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We will use a theorem by M. G. Kreı̆n and properties of the numerical range of an opera-
tor to develop a method of computation for the first antieigenvalue of a strictly accretive
operator.

1. Introduction

An operator on a Hilbert space is called accretive if Re(T f , f ) ≥ 0 and strictly accretive
if Re(T f , f ) > 0, for every vector f . For an accretive operator or matrix T on a Hilbert
space, the first antieigenvalue of T , denoted by µ1(T), is defined by Gustafson to be

µ1(T)= inf
T f �=0

Re(T f , f )
‖T f ‖‖ f ‖ (1.1)

(see [3, 4, 5]). The quantity µ1(T) is also denoted by cosT and is called the cosine of T .
Definition (1.1) is equivalent to

µ1(T)= inf
T f �=0
‖ f ‖=1

Re(T f , f )
‖T f ‖ . (1.2)

µ1(T) measures the maximum turning capability of T . A vector f for which the inf in
(1.1) is attained is called an antieigenvector of T . Cosine of T has important applications
in pure operator theory as well as numerical analysis (see [3, 4, 6]). In [7, 8, 11], we have
computed the first antieigenvalue of normal accretive operators in terms of eigenvalues
of these operators. In [12], we computed the first antieigenvalue for certain classes of ma-
trices on the real field. In this note, we will focus on computation and approximation of
the first antieigenvalue of general accretive operators. Our work in this note is a general-
ization of our work in [7, 8, 11] to certain classes of nonnormal operators. We will start
with the case of a general two-by-two matrix.
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2. Computing µ1(T) for an accertive two-by-two matrix

Theorem 2.1. Let T be a strictly accretive two-by-two matrix and let S = ReT + iT∗T .
There exist the following two cases. If S has two distinct eigenvalues α = α1 + iα2, β = β1 +
iβ2 and the corresponding eigenvectors, so normalized that ‖ f ‖ = ‖g‖ = 1, then µ1(T) =√
x2

0/y0, where (x0, y0) is the point where a member of the family of convex functions y = x2/k
touches just one point of the ellipse whose equation is
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(2.1)

where γ = ‖( f ,g)‖ and δ =
√

1− γ2. If S has only one eigenvalue α= α1 +α2, then µ1(T)=√
x2

0/y0, where (x0, y0) is the point where a member of the family of convex functions y = x2/k
touches just one point of the circle whose equation is

(
x−α1

)2
+
(
y−α2

)2 = ‖S−α‖2

4
. (2.2)

Proof. Let Ω(S) be the numerical range of S. By Kreı̆n [10], we have

µ2
1(T)= inf

{
x2

y
: x+ iy ∈Ω(S)

}
. (2.3)

On the other hand, by Halmos [9], if α and β are distinct, then Ω(S) is the closed elliptical
disk with foci at α and β whose major axis is |α−β|/δ and minor axis is γ(|α−β|/δ). If
S has only one eigenvalue α, then Ω(S) is the circular disk with center at α and radius
‖S−α‖/2. Using the convexity property of the curves f (x, y) = x2/y = k, we conclude
that the minimum of the function f (x, y)= x2/y on Ω(S) is exactly at the point where a
member of the family of convex functions y = x2/k touches one point of Ω(S). This point
of contact must be on the boundary of Ω(S), which is an ellipse or a circle. We denote the
boundary of Ω(S) by ∂Ω(S). First, assume that S has two distinct eigenvalues α= α1 + iα2

and β = β1 + β2. Let d = |α− β|. If we select the system of coordinate axis x′-y′ so that
x′-axis coincides with the major axis of Ω(S), then the equation of ∂Ω(S) with respect to
x′-y′ system is

(x′)2

(d/2δ)2
+

(y′)2

(γd/2δ)2
= 1. (2.4)

To obtain the equation of this ellipse with respect to x-y axis, we need to perform a
rotation and a translation of axis. This will give us (2.1) which represents the equation of
∂Ω(S) with respect to x-y axis. Next, assume that α= α1 +α2 is the only eigenvalue of S,
then the equation of ∂Ω(S) is (2.2). �
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Example 2.2. Let T = [ 1 0
1 1 ], then S= [ 1+2i 0.5+i

0.5+i 1+i ]. The matrix S has two distinct eigenval-
ues. Numerical approximation of these eigenvalues and their corresponding normalized
eigenvectors gives α = 1.4551 + 2.5987i and β = 0.54491 + 0.40132i with corresponding
normalized eigenvectors

f = (0.22718 + 0.79806i,0.2496 + 0.4992i),

g = (0.39816− 0.39106i,−0.68941 + 0.46169i),
(2.5)

respectively. Using the notations of the previous theorem, we have d = |α− β| = 2.3784,

γ = ‖( f ,g)‖ = 0.17156, and δ =
√

1− γ2 = 0.98517. Hence d/2δ = 2.3784/(2(0.98517))=
1.2071, (d/2δ)2 = 1.4571, γd/2δ = 0.20709, and (γd/2δ)2 = 4.2886× 10−2. Therefore the
equation of ∂Ω(S) with respect to x′-y′ coordinate system is (x′)2/1.4571 + (y′)2/
(4.2886× 10−2)− 1 = 0. Note that the center of this ellipse (with respect to x-y coor-
dinate system) is at ((α1 +β1)/2,(α2 +β2)/2)= (1,1.5). Also note that if θ is the angle be-
tween x′ and x axis, then cosθ = (α1−β1)/d = 0.38269 and sinθ = (α2−β2)/d = 0.92389.
Therefore, the equation of ∂Ω(S) with respect to x-y axis is

(0.38269(x− 1)− 0.92389(y− 1.5))2

1.4571
+

(0.92389(x− 1) + 0.38269(y− 1.5))2

4.2886× 10−2
− 1= 0

(2.6)

which further simplifies to

1.25x2− 4.0001x+ 1.0xy + 3.2501− 1.75y + 0.25y2 = 0. (2.7)

Now to find infimum of the function f (x, y)= x2/y on ∂Ω(S), we use the Lagrange mul-
tiplier method. The resulting equations are

1.25x2− 4.0001x+ 1.0xy + 3.2501− 1.75y + 0.25y2 = 0,

2x
y
= λ

∂(1.25x2− 4.0001x+ 1.0xy + 3.2501− 1.75y + 0.25y2)
∂x

,

−x2

y2
= λ

∂(1.25x2− 4.0001x+ 1.0xy + 3.2501− 1.75y + 0.25y2)
∂y

.

(2.8)

The system (2.8) is solved numerically and the solution is λ=−1.9019, x = 0.5019, and
y = 2.5374. Therefore µ1(T)=√0.50192/2.5374= 0.31508.

In [7, 8, 11], we used (1.2) to first compute antieigenvectors, and then from there
compute antieigenvalues for normal matrices and normal operators. Also in [12], we used
(1.2) to first compute antieigenvectors, and then from there compute antieigenvalues for
arbitrary matrices on the field of real numbers. However, it is very difficult to use (1.2)
to compute antieigenvectors in the case of an arbitrary matrix or operator on the field
of complex numbers. To see this, consider the accertive matrix T = [ 1 0

1 1 ] and let f = z1
z2

represent a unit vector. Assume z1 = x1 + iy1 and z2 = x2 + iy2. Direct computations show
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that the problem of finding inf‖T f ‖�=0(Re(T f , f )/‖T f ‖), subject to the constraint ‖ f ‖ =
1, is equivalent to the problem of finding the infimum of the function

f
(
x1, y1,x2, y2

)= x2x1 + x2
2 + y2y1 + y2

2 + x2
1 + y2

1√
(2x2

1 + 2y2
1 + 2x2x1 + x2

2 + 2y2y1 + y2
2)

(2.9)

subject to the constraint

x2
1 + y2

1 + x2
2 + y2

2 = 1. (2.10)

If one wishes to solve this optimization problem using Lagrange multiplier method, then
the following nonlinear system consisting of five equations and five unknowns will result

(
x2 + 2x1

) x2
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(2x2
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1 + 2x2x1 + x2
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2)
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1 + x2x1 + y2y1(√
(2x2

1 + 2y2
1 + 2x2x1 + x2

2 + 2y2y1 + y2
2)
)3 = 2λy1,

x3
1 + y2

1x1 + 4x2x
2
1 + 3x2

2x1 + y2y1x1 + 3y2
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2 + 3y2y1x2 + y2
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x2
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(2.11)

Notice that three equations and three unknowns resulted when Lagrange multiplier meth-
od was applied in Example 2.2 above to compute the antieigenvalue for the same matrix.

In computing µ1(T) for a two-by-two matrix, we took advantage of the fact that the
minimum of the convex function f (x, y)= x2/y on the convex set Ω(S) is attained on the
boundary of Ω(S), where Ω(S) is the numerical range of the operator S = ReT + iT∗T .
The same argument can also be made in the case of a general matrix or operator. How-
ever, If T is not a two-by-two matrix, then the boundary of Ω(S) is no longer an ellipse.
Indeed, the boundary of the numerical range of a finite-dimensional matrix can be very
complicated. We can generalize the technique of computing µ1(T) for two-dimensional
matrices to matrices which are direct sums of two-by-two matrices. For instance, suppose
that T = T1⊕T2, where T1 and T2 are accretive two-by-two matrices. If as before we de-
fine S= ReT + iT∗T , then S= S1⊕ S2 where S1 = ReT1 + iT∗1 T1 and S2 = ReT2 + iT∗2 T2.
Hence, by Halmos [9], we have Ω(S)= co(Ω(S1),Ω(S2)), where co(Ω(S1),Ω(S2)) denotes
the convex hull of the numerical ranges of S1 and S2. Hence, the boundary of Ω(S) con-
sists of a finite number of possible elliptic, circular, and flat (straight) arcs. The mini-
mum of f (x, y)= x2/y on each arc can be obtained using Lagrange multiplier method as
demonstrated in Example 2.2 above. Therefore, µ2

1(T) is the smallest of minimum values
of f (x, y) = x2/y on those arcs. This can be further generalized to the case when T is a
direct sum of a finite number of two-by-two accretive matrices T1,T2,T3, . . . ,Tn.
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3. The general case

To apply these techniques to a general operator T , we need to understand the boundary
of the numerical range of the operator S where S= ReT + iT∗T . If Ω(S) is closed, then its
boundary ∂Ω(S) consists of a countable set of differentiable arcs plus a countable set of
points at which the boundary is not differentiable. Furthermore, the points at which the
boundary is not differentiable are eigenvalues of S (see [2]). This leads us to the following
theorem.

Theorem 3.1. Let T be a strictly accretive operator and S= ReT + iT∗T . Assume that Ω(S)
is closed and ∂Ω(S)=M∪N , where

M = {(αi,βi) : αi + iβi ∈ ∂Ω(S), ∂Ω(S) is not differentiable at
(
αi,βi

)}
(3.1)

and N = ∪iγi, where each γi is a differentiable arc represented by the differentiable func-
tion gi(x, y)= 0. Let N be the set of all points (ui,vi) such that (ui,vi) is the solution of the
Lagrange multiplier equation

gi(x, y)= 0,

2x
y
= λ

∂gi(x, y)
∂x

,

−x2

y2
= λ

∂gi(x, y)
∂y

,

(3.2)

at which the function f (x, y)= x2/y attains its minimum on γi. If

E =
{√√√√α2

i

βi
:
(
αi,βi

)∈M

}
,

F =
{√

u2
i

vi
:
(
ui,vi

)∈N

}
,

(3.3)

then µ1(T)= inf(E∪F).

Under certain conditions, the differentiable arcs γi are simple arcs such as conic sec-
tions and straight lines. In those situations, equations (3.2) can be solved explicitly. One
of those special cases is discussed in the next theorem. Recall that for two operators U and
V , we have U ≥V if (U f , f )≥ (V f , f ) for every vector f . An operator A is hyponormal
if A∗A ≥ AA∗. An operator A is seminormal if either A or A∗ is hyponormal. In the
following theorem, σ(T) denotes the spectrum of an operator T , and σp(T) denotes the
point spectrum of T (i.e., σp(T) denotes the set of all eigenvalues of T).

Theorem 3.2. Let T be a bounded strictly accretive operator such that the numerical range
of T∗TReT is a subset of upper half-plane or lower half-plane, that is, Im(T∗TReT f , f )≥
0 for all vectors f or Im(T∗TReT f , f ) ≤ 0 for all vectors f . Let S = ReT + iT∗T , and
C = σ(S)∩ ∂co(σ(S)), where ∂co(σ(S)) denotes the boundary of the convex hull of σ(S).
Assume that σp(S)∩C is dense in C. Let R+ denote the set of all positive numbers and define



820 Computation of antieigenvalues

the set M by

M = {λi = αi +βi : λi ∈ σp(S), ∂Ω(S) is not differentiable at λi
}
. (3.4)

If E = {
√
α2
i /βi : (αi,βi)∈M} and

F =
{

2
√

(αiβj −αjβi)(αj −αi)

βj −βi
: αi +βi ∈M, αj +βj ∈M

}
∩R+, (3.5)

then µ1(T)= inf(E∪F).

Proof. Straightforward computations show that (S∗S f , f ) = ‖T∗T f ‖2 + ‖ReT f ‖2 +
2Im(T∗TReT f , f ) and (SS∗ f , f )= ‖T∗T f ‖2 +‖ReT f ‖2−2Im(T∗TReT f , f ). There-
fore, (S∗S f , f )− (SS∗ f , f )= 4Im(T∗TReT f , f ). Hence if Im(T∗TReT f , f )≥ 0 for all
vectors f or Im(T∗TReT f , f ) ≤ 0 for all vectors f , then S is hyponormal or S∗ is hy-
ponormal. This implies that S is a seminormal operator. By [1], the denseness of σp(S)∩C
in C implies that Ω(S) is closed and Ω(S)= co(σp(S)). Therefore, in this case the differ-
entiable curves γi are simple line segments whose endpoints are pairs of points from set
M. First assume that the infimum of the function f (x, y) = x2/y is attained at an inte-
rior point of one of these line segments. We denote the endpoints of this line segment by
(αi,βi) and (αj ,βj). The slope of this line segment is

m= βj −βi
αj −αi

(3.6)

and its equation is

y−βi−m
(
x−αi

)= 0. (3.7)

To find the infimum of the function f (x, y)= x2/y on this line segment, we use the La-
grange multiplier method. This will give

2x
y
=−λm,

−x2

y2
= λ.

(3.8)

Eliminating λ from (3.8) yields

y = mx

2
. (3.9)

If we now substitute y from (3.9) and m from (3.6) into (3.7) and solve the resulting
equation for x, we obtain

x = 2
αiβj −αjβi
β2−β1

. (3.10)
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Substituting x from (3.10) into (3.9) yields

y = αiβj −αjβi

αj −αi
. (3.11)

If we evaluate f (x, y)= x2/y at x and y given by (3.10) and (3.11), we obtain

4(αiβj −αjβi)(αj −αi)

(βj −βi)2
. (3.12)

Hence from the fact that µ2
1(T) = inf{x2/y : x + iy ∈ Ω(S)}, we conclude that µ1(T) =

2
√

(αiβj −αjβi)(αj−αi)/(βj−βi). Next, assume that the infimum of the function f (x, y)=
x2/y on ∂Ω(S) occurs at a nondifferentiable point of ∂Ω(S). Since a nondifferential point
of ∂Ω(S) is an eigenvalue of S, then µ1(T) is equal to an element from set E. �

Note that every finite-dimensional hyponormal matrix is normal (see [9]). The author
and Karl Gustafson have treated the cases of normal matrices and normal operators in
[7, 8, 11].
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