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Weighted norm inequalities are proved for a rough homogeneous singular integral oper-
ator and its corresponding maximal truncated singular operator. Our results are essential
improvements as well as extensions of some known results on the weighted boundedness
of singular integrals.

1. Introduction

Throughout this paper, we let ξ′ denote ξ/|ξ| for ξ ∈ Rn\{0} and p′ denote the dual
exponent to p defined by 1/p + 1/p′ = 1. Let n ≥ 2 and Sn−1 represent the unit sphere
in Rn equipped with the normalized Lebesgue measure dσ = dσ(·). Let K be a kernel of
Calderon-Zygmund-type on Rn given by

K(x)= Ω(x)
|x|n , (1.1)

where Ω is a homogeneous function of degree 0, integrable over Sn−1, and satisfies∫
Sn−1

Ω(u)dσ(u)= 0. (1.2)

Let ω be a measurable, almost everywhere positive function on Rn. We call such ω a
weight function. We denote by Lp(ω) the Lp(p > 0) space of all measurable functions f
on Rn such that ‖ f ‖Lp(ω) = (

∫
Rn | f (x)|pω(x)dx)1/p <∞.

Let Γ(t) be a C1 function on the interval R+. We define the singular integral operator
TΓ,Ω and its maximal truncated singular integral operator T∗Γ,Ω by

TΓ,Ω f (x)= p.v.
∫
Rn
f
(
x−Γ

(|y|)y′)K(y)dy,

T∗Γ,Ω f (x)= sup
ε>0

∣∣∣∣∣
∫
|y|>ε

f
(
x−Γ

(|y|)y′)K(y)dy

∣∣∣∣∣,
(1.3)

where y′ = y/|y| ∈ Sn−1, and f ∈�(Rn), the space of Schwartz functions.
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If Γ(t)= t, we will denote TΓ,Ω by TΩ,T∗Γ,Ω and by T∗Ω .
The investigation of the Lp boundedness of TΩ and T∗Ω was begun by Calderón and

Zygmund in [3] and then continued by many authors. In 1956, Calderón and Zygmund
showed that the Lp (1 < p <∞) boundedness of TΩ and T∗Ω holds if Ω ∈ L log+L(Sn−1)
and that this condition is essentially the weakest possible size condition on Ω for the Lp

(1 < p <∞) boundedness of TΩ to hold (see [3]). Some years later, Connett (see [5]) and
Coifman and Weiss (see [4]) independently showed that TΩ is bounded on Lp (1 < p <∞)
for Ω∈H1(Sn−1). Here, H1(Sn−1) is the Hardy space on the unit sphere which contains
the space L log+L(Sn−1) as a proper space. The study of the Lp boundedness of the more
general class of operators TΓ,Ω and T∗Γ,Ω was initiated by Fan and Pan in [8] and continued
by many authors. For a sampling of past studies of these operators, see [1, 2, 7, 8, 9].

In 1998, Grafakos and Stefanov in [12] introduced the condition

sup
ξ∈Sn−1

∫
Sn−1

∣∣Ω(y)
∣∣( log|ξ · y|−1)1+α

dσ(y) <∞ (1.4)

and showed that it implies the Lp boundedness of TΩ and T∗Ω for p in a range dependent
on the positive exponent α. For any α > 0, let Fα(Sn−1) denote the family of Ω’s which are
integrable over Sn−1 and satisfy (1.4).

Theorem 1.1 (see [12]). Let Ω∈ Fα(Sn−1) for some α > 0 and satisfy (1.2). Then
(a) if α > 0, TΩ is bounded on Lp(Rn) for p ∈ ((2 +α)/(1 +α),2 +α);
(b) if α > 1, T∗Ω is bounded on Lp(Rn) for p ∈ (1 + 3/(1 + 2α),2(2 +α)/3).

The range for p was later improved (even for the more general operators TΓ,Ω and T∗Γ,Ω

and Γ is a polynomial) to ((2 + 2α)/(1 + 2α),2 + 2α) (in part (a)) and ((1 + 2α)/2α,1 + 2α)
with α > 1/2 (in part (b)) (see [7]). However, it is still unknown whether the latter ranges
of indices are sharp. It should be noted that Grafakos and Stefanov in [12] showed that

⋃
q>1

Lq
(

Sn−1)�Fα(Sn−1) for any α > 0,

⋂
α>0

Fα

(
Sn−1)�H1(Sn−1)�

⋃
α>0

Fα

(
Sn−1). (1.5)

In the meantime, the study of the weighted Lp boundedness of TΩ has also attracted
the attention of many authors. For relevant results, one may consult [6, 10, 13, 14, 16,
17, 20], among others. We will content ourselves here with recalling only the following
pertinent results.

In 1993, Duoandikoetxea [6] proved the following two results.

Theorem 1.2 (see [6]). Suppose that Ω ∈ Lq(Sn−1) for some q > 1. Then TΩ and T∗Ω are
bounded on Lp(ω) if q′ ≤ p <∞, p �= 1 and ω ∈ Ap/q′ , where Ap(Rn) denotes the Muck-
enhoupt class of weights for which the classical Hardy-Littlewood maximal function M f is
bounded in Lp(ω). (For the definition and properties of Ap weights, see [11].)

For a special class of radial weights Ãp(R+) (see the definition in Section 2),
Duoandikoetxea proved the following sharper result.
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Theorem 1.3 (see [6]). If ω ∈ Ãp(R+) for 1 < p <∞, then TΩ is bounded on Lp(ω) pro-
vided that Ω∈ L log+L(Sn−1).

Later on, Theorem 1.3 was improved and extended by Fan, Pan and Yang as described
in the following theorem.

Theorem 1.4 (see [10]). If ω ∈ ÃIp(R+) for 1 < p <∞, then TΓ,Ω and T∗Γ,Ω are bounded
on Lp(ω) provided that Ω ∈ H1(Sn−1) and Γ satisfies either hypothesis I or hypothesis D
defined below. Here, ÃIp(R+) is a subclass of Ãp(R+) and its definition will be reviewed in
Section 2.

In this paper, we will investigate the weighted Lp(ω) boundedness of the operators TΓ,Ω

and T∗Γ,Ω for ω ∈ ÃIp(R+) and Ω∈ Fα(Sn−1) for some α > 0. To state our main results, we
need some definitions.

We will need the following definitions from [10].

Definition 1.5. A function Γ satisfies “hypothesis I” if
(a) Γ is a nonnegative C1 function on (0,∞);
(b) Γ is strictly increasing, Γ(2t) ≥ λΓ(t) for some fixed λ > 1 and Γ(2t) ≤ cΓ(t) for

some constant c ≥ λ > 1;
(c) Γ′(t)≥ C1Γ(t)/t on (0,∞) for some fixed C1 ∈ (0, log2 c] and Γ′(t) is monotone on

(0,∞).

Definition 1.6. Γ satisfies “hypothesis D” if
(a’) Γ is a nonnegative C1 function on (0,∞);
(b’) Γ is strictly decreasing, Γ(t) ≥ λΓ(2t) for some fixed λ > 1 and Γ(t) ≤ cΓ(2t) for

some constant c ≥ λ > 1;
(c’) |Γ′(t)| ≥ C1Γ(t)/t on (0,∞) for some fixed C1 ∈ (0, log2 c] and Γ′(t) is monotone

on (0,∞).

Model functions for the Γ satisfying hypothesis I are Γ(t)= td with d > 0, and their lin-
ear combinations with positive coefficients. Model functions for the Γ satisfying hypoth-
esis D are Γ(t)= tr with r < 0, and their linear combinations with positive coefficients.

Theorem 1.7. Suppose that Ω satisfies (1.2) and Ω ∈ Fα(Sn−1) for some α > 0. Assume
that Γ satisfies either hypothesis I or hypothesis D. If p ∈ ((2 + 2α)/(1 + 2α),2 + 2α) and
ω ∈ ÃIp(R+), then the operator TΓ,Ω is bounded on Lp(ω).

Theorem 1.8. Suppose that Ω satisfies (1.2) and Ω ∈ Fα(Sn−1) for some α > 1/2. Assume
that Γ satisfies either hypothesis I or hypothesis D. If p ∈ ((1 + 2α)/2α,1 + 2α) and ω ∈
ÃIp(R+), then T∗Γ,Ω is bounded on Lp(ω).

Remark 1.9. Obviously, Theorems 1.7 and 1.8 represent an extension of Theorem 1.1
and an improvement and extension over Theorem 1.2 in the case ω ∈ ÃIp(R+) because Ω
is allowed to be in the space Fα(Sn−1) for some α > 0; and bearing in mind the relation,
Ld(Sn−1)⊂ Fα(Sn−1) for all d > 1.

Throughout this paper, the letter C will stand for a positive constant that may vary at
each occurrence. However, C does not depend on any of the essential variables.
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2. Some definitions and lemmas

We start this section by reviewing the definition of some special classes of weights and
some of their important properties which are relevant to our current study.

Definition 2.1. Let ω(t) ≥ 0 and ω ∈ L1
loc(R+). For 1 < p <∞, ω ∈ Ap(R+) if there is a

positive constant C such that for any interval I ⊂R+,

(
|I|−1

∫
I
ω(t)dt

)(
|I|−1

∫
I
ω(t)−1/(p−1)dt

)p−1

≤ C <∞. (2.1)

A1(R+) is the class of weights ω for which the Hardy-Littlewood maximal operator M
satisfies a weak-type estimate in L1(ω).

It is well known that the class A1(R+) is also characterized by all weights ω for which
Mω(t)≤ Cω(t) for a.e. t ∈R+ and for some positive constant C.

Definition 2.2. Let 1≤ p <∞. ω ∈ Ãp(R+) if ω(x)= ν1(|x|)ν2(|x|)1−p, where either νi ∈
A1(R+) is decreasing or ν2

i ∈ A1(R+), i= 1,2.

Let AIp(Rn) be the weight class defined by exchanging the cubes in the definitions of
Ap for all n-dimensional intervals with sides parallel to coordinate axes (see [15]). Let

ÃIp = Ãp∩AIp. If ω ∈ Ãp, it follows from [6] that the Hardy-Littlewood maximal function

M f is bounded on Lp(Rn,ω(|x|)dx). Therefore, if ω(t)∈ Ãp(R+), then ω(|x|)∈ Ap(Rn).
By following the same argument as in the proof of the elementary properties of Ap

weight class (see, e.g., [11]), we get the following lemma.

Lemma 2.3. If 1≤ p <∞, then the weight class ÃIp(R+) has the following properties:

(i) ÃIp1
⊂ ÃIp2

, if 1≤ p1 < p2 <∞;

(ii) for any ω ∈ ÃIp, there exists an ε > 0 such that ω1+ε ∈ ÃIp;

(iii) for any ω ∈ ÃIp and p > 1, there exists an ε > 0 such that p− ε > 1 and ω ∈ ÃIp−ε.
Definition 2.4. Let Γ(t) be a C1 function on the interval R+. Define the sequence of mea-
sures {σk,Ω : k ∈ Z} and its corresponding maximal operator σ∗Ω on Rn by

∫
Rn
f dσk,Ω =

∫
2k≤|y|<2k+1

f
(
Γ
(|y|)y′)Ω(y′)

|y|n dy,

σ∗Ω f (x)= sup
k∈Z

∣∣∣∣σk,Ω
∣∣∗ f (x)

∣∣,
(2.2)

where |σk,Ω| is defined in the same way as σk,Ω, but with Ω replaced by |Ω|.
For k ∈ Z, set ak = Γ(2k) if Γ satisfies hypothesis I and ak = (Γ(2k))−1 if Γ satisfies hy-

pothesis D. Then by the conditions of Γ, {ak} is a lacunary sequence of positive numbers
with infk∈Z(ak+1/ak)≥ λ > 1.
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Lemma 2.5. Suppose that Ω satisfies (1.2) and Ω ∈ Fα(Sn−1) for some α > 0. Then if Γ
satisfies hypothesis I, ∥∥σk,Ω

∥∥≤ C, (2.3)∣∣σ̂k,Ω(ξ)
∣∣≤ C∣∣akξ∣∣, (2.4)∣∣σ̂k,Ω(ξ)

∣∣≤ C∣∣ log
∣∣akξ∣∣∣∣−α−1

for
∣∣akξ∣∣ > e, (2.5)

and if Γ satisfies hypothesis D, ∥∥σk,Ω
∥∥≤ C,∣∣σ̂k,Ω(ξ)

∣∣≤ C∣∣a−1
k ξ

∣∣, (2.6)∣∣σ̂k,Ω(ξ)
∣∣≤ C∣∣ log

∣∣a−1
k ξ

∣∣∣∣−α−1
for
∣∣a−1

k ξ
∣∣ > e,

for some positive constant C independent of k and ξ, where ‖σk,Ω‖ stands for the total vari-
ation of σk,Ω.

Proof. We will only present the proof of the lemma if Γ satisfies hypothesis I, since the
proof for the case that Γ satisfies hypothesis D will be essentially the same. It is easy to
verify that (2.3) holds for some positive constant C. By a change of variable, we have

σ̂k,Ω(ξ)=
∫

Sn−1

∫ 2

1
e−iΓ(2kt)ξ·xΩ(x)

dt

t
dσ(x). (2.7)

By (2.7) and the mean zero property (1.2) of Ω, we get

∣∣σ̂k,Ω(ξ)
∣∣≤ ∫

Sn−1

∫ 2

1

∣∣e−iΓ(2kt)ξ·x − 1
∣∣∣∣Ω(x)

∣∣dt
t
dσ(x). (2.8)

which easily yields the estimate in (2.4).
Now, we turn to the proof of (2.5). Again, by (2.7), we have

∣∣σ̂k,Ω(ξ)
∣∣≤ ∫

Sn−1

∣∣Ik(t,x,ξ)
∣∣∣∣Ω(x)

∣∣dσ(x), (2.9)

where

Ik(t,x,ξ)=
∫ 2

1
e−iΓ(2kt)ξ·x dt

t
. (2.10)

We notice that

Ik(t,x,ξ)=
∫ 2

1
H′(t)

dt

t
, H(t)=

∫ t
1
e−iΓ(2ks)ξ·x ds, 1≤ s≤ 2. (2.11)

Now, using the assumptions on Γ, we obtain

d

ds

(
Γ
(
2ks
))= 2kΓ′

(
2ks
)≥ C1

Γ(2ks)
s

≥ C1
Γ(2k)
t

for 1≤ s≤ t ≤ 2. (2.12)
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By applying van der Corput’s lemma (see [18]), |H(t)| ≤ C−1
1 |Γ(2k)ξ|−1|ξ′ · x|−1t, for

1≤ t ≤ 2. Thus by integrating by parts, we have∣∣Ik(t,x,ξ)
∣∣≤ C∣∣Γ(2k)ξ∣∣−1|ξ′ · x|−1. (2.13)

Now combining this bound with the trivial bound |Ik(t,x,ξ)| ≤ (log2) and using the fact
that tα+1/ log t is increasing on (e,∞), we get

∣∣Ik(t,x,ξ)
∣∣≤ C ( log

(
(3/2)|ξ′ · x|−1

))α+1(
log

∣∣Γ(2k)ξ
∣∣)α+1 if

∣∣Γ(2k)ξ∣∣ > e. (2.14)

Therefore, by (2.7), (2.9), and the assumption on Ω, we obtain (2.5). This completes the
proof of the lemma. �

Lemma 2.6. Let ω ∈ Ãp(R+) and Ω∈ L1(Sn−1). Assume that Γ satisfies either hypothesis I
or hypothesis D. Then ∥∥σ∗Ω( f )

∥∥
Lp(ω) ≤ Cp‖Ω‖L1(Sn−1)‖ f ‖Lp(ω) (2.15)

for 1 < p <∞, where Cp is independent of f .

Proof. By definition of σk,Ω, we have

∣∣∣∣σk,Ω
∣∣∗ f (x)

∣∣≤ (∫ 2k+1

2k

∫
Sn−1

∣∣Ω(y′)
∣∣∣∣ f (x−Γ(t)y′

)∣∣dσ(y′)
dt

t

)

≤ C
(∫

Sn−1

∣∣Ω(y′)
∣∣�Γ,y′

(| f |)(x)dσ(y′)

)
,

(2.16)

where

�Γ,y′ f (x)= sup
k∈Z

∣∣∣∣∣
∫ 2k+1

2k
f
(
x−Γ(t)y′

)dt
t

∣∣∣∣∣. (2.17)

Let s= Γ(t). Assume first that Γ satisfies hypothesis I. By the assumptions on Γ, we have
dt/t ≤ ds/C1s. So, by a change of variable, we have

�Γ,y′ f (x)≤ 1
C1

sup
k∈Z

(∫ Γ(2k+1)

Γ(2k)

∣∣ f (x− sy′)∣∣ds
s

)

≤ 1
C1

sup
r>0

(∫ Γ(r)

Γ(r/2)

∣∣ f (x− sy′)∣∣ds
s

)
.

(2.18)

Now, by condition (a) or condition (b), we have

�Γ,y′ f (x)≤ 1
C1

sup
r>0

(∫ cΓ(r/2)

Γ(r/2)

∣∣ f (x− sy′)∣∣ds
s

)
≤ CMy′ f (x),

(2.19)
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where

My′ f (x)= sup
R>0

R−1
∫ R

0

∣∣ f (x− sy′)∣∣ds (2.20)

is the Hardy-Littlewood maximal function of f in the direction of y′. On the other hand,
if Γ satisfies hypothesis D, we use a similar argument as above to get dt/t ≤−ds/C1s and

�Γ,y′ f (x)≤ 1
C1

sup
r>0

(∫ Γ(r/2)

Γ(r)

∣∣ f (x− sy′)∣∣ds
s

)

≤ 1
C1

sup
r>0

(∫ Γ(r/2)

(1/c)Γ(r/2)

∣∣ f (x− sy′)∣∣ds
s

)
≤ CMy′ f (x).

(2.21)

So in either case, by (2.19)–(2.21) and Minkowski’s inequality for integrals, we get

∥∥σ∗Ω f ∥∥Lp(ω) ≤ C
(∫

Sn−1

∣∣Ω(y′)
∣∣∥∥My′

(| f |)∥∥Lp(ω)dσ(y′)
)
. (2.22)

By [6, (8)] and since ω ∈ Ãp(R+), we have

∥∥My′ f
∥∥
Lp(ω) ≤ C‖ f ‖Lp(ω) (2.23)

with C independent of y′. By (2.22) and (2.23), we get (2.15) which finishes the proof of
the lemma. �

Lemma 2.7. Let 1 < p <∞ and ω ∈ Ãp(R+). Then there exists a positive constant Cp such
that the inequality

∥∥∥∥∥∥
(∑
k∈Z

∣∣∣∣σk,Ω
∣∣∗ gk∣∣2

)1/2
∥∥∥∥∥∥
Lp(ω)

≤ Cp

∥∥∥∥∥∥
(∑
k∈Z

∣∣gk∣∣2
)1/2

∥∥∥∥∥∥
Lp(ω)

(2.24)

holds for any sequence of functions {gk}k∈Z on Rn.

Proof. By Lemma 2.6, we get

∥∥∥∥sup
k∈Z

∣∣∣∣σk,Ω
∣∣∗ gk∣∣∥∥∥∥

Lp(ω)
≤
∥∥∥∥σ∗Ω(sup

k∈Z

∣∣gk∣∣)∥∥∥∥
Lp(ω)

≤ C
∥∥∥∥(sup

k∈Z

∣∣gk∣∣)∥∥∥∥
Lp(ω)

. (2.25)

On the other hand, there exists a nonnegative function f in Lp
′
(ω) with ‖ f ‖Lp′ (ω) ≤ 1

such that ∥∥∥∥∥∑
k∈Z

∣∣∣∣σk,Ω
∣∣∗ gk∣∣

∥∥∥∥∥
Lp(ω)

=
∫
Rn

∑
k∈Z

∣∣∣∣σk,Ω
∣∣∗ gk(x)

∣∣ω(x) f (x)dx. (2.26)
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Thus, by Fubini’s theorem and Hölder’s inequality, we get∥∥∥∥∥∑
k∈Z

∣∣∣∣σk,Ω
∣∣∗ gk∣∣

∥∥∥∥∥
Lp(ω)

≤
∫
Rn

∑
k∈Z

∣∣gk(x)
∣∣σ∗Ω((ω̃ f )

)
(−x)dx

≤
∥∥∥∥∥∑
k∈Z

∣∣gk∣∣
∥∥∥∥∥
Lp(ω)

∥∥∥σ∗Ω((ω̃ f )
)∥∥∥

Lp′ (ω1−p′ )
,

(2.27)

where ũ(x)= u(−x). Since ω ∈ Ãp(R+) if and only if ω1−p′ ∈ Ãp′(R+), by Lemma 2.6, we
get ∥∥∥∥∥∑

k∈Z

∣∣∣∣σk,Ω
∣∣∗ gk∣∣

∥∥∥∥∥
Lp(ω)

≤ Cp

∥∥∥∥∥∑
k∈Z

∣∣gk∣∣
∥∥∥∥∥
Lp(ω)

. (2.28)

Therefore, we can interpolate (2.25) and (2.28) (see [11, page 481] for the vector-valued
interpolation) to get (2.24). The lemma is proved. �

3. Proof of Theorems 1.7 and 1.8

Proof of Theorem 1.7. We will present the proof of Theorem 1.7 only for the case where
Γ satisfies hypothesis I, since the proof for the case where Γ satisfies hypothesis D is es-
sentially the same. Let {ψk}∞−∞ be a smooth partition of unity in (0,∞) adapted to the
intervals Ik = [(ak+1)−1, (ak−1)−1]. To be precise, we require the following:

ψk ∈ C∞, 0≤ ψk ≤ 1,
∑
k

(
ψk(t)

)2 = 1,

suppψk ⊆ Ik,
∣∣∣∣dsψk(t)

dts

∣∣∣∣≤ Cs
ts

,
(3.1)

where C∞ denotes the class of all infinitely differentiable functions on (0,∞) and Cs is
independent of the lacunary sequence {Γ(2k) : k ∈ Z}. (We remark at this point that if Γ
satisfies hypothesis D, the partition of unity needed in our proof should have the same
properties as above except that we need it to be adapted to the intervals [ak−1,ak+1]).
Define the multiplier operators Sk in Rn by

(Ŝk f )(ξ)= ψk
(|ξ|) f̂ (ξ). (3.2)

Define

Qj( f )=
∑
k∈Z

Sk+ j
(
σk,Ω∗ Sk+ j f

)
. (3.3)

Now

TΓ,Ω( f )=
∑
k∈Z

σk,Ω∗ f =
∑
k∈Z

σk,Ω∗
(∑

j∈Z
Sk+ jSk+ j f

)
=
∑
j∈Z

Qj( f ) (3.4)
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holds at least for f ∈�(Rn). By Plancherel’s theorem, we have

∥∥Qj( f )
∥∥2
L2 ≤

∑
k∈Z

∫
Rn

∣∣ f̂ (ξ)
∣∣2
χ∆k+ j

(ξ)
∣∣σ̂k,Ω(ξ)

∣∣2
dξ, (3.5)

where

∆k =
{
ξ ∈Rn :

(
ak+1

)−1 ≤ |ξ| < (ak−1
)−1

}
. (3.6)

By a straightforward computation and (2.3)–(2.5), we get

∥∥Qj( f )
∥∥
L2 ≤ C| j|−α−1‖ f ‖L2 if j ≤−1,∥∥Qj( f )
∥∥
L2 ≤ Cλ− j‖ f ‖L2 if j ≥ 0,

(3.7)

and hence,

∥∥Qj( f )
∥∥
L2 ≤ C

(
1 + | j∣∣)−α−1‖ f ‖L2 ∀ j ∈ Z. (3.8)

On the other hand, for every p ∈ (1,∞) and ω ∈ ÃIp(R+),

∥∥Qj( f )
∥∥
Lp(ω) ≤ Cp

∥∥∥∥∥
(∑
k∈Z

∣∣σk,Ω∗ Sk+ j f
∣∣2
)1/2∥∥∥∥∥

Lp(ω)

≤ Cp

∥∥∥∥∥
(∑
k∈Z

∣∣Sk+ j f
∣∣2
)1/2∥∥∥∥∥

Lp(ω)

≤ Cp‖ f ‖Lp(ω),

(3.9)

where the first and the last inequalities follow by the weighted Littlewood-Paley the-
ory since ω ∈ ÃIp(R+) ⊂ Ãp(R+) ⊂ Ap(R+), whereas the second inequality follows from
Lemma 2.7. Thus, by Lemma 2.3, there is an ε > 0 such that

∥∥Qj( f )
∥∥
Lp(ω1+ε) ≤ Cp‖ f ‖Lp(ω1+ε) (3.10)

for everyω ∈ ÃIp(R+) and 1 < p <∞. By interpolating between (3.8) and (3.9) withω = 1,
for every p ∈ ((2 + 2α)/(1 + 2α),2 + 2α), there is a θp > 1 such that

∥∥Qj( f )
∥∥
Lp ≤ C

(
1 + | j|)−θp‖ f ‖Lp (3.11)

holds for j ∈ Z. Using Stein and Weiss’ interpolation theorem with change of measure,
we interpolate (3.10) with (3.11) to get that, for every p ∈ ((2 + 2α)/(1 + 2α),2 + 2α) and
ω ∈ ÃIp(R+), there is an ηp > 1 such that

∥∥Qj( f )
∥∥
Lp(ω) ≤ C

(
1 + | j|)−ηp‖ f ‖Lp(ω) (3.12)
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holds for j ∈ Z. Therefore, by (3.4) and (3.12), we get

∥∥TΓ,Ω( f )
∥∥
Lp(ω) ≤

∑
j∈Z

∥∥Qj( f )
∥∥
Lp(ω) ≤ C‖ f ‖Lp(ω) (3.13)

for every p ∈ ((2 + 2α)/(1 + 2α),2 + 2α) and ω ∈ ÃIp(R+). This completes the proof of
Theorem 1.7. �

Proof of Theorem 1.8. Assume that p ∈ ((1 + 2α)/2α,1 + 2α) and ω ∈ ÃIp(R+). For any ε >
0, there is an integer k such that ak ≤ ε < ak+1. So we have

T∗Γ,Ω( f )≤ σ∗Ω( f ) +H( f ), (3.14)

where H( f ) = supk∈Z |Tk( f )| and Tk( f ) =∑∞
j=k σj,Ω ∗ f . By (3.14) and Lemma 2.6, we

notice that the proof of Theorem 1.8 is completed if we can show that∥∥H( f )
∥∥
Lp(ω) ≤ Cp‖ f ‖Lp(ω) (3.15)

for p ∈ ((1 + 2α)/2α,1 + 2α) and ω ∈ ÃIp(R+). So, we turn to the proof of (3.15). Let
ϕ ∈ �(Rn) be such that ϕ(ξ) = 1 for |ξ| < 1/λ and ϕ(ξ) = 0 for |ξ| > λ. Define φ, φk by
(φ̂)= ϕ and φk(ξ)= (1/(ak)n)φk(ξ/ak). Decompose Tk( f ) as

Tk( f )= (δ−φk)∗ ∞∑
j=k
σj,Ω∗ f +φk ∗TΓ,Ω( f )−φk ∗

k−1∑
j=−∞

σj,Ω∗ f

= T(1)
k f +T(2)

k f +T(3)
k f ,

(3.16)

where δ is the Dirac delta function. By Theorem 1.7 and since ω∈ Ãp(R+)⊂Ap(R+), we
immediately get ∥∥∥∥sup

k∈Z

∣∣T(2)
k f

∣∣∥∥∥∥
Lp(ω)

≤ C∥∥M(TΓ,Ω
)∥∥

Lp(ω) ≤ Cp‖ f ‖Lp(ω) (3.17)

for p ∈ ((1 + 2α)/2α,1 + 2α) and ω ∈ ÃIp(R+). By definition of T(3)
k f , we get

sup
k∈Z

∣∣T(3)
k f

∣∣≤ ∞∑
j=1

sup
k∈Z

∣∣σk− j,Ω∗φk ∗ f (x)
∣∣= ∞∑

j=1

Uj( f ). (3.18)

By Lemma 2.6, we have∥∥Uj( f )
∥∥
Lp(ω) ≤

∥∥M(σ∗Ω( f )
)∥∥

Lp(ω) ≤ Cp‖ f ‖Lp(ω) (3.19)

for every ω ∈ ÃIp(R+) and 1 < p <∞. Thus, by Lemma 2.3, there is an ε > 0 such that

∥∥Uj( f )
∥∥
Lp(ω1+ε) ≤ Cp‖ f ‖Lp(ω1+ε) (3.20)



H. M. Al-Qassem 667

for every ω ∈ ÃIp(R+) and 1 < p <∞. On the other hand,

Uj( f )≤
(∑
k∈Z

∣∣σk− j,Ω∗φk ∗ f
∣∣2
)1/2

. (3.21)

Thus, by Plancherel’s theorem and Lemma 2.5, we have

∥∥Uj( f )
∥∥2

2 ≤
∫
Rn

∑
k∈Z

∣∣σ̂k− j,Ω(ξ)
∣∣2∣∣ϕk(ξ)

∣∣2∣∣ f̂ (ξ)
∣∣2
dξ

≤
∫
Rn

∑
|akξ|≤λ

∣∣ak− j ξ∣∣2∣∣ f̂ (ξ)
∣∣2
dξ

≤ Cλ−2 j‖ f ‖2
2.

(3.22)

Thus, by interpolating between (3.22) and (3.20) (with ω = 1), we get

∥∥Uj( f )
∥∥
p ≤ Cλ− jβ(p)‖ f ‖p (3.23)

for 1 < p <∞ and for some β(p) > 0. Now, using Stein and Weiss’ interpolation theorem
with change of measures [19], we may interpolate between (3.20) and (3.23) to obtain a
positive number υp such that

∥∥Uj( f )
∥∥
Lp(ω) ≤ Cλ− jυp‖ f ‖Lp(ω), (3.24)

which implies ∥∥∥∥sup
k∈Z

∣∣T(3)
k f

∣∣∥∥∥∥
Lp(ω)

≤ Cp‖ f ‖Lp(ω) (3.25)

for every ω ∈ ÃIp(R+) and 1 < p <∞.
Finally, we will prove that

∥∥∥∥sup
k∈Z

∣∣T(1)
k f

∣∣∥∥∥∥
Lp(ω)

≤ Cp‖ f ‖Lp(ω) (3.26)

for p ∈ ((1 + 2α)/2α,1 + 2α) and ω ∈ ÃIp(R+). The proof of this inequality is similar to
the proof of (3.25). In fact, we have

sup
k∈Z

∣∣T(1)
k f

∣∣≤ ∞∑
j=1

(
sup
k∈Z

∣∣σk+ j,Ω∗
(
δ−φk

)∗ f (x)
∣∣)= ∞∑

j=1

Υ j( f ). (3.27)

By Lemma 2.6 and the Lp(ω) boundedness of M, we get

∥∥Υ j( f )
∥∥
Lp(ω) ≤ Cp‖ f ‖Lp(ω) (3.28)
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for every ω ∈ ÃIp(R+) and 1 < p <∞. Also, by Plancherel’s theorem,

∥∥Υ j( f )
∥∥2

2 ≤
∫
Rn

∑
k∈Z

∣∣σ̂k+ j,Ω(ξ)
∣∣2∣∣1−ϕk(ξ)

∣∣2∣∣ f̂ (ξ)
∣∣2
dξ

=
∑
k∈Z

∫
1/λ≤|akξ|

∣∣σ̂k+ j,Ω(ξ)
∣∣2∣∣ f̂ (ξ)

∣∣2
dξ

≤
∞∑

k=−∞

∞∑
s=0

∫
λs≤|λakξ|<λs+1

∣∣ log
∣∣ak+ j ξ

∣∣∣∣−2α−2∣∣ f̂ (ξ)
∣∣2
dξ

≤
∞∑

k=−∞

∞∑
s=0

(
1

j + s− 1

)2α+2∫
λs≤|λakξ|<λs+1

∣∣ f̂ (ξ)
∣∣2
dξ

≤
∞∑
s=0

(
1

j + s− 1

)2α+2

‖ f ‖2
2

≤ C j−1−2α‖ f ‖12
2.

(3.29)

Thus Theorem 1.8 is proved. �

We end this section with the following result concerning power weights |x|γ . One of
the important special classes of radial weights is the power weights |x|γ , γ ∈R. It is known
that |x|γ ∈Ap(Rn) if and only if −n < γ < n(p− 1).

Our result regarding this class of weights is the following.

Theorem 3.1. Let 1 < p <∞. Assume that Γ satisfies either hypothesis I or hypothesis D. If
Ω ∈ Fα(Sn−1) for some α > 0 and satisfies (1.2), then for ω(x) = |x|γ with γ ∈ (−1, p− 1),
TΓ,Ω is bounded on Lp(ω) for p ∈ ((2 + 2α)/(1 + 2α),2 + 2α) and T∗Γ,Ω is bounded on Lp(ω)
for p ∈ ((1 + 2α)/2α,1 + 2α).

A proof of this theorem can be obtained by applying the results in Theorems 1.7 and
1.8 and noticing that |x|γ ∈ ÃIp(R+) for γ ∈ (−1, p− 1).
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