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The author adapts the decomposition method of Adomian to find a series solution of a
one-dimensional boundary value problem for a semilinear heat equation with a quadratic
nonlinearity. Local and global convergence results are obtained.

1. Introduction

In this work, we consider the following semilinear boundary value problem for u(x, t) on
the interval 0 < x < π, t > 0:

∂tu= ∂xxu+ γu2, (1.1)

u(0, t)= u(π, t)= 0, (1.2)

u(x,0)= f (x), (1.3)

where f ∈ C([0,π]).
The method of solution is based heavily on Adomian’s method [1] of writing the so-

lution as a series,

u(x, t)=
∞∑
n=1

un(x, t), (1.4)

and reducing the problem to one of iteratively solving a linear equation for un once the
previous iterates have been determined. However, Adomian partitions (1.4) into a se-
quence of linear ODEs in either x or t whose solutions cannot generally be made to sat-
isfy the boundary and initial conditions. Even when applied to an initial value problem
with boundary conditions, the convergence of the solution depends sensitively on powers
of f and its derivatives. In solving a similar problem in [1], Adomian must choose very
specific initial data to guarantee local convergence in time. Our method arranges terms
so that each linear problem is a PDE boundary value problem which is naturally solved
with an expansion of eigenfunctions of ∂xx or a similar operator. We are able to show
local convergence for any initial data f and global convergence given a suitable bound
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on f . The method is similar to that of [2] which uses decomposition to derive special
eigenfunction expansion solutions of (1.1) and (1.2).

In Section 2, we outline the method and construct a series solution of (1.1), (1.2),
and (1.3), and in Section 3, we prove local and global existence results for the solution.
In Section 4, we construct a series solution of (1.1) and (1.3) with Neumann boundary
conditions in place of (1.2) and prove a local convergence result for the solution.

2. The method

To begin, (1.4) is substituted into (1.1) to obtain

∞∑
n=1

∂tun =
∞∑
n=1

∂xxun + γ
∞∑
n=2

n−1∑
k=1

un−kuk. (2.1)

Based on this, we seek solutions to the sequence of equations

∂tu1 = ∂xxu1, (2.2)

∂tun = ∂xxun + γ
n−1∑
k=1

un−kuk, n≥ 2. (2.3)

Notice that, once u1,u2, . . . ,un−1 are determined, (2.3) is a linear equation for un. The
series (1.4) is constructed by solving this sequence of equations.

All of the un’s are assumed to satisfy the boundary conditions

un(0, t)= un(π, t)= 0, n≥ 1. (2.4)

u1 is assumed to satisfy the initial condition

u1(x,0)= f (x), (2.5)

and the remaining un’s are assumed to be zero initially:

un(x,0)= 0, n≥ 2. (2.6)

The solution of (2.2), (2.4), and (2.5) is

u1(x, t)=
∫ π

0
f (ξ)G(x,ξ, t)dξ, (2.7)

where G is Green’s function given by

G(x,ξ, t)= 2
π

∞∑
j=1

e− j2t sin jξ sin jx. (2.8)
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Once u1,u2, . . . ,un−1 are known, (2.3), (2.4), and (2.6) can be solved for un to obtain

un(x, t)=
∫ t

0

∫ π

0
hn(ξ,τ)G(x,ξ, t− τ)dξ dτ, (2.9)

for n≥ 2, where

hn(x, t)= γ
n−1∑
k=1

un−kuk. (2.10)

The formulation (2.8) of G is useful for long-time estimates of the solution; for time-local
estimates, we will use

G(x,ξ, t)= 1√
4πt

∞∑
n=−∞

[
exp

(
− (x− ξ − 2πn)2

4t

)
− exp

(
− (x+ ξ − 2πn)2

4t

)]
. (2.11)

(See [3].)

3. Convergence results

Lemma 3.1. Let µn be a sequence of positive numbers defined by

µn = κ
n−1∑
k=1

µn−kµk, (3.1)

where κ > 0. Then

µn ≤
(
4κµ1

)n
. (3.2)

Proof. We repeat the argument given in [2] using the method of generating functions.
Define

ρ(z)= κ
∞∑
n=1

µnz
n (3.3)

from which follows

ρ(z)2 = κ2
∑
n≥2

zn
n−1∑
k=1

µn−kµk = κ
∑
n≥2

znµn = ρ(z)− κµ1z. (3.4)

In other words, the generating function ρ satisfies the quadratic

ρ2− ρ+ κµ1z = 0, (3.5)

and so,

ρ = 1
2
± 1

2

√
1− 4κµ1z. (3.6)
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The fact that µn ≥ 0 leads us to choose ρ= 1/2− (1/2)
√

1− 4κµ1z. Thus,

ρ(n)(z)=
(
− 1

2

)(
1
2

)(
1
2
− 1

)
···

(
1
2
−n+ 1

)(
1− 4κµ1z

)(1/2−n)(− 4κµ1
)n

=−
(

1
2

)(
− 1

2

)(
1
2

)(
3
2

)(
5
2

)
···

(
n− 3

2

)(
1− 4κµ1z

)(1/2−n)(
4κµ1

)n
=−1

2

(
1− 4κµ1z

)(1/2−n)(
4κµ1

)n n∏
k=1

(
k− 3

2

)
,

µn = ρ(n)(0)
n!

=−1
2

(
4κµ1

)n n∏
k=1

(
1− 3

2k

)
<
(
4κµ1

)n
.

(3.7)

�

In what follows, we adopt the following norm notation:

‖ · ‖π = sup
0<x<π

| · |, ‖ · ‖δ = sup
0<x<π
0<t<δ

| · |, ‖ · ‖ = sup
0<x<π
t>0

| · |. (3.8)

Our first theorem concerns local convergence of (1.4). Specifically, we show that the time
interval over which the series converges to a solution of (1.1), (1.2), and (1.3) is inversely
related to the size of the initial data and the coefficient of the nonlinear term.

Theorem 3.2. With un defined by (2.7) and (2.9), the series (1.4) converges uniformly on
[0,π]× [0,δ] if δ < 1/(4γ‖ f ‖π) and f ∈ C([0,π]).

Proof. It is not hard to show from (2.9) and (2.11) that un can be expressed in the form

un(x, t)=
∫ t

0

∫∞
−∞

h̃n(ξ,τ)H(x− ξ, t− τ)dξ dτ, (3.9)

where h̃n is the odd, 2π-periodic extension of hn and H is the usual heat kernel,

H(x, t)= exp
(− x2/4t

)
√

4πt
. (3.10)

Then,

∥∥un∥∥δ ≤ ∥∥hn∥∥δ ∫ δ

0

∫∞
−∞

H(x− ξ,δ− τ)dξ dτ = δ
∥∥hn∥∥δ (3.11)

for n≥ 2. Combining this with (2.10), we have

∥∥un∥∥δ ≤ γδ

∥∥∥∥∥
n−1∑
k=1

un−kuk

∥∥∥∥∥
δ

≤ γδ
n−1∑
k=1

∥∥un−k∥∥δ∥∥uk∥∥δ (3.12)

for n≥ 2. By Lemma 3.1, ∥∥un∥∥δ ≤ (4γδ∥∥u1
∥∥
δ

)n
. (3.13)

From (2.7) and (2.11), we can argue that∥∥u1
∥∥
δ ≤ ‖ f ‖π (3.14)
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which, with (3.13), implies that ∥∥un∥∥δ ≤ (4γδ‖ f ‖π)n. (3.15)

Thus (1.4) converges if δ < 1/(4γ‖ f ‖π). �

Our next theorem gives conditions under which (1.4) converges globally.

Theorem 3.3. With un defined by (2.7) and (2.9), the series (1.4) converges uniformly on
[0,π]× [0,∞) if ‖ f ‖π < 3/(4γπ2).

Proof. Let

K(s)= sup
0<x<π

∫ π

0

∣∣G(x,ξ,s)
∣∣dξ. (3.16)

Then by (2.9),

∥∥un∥∥≤ ∥∥hn∥∥∫∞
0
K(τ)dτ. (3.17)

Notice from (2.8) that

K(s)≤ sup
0<x<π

2
π

∞∑
j=1

e− j2s

∫ π

0
|sin jx sin jξ|dξ ≤ 2

∞∑
j=1

e− j2s. (3.18)

This means that ∫∞
0
K
(
s
)
ds≤ 2

∞∑
j=1

1
j2
= π2

3
. (3.19)

Combining this with (3.17), we have

∥∥un∥∥≤ 1
3
π2
∥∥hn∥∥≤ 1

3
γπ2

n−1∑
k=1

∥∥un−k∥∥∥∥uk∥∥. (3.20)

Lemma 3.1 then implies that

∥∥un∥∥≤ (4
3
γπ2

)n∥∥u1
∥∥n ≤ (4

3
γπ2

)n
‖ f ‖nπ . (3.21)

Thus (1.4) converges on [0,π]× [0,∞) if ‖ f ‖π < 3/(4γπ2). �

4. Neumann boundary conditions

In this section, we replace (1.2) with Neumann boundary conditions, that is,

∂xu(0, t)= ∂xu(π, t)= 0. (4.1)
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We now assume that the solution has the form

u(x, t)= u0(t) +
∞∑
n=1

un(x, t), (4.2)

where u0 is a purely time-dependent solution of (1.1), specifically,

u0(t)= a0

1− γa0t
, (4.3)

where a0 = (1/π)
∫ π

0 f (x)dx. (Notice that a global solution in time is not generally possible
because of the blowup of u0 in finite time.) Substituting (4.2) into (1.1) and using the fact
that u0 satisfies (1.1), we obtain

∞∑
n=1

∂tun =
∞∑
n=1

∂xxun + 2γu0

∞∑
n=1

un + γ
∞∑
n=2

n−1∑
k=1

un−kuk, (4.4)

leading to the sequence of linear equations

∂tu1 = ∂xxu1 + 2γu0u1, (4.5)

∂tun = ∂xxun + 2γu0un + γ
n−1∑
k=1

un−kuk, n≥ 2. (4.6)

We assume (2.6) as before, but now (2.5) is replaced by

u1(x,0)= f (x)−u0(0)= f (x)− a0 (4.7)

and (2.4) by

∂xun(0, t)= ∂xun(π, t)= 0. (4.8)

Expressed in terms of a Green’s function, the solutions of (4.5), (4.8), (4.7), and (4.6),
(4.8), (2.6) are

u1(x, t)=
∫ π

0

(
f (ξ)− a0

)
G(x,ξ, t)(

1− γa0t
)2 dξ, (4.9)

un(x, t)=
∫ t

0

∫ π

0
hn(ξ,τ)

(
1− γa0τ

1− γa0t

)2

G(x,ξ, t− τ)dξ dτ, n≥ 2, (4.10)

where

G(x,ξ, t)= 1√
4πt

∞∑
n=−∞

[
exp

(
− (x− ξ − 2πn)2

4t

)
+ exp

(
− (x+ ξ − 2πn)2

4t

)]
. (4.11)

Theorem 4.1. With un defined by (4.3), (4.9), and (4.10), the series (4.2) converges uni-
formly on [0,π]× [0,δ] if ‖ f − a0‖π < (1− γa0δ)4/(4γδ) and f ∈ C([0,π]).
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Proof. Equations (4.10) and (4.11) can be used to express un in the form

un(x, t)=
∫ t

0

∫∞
−∞

h̃n(ξ,τ)
(

1− γa0τ

1− γa0t

)2

H(x− ξ, t− τ)dξ dτ, (4.12)

where h̃n is the even, 2π-periodic extension of hn and H is defined by (3.10). Then,

∥∥un∥∥δ ≤ ∥∥hn∥∥δ ∫ δ

0

(
1− γa0τ

1− γa0δ

)2∫∞
−∞

H(x− ξ,δ− τ)dξ dτ

= ∥∥hn∥∥δ ∫ δ

0

(
1− γa0τ

1− γa0δ

)2

dτ ≤ δ
∥∥hn∥∥δ(

1− γa0δ
)2

(4.13)

for n≥ 2. Combining this with (2.10), we have

∥∥un∥∥δ ≤ γδ(
1− γa0δ

)2

∥∥∥∥∥
n−1∑
k=1

un−kuk

∥∥∥∥∥
δ

≤ γδ(
1− γa0δ

)2

n−1∑
k=1

∥∥un−k∥∥δ∥∥uk∥∥δ (4.14)

for n≥ 2. By Lemma 3.1,

∥∥un∥∥δ ≤
(

4γδ
∥∥u1

∥∥
δ(

1− γa0δ
)2

)n

. (4.15)

From (4.9) and (4.11), we can argue that

∥∥u1
∥∥
δ ≤

∥∥ f − a0
∥∥
π(

1− γa0δ
)2 (4.16)

which, with (4.15), implies that

∥∥un∥∥δ ≤
(

4γδ
∥∥ f − a0

∥∥
π(

1− γa0δ
)4

)n

. (4.17)

Thus (1.4) converges if

∥∥ f − a0
∥∥
π <

(
1− γa0δ

)4

4γδ
. (4.18)

�
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