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We present another proof of a theorem due to Hoffman and Osserman in Euclidean space
concerning the determination of a conformal immersion by its Gauss map. Our approach
depends on geometric quantities, that is, the hyperbolic Gauss map G and formulae ob-
tained in hyperbolic space. We use the idea that the Euclidean Gauss map and the hy-
perbolic Gauss map with some compatibility relation determine a conformal immersion,
proved in a previous paper.

1. Introduction

Throughout this paper we will consider surfaces immersed in Euclidean space thinking
that, locally, the surface is immersed into the upper half-space R3

+ = {(u,v,w), w > 0}.
Of course there are two important metrics in R3

+: the standard Euclidean metric and the
hyperbolic metric given by ds2 = (1/w2) · (du2 + dv2 + dw2). Notice that R3

+ endowed
with the hyperbolic metric is the upper half-space model of hyperbolic spaceH3.

Our main goal is to show how certain geometric quantities relating to the oriented
Euclidean Gauss map, the hyperbolic Gauss map, and the coordinate functions for con-
formal immersions of a planar domain into the upper half-space model of hyperbolic
space, can be used to infer that the oriented Euclidean Gauss map determines locally a
conformal immersion in Euclidean space with nonvanishing mean curvature, up to a ho-
mothety and Euclidean translation. This is a theorem due to Hoffman and Osserman [8]
on account of a theorem by Kenmotsu [9]. Their proof specializes to dimension-3 results
for the Euclidean Gauss map of conformal immersions inRn. The main idea of our proof
is that both Euclidean Gauss map E and hyperbolic Gauss map G together with some
compatibility relation determine a conformal immersion into upper half-space. Thus, we
use in the proof the relation between Euclidean and hyperbolic geometry. We hope that
this approach gives a significant insight into the theory.

Let X : U ⊂ C�R3
+, z = x+ iy �→ X(z) be an oriented conformal immersion of a sim-

ply connected domain U into the upper half-space R3
+. Let N be the Euclidean Gauss

map of X such that (Xx,Xy ,N)(z) is a positively oriented basis of R3 for each z ∈ U ,
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where Xx = ∂X/∂x and Xy = ∂X/∂y. That is,

N = Xx ∧Xy∣∣Xx ∧Xy

∣∣ , (1.1)

where | · | stands for the Euclidean norm and∧ for the Euclidean vector product. We call
N = (N1,N2,N3) the oriented Euclidean Gauss map of X , or more briefly the Euclidean
Gauss map of X .

Let Π : S2 → C∪{∞} be the standard stereographic projection. We set

E =Π ◦N = N1 + iN2

1−N3
, (1.2)

so that

N = (2	E,2
E,EE− 1)
EE + 1

. (1.3)

We call E the oriented Euclidean Gauss map of X .
Given a point p = X(z), the geodesic ray lying in hyperbolic space H3, issuing from

X(z) in the direction of N , fits the asymptotic boundary C∪{∞} at a point G(z). This
defines an application G : U → C∪{∞}, called the hyperbolic Gauss map.

For every C1-function f : U → C∪{∞}, the notation fz (resp., fz) stands for the de-
rivative of f with respect to z (resp., z), that is,

fz = 1
2

(
fx − i fy

)
, fz = 1

2

(
fx + i fy

)
. (1.4)

We will prove the following theorem.

Theorem 1.1 (Hoffman and Osserman). Let E be a C3 function in a simply connected
domain Ω. Assume Ez �= 0 everywhere. If E satisfies

(
Ezz

Ez
− 2E

Ez

EE + 1

)
z
=
(

(E)zz
(E)z

− 2E
(E)z

EE + 1

)
z
, (1.5)

then there is a conformal immersion X : Ω � R3 of Ω into R3 with nonvanishing mean
curvature H . Furthermore, E is the oriented Euclidean Gauss map and any geometric quan-
tity related to the immersion X can be determined in terms of E. The mean curvature H is
determined up to a positive multiplicative constant and is given by

H
(

Ezz − 2E
EzEz

EE + 1

)
=HzEz (Kenmotsu’s equation). (1.6)

If X and X̃ are two conformal immersions of a simply connected domain U into R3 with the
same oriented Euclidean Gauss map E and nonvanishing mean curvature, then X = X̃ up to
a homothety and Euclidean translation.
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Remark 1.2. The authors have deduced a Kenmotsu-type theorem in hyperbolic space
[14]. In fact, given a C2 function E and a C1 function � on a simply connected domain
Ω, we have stated a necessary and sufficient compatibility equation to obtain a conformal
(possibly branched) immersion of Ω into hyperbolic space with oriented Euclidean Gauss
map E and hyperbolic mean curvature �. Namely, the equation in hyperbolic space cor-
responding to (1.6) is the following:

(
2 + (�− 1)(1 +EE)

)
(1 +EE)Ezz − 2

(
1 + (�− 1)(1 +EE)

)
EEzEz − (1 +EE)2Ez�z = 0.

(1.7)

Notice that Aiyama and Akutagawa proved a related result in the 3-sphere, see [1].

2. Formulae for conformal immersions inR3
+

We now recall formulae about the immersion X(z)= (u(z) + iv(z),w(z)), established by
the authors in a previous work [16].

Proposition 2.1. Let X : U ⊂ C� R3
+, z = x + iy �→ X(z) be a conformal immersion of

a simply connected domain U into the upper half-space R3
+. Let H be the Euclidean mean

curvature. Assume E(z) �= ∞, then

u+ iv =G−wE, (2.1)

Gz =wEz, (2.2)

ds2 = ∣∣Gz−wEz

∣∣2|dz|2 (induced Euclidean metric), (2.3)

wz = E
EE + 1

(
Gz−wEz

)
, (2.4)

H
(
Gz−wEz

)=−2
Ez

EE + 1
. (2.5)

Remark 2.2. (1) Notice that from (2.5), it follows that X is a minimal conformal im-
mersion into Euclidean space if and only if the Euclidean Gauss map is a meromorphic
function.

(2) The following formula has important significance for surfaces theory in hyperbolic
space. Let � be the mean curvature of X in hyperbolic space

(1−�)
(
Gz −wEz

)= 2
Gz

EE + 1
. (2.6)

Thus, X has mean curvature 1 in hyperbolic space if and only if the hyperbolic Gauss
map is a meromorphic function. This is a result proved by Bryant [4] and seems to be
known by Bianchi, see [3, 6]. Mean curvature one surfaces in hyperbolic space has been
intensively studied after Bryant’s work. See, for example, [2, 5, 7, 11, 12, 15, 13, 18].

(3) We remark that in the context where we allow branch point, that is, the metric
ds2 = 0 at some points, then from (2.3) and (2.5), we conclude that z0 is a branch point
of an immersion with nonvanishing mean curvature H if and only if Ez(z0)= 0.
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(4) When the mean curvature H is a real constant, we say H = cte, we infer from (1.6),
Kenmotsu’s equation,

Ezz = 2E
EzEz

EE + 1
. (2.7)

The above equation shows that E : Ω⊂ C→ C∪{∞}, with the sphere C∪{∞} equip-
ped with the standard metric dσ2 = (4/(1 + ζζ)2)|dζ|2, is a harmonic map [17]. We ob-
serve that if H = cte �= 0, then a point z such that Ez = 0 is a zero of the Hopf function φ
related to the harmonic map E, since φ is holomorphic, we deduce that the set of points
{Ez = 0} is discrete.

(5) An equation relating the mean curvature H in Euclidean space and the mean cur-
vature HH3 in hyperbolic space can also be deduced, that is,

(
HH3 − 1

)
Ez =HGz. (2.8)

(6) An important equation in hyperbolic space is given by

Ezz = E
EzEz

EE + 1
. (2.9)

Indeed, this equation is satisfied for mean curvature one surfaces in hyperbolic space,
taking into account (1.7). Any solution of this equation gives rise to mean curvature one
conformal immersion into hyperbolic space [16]. All solutions of this equation can be
explicitly given by meromorphic data (h,T) according to a quite simple formula [16].
It can be considered as a harmonic map, taking a metric in C given by dσ2 = (2/(1 +
ζζ))|dζ|2. As far as we know, the solutions of (2.7) cannot be expressed in a simple way.
However, there are results of Ritoré [10].

3. Proof of the theorem

The idea of the proof to obtain existence is the following. We outline it locally. Using
(1.5), it is straightforward to infer a candidate H for the mean curvature, up to a mul-
tiplicative positive constant. Then, using the equations established for hyperbolic space,
see Proposition 2.1, we obtain a candidate for the height w > 0. Now we recall that the
Euclidean Gauss map E and hyperbolic Gauss map G, with some compatibility relation,
determine a conformal immersion into upper half-space [15]. Thus we expect to obtain
G with the aid of (1.5). This happens to be true, and using E, w, and G, we are able to find
the horizontal coordinates u, v and to finally get the desired immersion.

We will now proceed with the details of the proof. Note first that from integrability
condition (1.5), we deduce the existence of a real function F defined in the whole simply
connected domain Ω such that

Ezz − 2E
EzEz

EE + 1
= FzEz. (3.1)

We define a real C1 positive function H on Ω setting H := eF . Notice that H is defined
up to a multiplicative positive constant, since F is well defined up to additive constant.
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We infer therefore Kenmotsu’s equation (1.6). We fix now the (height) w on the whole Ω
by choosing a solution of the following equation:

wz = E
EE + 1

· −2Ez

H
(

EE + 1
) . (3.2)

This can be done since a computation shows that (1.6) is the compatibility equation
for (3.2).

Let∪n≥1Un =Ω be an exhaustion of Ω by open simply connected subdomains Un ⊂⊂
Ω, that is, Un ⊂Un+1 ⊂Ω and Un is compact.

We will now proceed with the construction of the coordinate functions (u+ iv,w) of
the desired immersion by constructing an auxiliary conformal immersion X(n) of Un into
R3

+ by recurrence such that the height of X (n) is equal to w+αn > 0.
We will see that X (n+1) − (0,0,αn+1) = X (n) − (0,0,αn) on Un, n = 1,2, . . . . This will

provide the desired immersion. Notice that (3.2) for a conformal immersion X of Ω into
R3

+ can be deduced with the aid of (2.4) and (2.5). Of course this choice is done up to an
additive constant.

We will first work in U1. We choose a positive constant α1 such that w1 := w +α1 > 0.
We define G=G1 on U1 by

Gz =
(
w1− 2

H(EE + 1)

)
Ez, Gz =w1Ez. (3.3)

With a bit of surprise, we find that the compatibility of (3.3) is still Kenmotsu’s equa-
tion (1.6). We observe that (3.3) for a given conformal immersion follows again from
Proposition 2.1. Of course this choice is done up to an additive complex constant. Now
using (2.1), we obtain the horizontal coordinates u1 + iv1, that is, u1 + iv1 := G1 −w1E.
Hence we get a C2 map X (1) : U1 → R3

+, by X (1)(z) := (u1(z) + iv1(z),w1(z)), z = x + iy.
On account of the above construction, we get (we write w =w1, G=G1 for simplicity)

wz = E
1 + EE

(
Gz−wEz +Gz−wEz

)= E
1 + EE

(
Gx −wEx

)
= E

1 + EE

(
Gz−wEz−

(
Gz −wEz

))= E
1 + EE

i
(
Gy −wEy

)
.

(3.4)

Thus

wx = 2	
(

E
(
Gx −wEx

)
EE + 1

)
, wy = 2	

(E
(
Gy −wEy

)
EE + 1

)
. (3.5)

We infer from (3.5) that X (1)
x · X (1)

x = |Gx − wEx|2 = X (1)
y · X (1)

y = |Gy − wEy|2 =
|Gz −wEz|2 and X (1)

x ·X (1)
y = 0 in U1, where · stands for the inner product in Euclidean

space. We conclude therefore that X (1) is indeed a conformal immersion. Now computa-
tions show that the unit normal N to X (1) is given by N = (2	E,2
E,EE− 1)/(EE + 1),
hence E is the oriented Euclidean Gauss map andH (nonvanishing) is the mean curvature
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of the immersion X (1), see [16] for further details. We point out that fixing w and H , the
immersion X (1) is uniquely defined up to a horizontal translation. We define the im-
mersion X on U1 setting X := X (1)− (0,0,α1). Of course the function w is the height, as
desired. Now we will work in U2. If w + α1 > 0 on U2 we are done, if not we first choose
a positive constant α2 > α1 such that w2 := w + α2 is positive on U2. Now making again
the same construction as before, we can find a conformal immersion X (2) of U2 into
R3

+ whose oriented Gauss map is E and the mean curvature is H such that u2 + iv2 =
u1 + iv1 on U1. In fact, on account of (3.3), we deduce (G2)z = (G1 + (α2 − α1)E)z and
(G2)z = (G1 + (α2 − α1)E)z. Hence, there is a complex constant a + ib such that G2 =
G1 + (α2− α1)E + a+ ib in U1. Thus doing a horizontal translation, if necessary, we may
assume that u2 + iv2 = u1 + iv1 on U1. This implies X (2) − (0,0,α2) |U1= X (1) − (0,0,α1).
We then define X := X (2)− (0,0,α2) on U2. Now we can infer by recurrence that there ex-
ist positive constants αn, n∈N∗, and conformal immersions X (n) of Un intoR3

+ such that
X (n+1)− (0,0,αn+1)= X (n)− (0,0,αn) on Un, n= 1,2, . . . . We therefore inductively define
a conformal immersion X of Ω into R3, setting X := X (n)− (0,0,αn) on Un with nonva-
nishing mean curvature, whose Euclidean Gauss map is E. The uniqueness part of the
statement uses the same ideas and we will outline it to the reader. Firstly, notice that from
(1.6), it follows that the mean curvature of a given conformal immersion with Euclidean
Gauss map E is determined up to a positive multiplicative constant. Secondly, using (3.2),
we see that the height (3.2) is determined up to an additive real constant and the same
multiplicative constant. Finally, we conclude therefore that two given immersions with
nonvanishing mean curvature are the same up to a homothety and Euclidean translation.

Acknowledgments

The first author would like to thank the Institut de Mathématiques de Jussieu for their
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