

∣∣u(p+1)(s)
∣∣2
−2p−1ds

≤ Ck2p
∫ tn

0

∣∣u(p+1)(s)
∣∣2
−2p−1ds.

(3.9)

It remains to estimate k
∑n

j=2p t
2p+2
j |τ j|2−1. If j 
= 2p, we have, by (3.7) with norm

‖A1/2 · ‖,

k
n∑

j=2p+1

t
2p+2
j

∣∣τ j
∣∣2
−1 ≤ Ck2p

n∑
j=2p+1

t
2p+2
j

∫ t j

t j−p

∣∣u(p+1)(s)
∣∣2

1ds. (3.10)

Here we have t j ≤ cs for s∈ [t j−p, t j], j ≥ 2p+ 1, which follows from

t j ≤ s
t j
t j−p

≤ s
t2p+1

tp+1
≤ cs, for j ≥ 2p+ 1. (3.11)

Hence

k
n∑

j=2p+1

t
2p+2
j

∣∣τ j
∣∣2
−1 ≤ Ck2p

n∑
j=2p+1

∫ t j

t j−p
s2p+2

∣∣u(p+1)(s)
∣∣2

1ds. (3.12)

For j = 2p, we write, since
∑p

ν=0 cν = 0,

τ2p = k−1A

( p∑
ν=0

cνu
(
t2p−ν

)−ut
(
t2p
))= k−1A

( p∑
ν=0

cν

∫ t2p−ν

tp
ut(s)ds−ut

(
t2p
))

, (3.13)

and we obtain

k
∣∣τ2p

∣∣2
−1 ≤ C

∫ t2p

tp

∣∣ut(s)∣∣2
1ds+ k

∣∣ut(t2p)∣∣2
1, (3.14)

which follows from

∣∣τ2p
∣∣2
−1 ≤ C

(
k−2

p∑
ν=0

∣∣∣∣
∫ t2p−ν

tp
ut(s)ds

∣∣∣∣
2

1
+
∣∣ut(t2p)∣∣2

1

)

≤ Ck−2
p∑

ν=0

(pk)
∫ t2p−ν

tp

∣∣ut(s)∣∣2
1ds+

∣∣ut(t2p)∣∣2
1

≤ Ck−1
∫ t2p

tp

∣∣ut(s)∣∣2
1ds+

∣∣ut(t2p)∣∣2
1.

(3.15)
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Thus, we get

kt
2p+2
2p

∣∣τ2p
∣∣2
−1 ≤ Ck2p+2

(∫ t2p

tp

∣∣ut(s)∣∣2
1ds+ k

∣∣ut(t2p)∣∣2
1

)

≤ Ck2p
(∫ t2p

tp
s2
∣∣ut(s)∣∣2

1ds+ t3
2p

∣∣ut(t2p)∣∣2
1

)
.

(3.16)

It remains to estimate (3.7). We write, by Taylor expansion around t j−p,

u(t)=
p∑

l=0

u(l)
(
t j−p

)
l!

(
t− t j−p

)l
+

1
p!

∫ t

t j−p
(t− s)pu(p+1)(s)ds≡Q(t) +R(t). (3.17)

By (1.4) and since Q(t) is a polynomial of degree p, we have ∂̄pQ(t)−Qt(t)= 0. Thus, by
(2.1),

∂̄pu
(
t j
)−ut

(
t j
)= ∂̄pR(t j)−Rt

(
t j
)= k−1

p∑
ν=0

cνR
(
t j−ν

)−Rt
(
t j
)
. (3.18)

Noting that

∥∥R(t j−ν
)∥∥≤ Ckp

∫ t j

t j−p

∥∥u(p+1)(s)
∥∥ds, for 0≤ ν≤ p, j ≥ 2p,

∥∥Rt
(
t j
)∥∥= 1

(p− 1)!

∥∥∥∥
∫ t j

t j−p

(
t j − s

)p−1
u(p+1)(s)ds

∥∥∥∥≤ Ckp−1
∫ t j

t j−p

∥∥u(p+1)(s)
∥∥ds,

(3.19)

we complete the proof of (3.7).
Together these estimates complete the proof. �

In the homogeneous case, that is, f = 0, we have the following nonsmooth data error
estimates.

Corollary 3.4. Let p ≤ 6 and let Un and u be the solutions of (1.5) and (1.1), respectively.
Assume that f = 0 and the discrete initial values satisfy, with U0 = v,

∣∣U j −uj
∣∣−2p + kp+1

∥∥A(U j −uj
)∥∥≤ Ckp‖v‖, for p ≤ j ≤ 2p− 1. (3.20)

Then, with C independent of the positive definite operator A,

∥∥∂̄pUn−ut
(
tn
)∥∥≤ Ckpt

−p−1
n ‖v‖, for n≥ 2p. (3.21)

Proof. For the solution u of homogeneous parabolic equation, it is easy to show that

∫ tn

0

∣∣u(p+1)(s)
∣∣2
−2p−1ds≤ C‖v‖2,

∫ tn

0
s2p+2

∣∣u(p+1)(s)
∣∣2

1ds≤ C‖v‖2, (3.22)

and t3
2p|ut(t2p)|21 ≤ C‖v‖2. Applying Theorem 3.3, we complete the proof. �
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Next we will consider the starting value approximation. In Theorem 3.3, we see that it

is necessary to define starting approximations {U j}p−1
j=0 such that

∣∣U j −uj
∣∣−2p + kp+1

∥∥A(U j −uj
)∥∥=O

(
kp
)
, for p ≤ j ≤ 2p− 1. (3.23)

Here we will consider the cases p = 1,2. The approach can be extended to the general case
for p > 2, but the proof is more complicated.

In the case of p = 1, the approximate solution is defined by the backward Euler method

∂̄1U
n +AUn = f n, for n≥ 1, with U0 = v, (3.24)

or, with r(λ)= 1/(1 + λ),

Un = r(kA)Un−1 + kr(kA) f n, for n≥ 1, with U0 = v. (3.25)

We then have the following lemma, see Thomée [11, Theorem 9.1].

Lemma 3.5. Let U1 and u be the solutions of (3.24) and (1.1), respectively. Then, with
u1 = u(t1), U0 = u0 = v,

∣∣U1−u1
∣∣−2 + k2

∥∥A(U1−u1)∥∥
≤ Ck

∥∥v−A−1 f (0)
∥∥+Ck

∫ k

0

∥∥A−1 f ′(τ)
∥∥dτ +Ck2

∫ k

0

∥∥ f ′(τ)
∥∥dτ. (3.26)

In particular, if f = 0, then

∣∣U1−u1
∣∣−2 + k2

∥∥A(U1−u1)∥∥≤ Ck‖v‖. (3.27)

We now turn to the case p = 2. In this case, we need two starting values U0 and U1.
We will use the backward Euler method to compute U1, that is, the approximation Un of
the solution u(tn) of (1.1) is defined by

∂̄2U
n +AUn = f n, for n≥ 2, ∂̄U1 +AU1 = f 1, with U0 = v. (3.28)

We have the following lemma.

Lemma 3.6. Let U j , j = 2,3 and u be the solutions of (3.28) and (1.1), respectively. Then,
with uj = u(t j), U0 = u0 = v,

∣∣U j −uj
∣∣−4 + k3

∥∥A(U j −uj
)∥∥≤ Ck2

(
‖v‖+

∥∥ f (0)
∥∥+

∫ t j

0

∥∥ f ′(τ)
∥∥dτ), j = 2,3.

(3.29)

In particular, if f = 0, then

∣∣U j −uj
∣∣−4 + k3

∥∥A(U j −uj
)∥∥≤ Ck2‖v‖, j = 2,3. (3.30)
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Proof. Here we only prove the case j = 2, that is, we will show that

∣∣U2−u2
∣∣−4 + k3

∥∥A(U2−u2)∥∥=O
(
k2). (3.31)

The proof for the case j = 3 is similar.
Since ∂̄2U2 = k−1((3/2)U2− 2U1 + (1/2)U0), we may write

U2 = q1(kA)U1 + q2(kA)U0 + kP(kA) f 2, (3.32)

where

q1(λ)= 2
3/2 + λ

, q2(λ)= −1/2
3/2 + λ

, P(λ)= 1
3/2 + λ

. (3.33)

Thus, noting that u2 = e−2kAv+
∫ 2k

0 e−(2k−s)A f (s)ds, we have

U2−u2 = q1(kA)
(
U1−u1)+ q2(kA)

(
U0−u0)+E2. (3.34)

Here, by simple calculation,

E2 = q1(kA)u1 + q2(kA)u0 + kP(kA) f 2−u2

=Q(kA)v+ kb0(kA) f (0) + kR( f ),
(3.35)

where

Q(λ)= q1(λ)e−λ + q2(λ)− e−2λ,

b0(λ)= q1(λ)
∫ 1

0
e−(1−s)λds+P(λ)− 2

∫ 1

0
e−2(1−s)λds,

R( f )= q1(kA)
∫ 1

0
e−(1−s)kA

(∫ ks

0
f ′(τ)dτ

)
ds

+P(kA)
∫ 2k

0
f ′(τ)dτ − 2

∫ 1

0
e−2(1−s)kA

(∫ 2ks

0
f ′(τ)dτ

)
ds.

(3.36)

We first show that

k3
∥∥A(U2−u2)∥∥≤ Ck2

(
‖v‖+ k

∥∥ f (0)
∥∥+ k

∫ 2k

0

∥∥ f ′(τ)
∥∥dτ). (3.37)

In fact, noting U0 = u0 = v,

k3
∥∥A(U2−u2)∥∥≤ k3

∥∥Aq1(kA)
(
U1−u1)∥∥+ k3

∥∥AQ(kA)v
∥∥

+ k3
∥∥kAb0(kA) f (0)

∥∥+ k3
∥∥kAR( f )

∥∥
= I + II + III + IV.

(3.38)

Since |λQ(λ)| ≤ C and |λb0(λ)| ≤ C for 0≤ λ <∞, we have

II ≤ Ck2‖v‖, III ≤ Ck3
∥∥ f (0)

∥∥. (3.39)
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By (3.36), it is easy to see that

IV ≤ Ck3
∫ 2k

0

∥∥ f ′(τ)
∥∥dτ. (3.40)

Now we turn to I . Note that

U1−u1 = (r(kA)− e−kA
)
v+ kr(kA) f 1−

∫ k

0
e−(k−s)A f (s)ds

= (r(kA)− e−kA
)
v+ kr(kA)

(
f (0) +

∫ k

0
f ′(τ)dτ

)

− k
∫ 1

0
e−(1−s)kA

(
f (0) +

∫ ks

0
f ′(τ)dτ

)
ds.

(3.41)

We find

I = k3
∥∥Aq1(kA)

(
U1−u1)∥∥≤ Ck2

(
‖v‖+ k

∥∥ f (0)
∥∥+ k

∫ k

0
‖ f ′‖dτ

)
. (3.42)

Combining this with the estimates for II ,III , and IV , we obtain (3.37).
We next show that

∣∣A(U2−u2)∣∣−6 ≤ Ck2
(
‖v‖+

∫ 2k

0

∥∥ f ′(τ)
∥∥dτ). (3.43)

As in the proof of (3.37), we write

∣∣A(U2−u2)∣∣−6 ≤
∣∣Aq1(kA)

(
U1−u1)∣∣−6 +

∣∣AQ(kA)v
∣∣−6

+
∣∣kAb0(kA) f (0)

∣∣−6 +
∣∣kAR( f )

∣∣−6

= I′ + II′ + III′ + IV ′.

(3.44)

Since |λ−2Q(λ)| < C and |λ−1b0(λ)| ≤ C for 0≤ λ <∞, we get

II′ = k2
∥∥(kA)−2Q(kA)v

∥∥≤ Ck2‖v‖,

III′ = k2
∥∥(kA)−1b0(kA)A−1

∥∥≤ Ck2
∥∥ f (0)

∥∥. (3.45)

Further, we easily find that

IV ′ ≤ Ck2
∫ 2k

0

∥∥ f ′(τ)
∥∥dτ,

I′ ≤ Ck2
(
‖v‖+

∥∥ f (0)
∥∥+

∫ k

0

∥∥ f ′(τ)
∥∥dτ).

(3.46)

Hence (3.43) follows.
Together, these estimates show (3.31). The proof is complete. �

Combining Theorem 3.3 with Lemma 3.6, we get the following error estimate in the
case p = 2.
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Corollary 3.7. Let Un and u be the solutions of (3.28) and (1.1), respectively. Then, with
U0 = u0 = v,

∥∥∂̄2U
n−ut

(
tn
)∥∥≤ Ck2t−3

n

(
‖v‖+

∥∥ f (0)
∥∥+

∫ t3

0

∥∥ f ′(τ)
∥∥dτ +K(u)

)
, n≥ 4, (3.47)

where

K(u)2 =
∫ tn

0

(∣∣u(3)(s)
∣∣2
−5 + s6

∣∣u(3)(s)
∣∣2

1 + s2
∣∣ut(s)∣∣2

1

)
ds+ t3

4

∣∣ut(t4)∣∣2
1. (3.48)
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