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Let k be an integer such that k ≥ 3, and let G be a 2-connected graph of order n with
n ≥ 4k + 1, kn even, and minimum degree at least k + 1. We prove that if the maximum
degree of each pair of nonadjacent vertices is at least n/2, then G has a k-factor excluding
any given edge. The result of Nishimura (1992) is improved.

1. Introduction and result

We consider only finite undirected graphs without loops or multiple edges. Let G be a
graph with vertex set V(G) and edge set E(G). For a vertex x ∈V(G), we write NG(v) for
the set of vertices of V(G) adjacent to v, NG[v] for NG(v)

⋃{v}, and dG(v)= |NG(v)| for
the degree of v in G. If S and T are disjoint subsets of V(G), then eG(S,T) denotes the
number of edges that join S and T , and G− S denotes the subgraph of G obtained from
G by deleting the vertices in S together with the edges incident with them. A k-factor of
G is a spanning subgraph F of G such that dF(x)= k for every x ∈ V(F). If G and H are
disjoint graphs, then the join and the union are denoted by G+H and G

⋃
H , respectively.

Other terminology and notation not defined here can be found in [1].
The following theorems of k-factors in terms of degree conditions are known.

Theorem 1.1 (Nishimura [4]). Let k be an integer such that k ≥ 3, and let G be a connected
graph of order n with n ≥ 4k− 3, kn even, and minimum degree at least k. Suppose that
max(dG(u),dG(v))≥ n/2 for each pair of nonadjacent vertices u, v of V(G). Then G has a
k-factor.

Theorem 1.2 (Iida and Nishimura [3]). Let k be a positive integer, and let G be a graph of
order n with n≥ 4k− 5, kn even, and minimum degree at least k. If the degree sum of each
pair of nonadjacent vertices is at least n, then G has a k-factor.

Theorem 1.3 (Egawa and Enomoto [2]). Let k be a positive integer, and let G be a graph of
order n with n≥ 4k− 5, kn even, and minimum degree at least n/2. Then G has a k-factor.

The main result of this paper is the following theorem.

Theorem 1.4. Let k be an integer such that k ≥ 3, and let G be a 2-connected graph
of order n with n ≥ 4k + 1, kn even, and minimum degree at least k + 1. Suppose that
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max(dG(u),dG(v)) ≥ n/2 for each pair of nonadjacent vertices u, v of V(G). Then for any
e ∈ E(G), G− e has a k-factor.

The assumptions in Theorem 1.4 cannot be weakened any further. We discuss them in
the last section.

2. Proof of Theorem 1.4

In order to prove Theorem 1.4, the following definitions are needed.
Let G be a graph, and S,T ⊆V(G) with S

⋂
T =∅. For an integer k ≥ 1, a component

C of G− (S
⋃
T) is called a k-odd component or k-even component according to whether

k|V(C)|+ eG(V(C),T) is odd or even. Assume that e is a cut edge of G− (S
⋃
T) and C(e)

is the component of G− (S
⋃
T) which contains e. We say that e is a k-odd cut edge or

k-even cut edge according to parity, that is, whether both components of C(e)− e are
k-odd components or k-even components of (G− e)− (S

⋃
T). (Note that C(e) must be

a k-even component of G− (S
⋃
T) in both cases.) We write

δG(S,T)= k|S|+
∑
x∈T

dG−S(x)− k|T|−hG(S,T), (2.1)

where hG(S,T) is the number of k-odd components of G− (S
⋃
T).

Lemma 2.1 (Tutte [5]). Let G be a graph and k a positive integer. For all disjoint subsets S
and T of V(G), G has a k-factor if and only if

(i) δG (S,T)≥ 0,
(ii) δG (S,T)≡ kn(mod2).

Lemma 2.2. A graph G has a k-factor excluding any given edge if and only if δG(S,T) ≥
ε(S,T) for all disjoint subsets S and T of V(G), where ε(S,T) = 2 if G[T] has an edge,
or G− (S

⋃
T) has a k-odd cut edge, or G− (S

⋃
T) has a k-even component C such that

eG(V(C),T)≥ 1; otherwise, ε(S,T)= 0.

Proof. A graph G has a k-factor excluding any given edge if and only if G− e has a k-factor
for every e ∈ E(G). By Lemma 2.1, G− e has a k-factor if and only if δG−e(S,T)≥ 0 for all
disjoint subsets S and T of V(G). So, a graph G has a k-factor excluding any given edge if
and only if for all disjoint subsets S and T of V(G),

min
e∈E(G)

δG−e(S,T)≥ 0. (2.2)

Note that δG(S,T) = k|S| +
∑

x∈T dG−S(x) − k|T| − hG(S,T) and δG−e(S,T) = k|S| +∑
x∈T dG−e−S(x)− k|T|−hG−e(S,T). By the definition of ε(S,T), we know that

ε(S,T)= max
e∈E(G)

[(∑
x∈T

dG−S(x)−
∑
x∈T

dG−e−S(x)

)
+
(
hG−e(S,T)−hG(S,T)

)]

= max
e∈E(G)

(
δG(S,T)− δG−e(S,T)

)
= δG(S,T)− min

e∈E(G)
δG−e(S,T).

(2.3)
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So,

min
e∈E(G)

δG−e(S,T)= δG(S,T)− ε(S,T), (2.4)

which completes the proof. �

Lemma 2.3. Let G be a graph G and k ≥ 1. Assume that there exists a real number θ and
disjoint subsets S and T of V(G) satisfying

(i) δG(S,T) < θ,
(ii) |S⋃T| is as large as possible.

Then dG−S(u)≥ k + 1 and eG(u,T)≤ k− 1 for all u∈ V(G)− (S
⋃
T). Moreover, the order

of each component of G− (S
⋃
T) is at least 3.

Proof. If there is u∗ ∈V(G)− (S
⋃
T) such that dG−S(u∗)≤ k. Set S∗ = S, T∗ = T

⋃{u∗},
we have

δG(S∗,T∗)= k
∣∣S∗∣∣+

∑
x∈T∗

dG−S(x)− k|T∗|−hG(S∗,T∗)

= k|S|+
∑
x∈T

dG−S(x) +dG−S(u∗)− k|T|− k−hG(S,T∗)

≤ k|S|+
∑
x∈T

dG−S(x)− k|T|− (hG(S,T)− 1
)≤ δG(S,T) + 1.

(2.5)

Therefore, δG(S∗,T∗) ≤ δG(S,T) by Lemma 2.1(ii), which contradicts the maximum of
|S⋃T|.

Similarly, we can prove that eG(u,T)≤ k− 1 for each u∈V(G)− (S
⋃
T). �

Lemma 2.4 (see [4]). Let m, n, s, t, and ω0 be nonnegative integers. Suppose that m ≥ 3,
ω0 ≥ 4, and m(ω0− 1)≤ n− s− t− 3. Then it holds that

m− 1 + s+ t ≤ 1
3

[
n+ 2

(
s+ t+ 1−ω0

)]
. (2.6)

Proof of Theorem 1.4. IfG contains a complete bipartite graphKn/2,n/2 as a subgraph when
n is even, then Theorem 1.4 holds by [1, Theorems 8.9 and 8.12]. So we may suppose that
G does not contain a complete bipartite graph as a subgraph when n is even.

Suppose that there exists an edge e such thatG− e has no k-factor. By Lemma 2.2, there
exists S0,T0 ⊆ V(G) with S0

⋂
T0 =∅ such that δG(S0,T0) < ε(S0,T0). Clearly S0

⋃
T0 �=

∅. Otherwise, δG(∅,∅) < ε(∅,∅) = 0 implies δG(∅,∅) ≤−2 by Lemma 2.1(ii) which
contradicts the fact that G is 2-connected. Set θ = ε(S0,T0); obviously, θ = 2. We choose
disjoint subsets S and T of V(G) such that S and T satisfy the condition of Lemma 2.3. It
is easy to check that S

⋃
T �= ∅.

By Theorem 1.1 and Lemma 2.1, we have δG(S,T)= 0. Therefore,

ω ≥ k|S|+
∑
x∈T

dG−S(x)− k|T|, (2.7)

where ω denotes the number of components in U :=G \ (S
⋃
T).
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If U �= ∅, let C1,C2, . . . ,Cω be the components of U , labelled in such a way that their
orders m1,m2, . . . ,mω are nondecreasing. By Lemma 2.3, we have mj ≥ 3 (1≤ j ≤ ω).

Let s= |S|, t = |T|. Note that if U �= ∅, then

|U| = n− s− t ≥ 3ω, (2.8)

and

dG(u)≤mj − 1 + s+ t (2.9)

for every u∈ Cj (1≤ j ≤ ω). In particular, we note that when ω ≥ 2,

m1 ≤ n− s− t

ω
, m2 ≤ n− s− t− 3

ω− 1
. (2.10)

If T �= ∅, we define

h1 :=min
{
dG−S(v) | v ∈ T

}
(2.11)

and let x1 ∈ T be a vertex satisfying dG−S(x1)= h1 for which |NT[x1]| is as small as possi-
ble. Further, if T \NT[x1] �= ∅, we define

h2 :=min
{
dG−S(v) | v ∈ T \NT

[
x1
]}

(2.12)

and let x2 ∈ T \NT[x1] be a vertex satisfying dG−S(x2)= h2. Obviously, we have that

h1 ≤ h2, (2.13)

dG
(
xi
)≤ s+hi (i= 1,2). (2.14)

By (2.7), we have that

ω ≥ ks+
(
h1− k

)∣∣NT
[
x1
]∣∣+

(
h2− k

)∣∣T \NT
[
x1
]∣∣. (2.15)

We need to find a pair of nonadjacent vertices u, v in G such that

max
(
dG(u),dG(v)

)
<
n

2
. (2.16)

In fact, it suffices to prove that at least one of the following three statements holds in each
case.

(A) ω ≥ 2 and m2− 1 + s+ t < n/2. (Then (2.16) holds for any u∈ V(C1), v ∈ V(C2),
by (2.9) and m1 ≤m2.)

(B) T �= ∅, ω > 0, dG(x1) < n/2, there exists a vertex u ∈ V(U) \ N(x1) such that
dG(u) < n/2. (Then (2.16) holds with u= u and v = x1.)

(C) T �= ∅, T \NT[x1] �= ∅, and s + h2 < n/2. (Then (2.16) holds with u = x1 and
v = x2, by (2.14) and h1 ≤ h2.)
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Case 1 (T =∅). Then s≥ 1 since S
⋃
T �= ∅. We have ω ≥ ks≥ 3s≥ 3 by (2.7). So s≥ 2

and ω ≥ 3s > 4. Otherwise, when s= 1, it holds that ω ≥ 3, which contradicts the fact that
G is 2-connected. By (2.7) and (2.8), we get s≤ n/(3k+ 1). This inequality, together with
(2.10), gives

m2− 1 + s+ t ≤ n− s− 3
ω− 1

− 1 +
n

3k+ 1

≤ n− 5
2k− 1

− 1 +
n

3k+ 1
<
n

2
.

(2.17)

This shows (A) in this case.
Therefore we may assume T �= ∅.

Case 2 (T �= ∅).
Case 2.1 (h1 ≥ k+ 2). Let

ω0 := ks+
(
h1− k

)
t. (2.18)

When s = 0 and t = 1, we have ω ≥ ω0 ≥ 2, which contradicts that G is 2-connected.
Suppose that s �= 0 or t ≥ 2, then ω0 ≥ 4, and so, by Lemma 2.4, with m=m2,

m2− 1 + s+ t ≤ 1
3

[
n+ 2

(
s+ t+ 1− ks−h1t+ kt

)]
= 1

3

[
n− 2(k− 1)s− 2

(
h1− k− 1

)
+ 2
]
<
n

3
,

(2.19)

which shows that (A) holds in this case.
Case 2.2 (h1 = k + 1). Let ω0 := ks + (h1 − k)t, and suppose that s �= 0 or t ≥ 4. Then
ω ≥ ω0 ≥ 4, using the same arguments as in Case 2.1, we get that

m2− 1 + s+ t <
n+ 2

3
<
n

2
. (2.20)

This also shows (A) in this case. Thus we may consider the following three cases.
(i) s= 0 and t = 1.
Clearly, δG(S,T) = 0 = ε(S,T). According to the choice of S and T , when T �= ∅ and

|S⋃T| ≥ 2, we have δG(S,T)≥ 2, which is a contradiction by Lemma 2.2.
(ii) s= 0 and t = 3.
Then by (2.7) we have ω ≥ ω0 ≥ 3. By (2.14), we have

m2− 1 + s+ t ≤ n− s− t− 3
ω− 1

− 1 + s+ t ≤ n− 6
2

− 1 + 3 <
n

2
, (2.21)

which shows that (A) holds in this case.
(iii) s= 0 and t = 2.
Let T = {y1, y2}, and dG(yi)= k + 1, for i= 1,2. Otherwise, ω ≥ 3 since δ(G)≥ k + 1.

We prove in this case that (A) holds in a similar way to that in (ii). Since k ≥ 3 and
n ≥ 4k + 1, we have that k − 1 < n/2. So, we may suppose that y1 and y2 are adjacent,
otherwise, (2.16) holds with u= y1 and v = y2. SinceG is 2-connected andω ≥ ω0 = 2, we
may assume that y1 is adjacent to some vertex of a component, sayC2, whereC1,C2, . . . ,Cω

are the components of G− (S
⋃
T). Thus we have the following claim.
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Claim 1. y1 can be adjacent to at most k− 1 vertices of C1.
Note that m1 ≤ (n− 2)/2. Suppose that m1 = (n− 2)/2. Since (n− 2)/2 ≥ k + 1, there

exists at least one vertex u1 of V(C1) not adjacent to y1, and dG(u1) ≤m1 − 1 + 1 < n/2.
Thus (2.16) holds with u = u1 and v = y1. Thus we assume that m1 < (n− 2)/2. Clearly,
m1 ≥ k since δ(G) ≥ k + 1. Note that dG(u) ≤m1 − 1 + 2 < n/2 for every u ∈ V(C1). By
Claim 1, there exists at least u2 ∈V(C1) not adjacent to y1. Thus (2.16) holds with u= u2

and v = y1.
For the case where 0≤ h1 ≤ k, since min{dG(u) | u∈V(G)} ≥ k+ 1 by the hypothesis

of the theorem, it holds that

s≥ k−h1 + 1. (2.22)

We will prove that dG(x1) < n/2 in the case where 0≤ h1 ≤ k.
Case A (h1 = 0). By (2.7), we have 0 ≥ ks− kt−ω, G[T] is an isolated set if the equal-
ity holds. By (2.8), we have ks− kt−ω ≥ ks− k(n− s), and n− s− t = ω = 0 when the
equality holds. Thus,

0≥ ks− kt−ω ≥ ks− k(n− s). (2.23)

It follows from the inequality above that G[T] is an isolated set and n− s− t = ω = 0 if
none of the inequalities in (2.23) is strict. Moreover, in this case, we have s = t = n/2.
From (2.14) we get

dG
(
x1
)≤ h1 + s= n

2
. (2.24)

If dG(x1)= n/2, it is easy to see that each vertex in T is adjacent to all vertices in S by
the choice of x1. Therefore, G contains Kn/2,n/2 as a subgraph, which is a contradiction. So
dG(x1) < n/2.

If one of the inequalities in (2.23) is strict, we can get s < n/2 from (2.23), thus dG(x1)≤
s+h1 < n/2 by (2.14).
Case B (h1 = 1). In this case, it follows from (2.7) and (2.8) that

0≥ ks+ (1− k)t−ω ≥ ks+ (1− k)(n− s). (2.25)

Thus by (2.14) we have that

dG
(
x1
)≤ h1 + s≤ 1 +

(k− 1)n
2k− 1

<
n

2
. (2.26)

Case C (2≤ h1 ≤ k− 1). It follows from (2.7) And (2.8) that

0≥ ks+
(
h1− k

)
t−ω ≥ ks+

(
h1− k

)
(n− s), (2.27)

thus s≤ n− kn/(2k−h1). Suppose that dG(x1)≥ n/2, by (2.14), we have that

n

2
≤ s+h1 ≤ n− kn

2k−h1
+h1. (2.28)

So n≤ 4k− 2h1 ≤ 4k− 4, which contradicts the fact that n≥ 4k+ 1.
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Case D (h1 = k). Thus s ≥ 1 by (2.22). From (2.7) we have that ω ≥ ks. Suppose that
dG(x1)≥ n/2, by (2.14), we have that

ks≥ k+ s− 1≥ dG
(
x1
)− 1≥ n− 2

2
. (2.29)

Thus, by (2.8), we have that

n− s− t ≥ 3ω ≥ 3ks≥ 3(n− 2)
2

, (2.30)

which is a contradiction.
Case 3 (0≤ h1 ≤ k and T =NT[x1]). In this case t ≤ k unless h1 = k. Thus it follows from
(2.7) and (2.22) that

ω ≥ ks+
(
h1− k

)
t ≥ k+

(
k−h1

)
(k− t)≥ k ≥ 3. (2.31)

Suppose that V(Cj) ⊂ NG(x1) for some j (1 ≤ j ≤ ω). Since |T| = |NT(x1)|+ 1 and
|V(Cj)| ≤ e(x1,U), we get

dG/S(u)≤ ∣∣T∣∣+
(∣∣V(Cj

)∣∣− 1
)≤ ∣∣NT

(
x1
)∣∣+ e

(
x1,U

)= dG/S
(
x1
)= h1 ≤ k (2.32)

for every u∈ Cj , which contradicts the result of Lemma 2.3. Hence V(Cj) �⊂NG(x1), and
so there exists a vertex u∈ Cj , which is not adjacent to x1.

Let u1 ∈ V(C1) \NG(x1). If dG(u1) < n/2, then (B) holds. Thus we may assume that
dG(u1)≥ n/2. Note that dG(u1) is strictly less than the upper bound in (2.9) because u1 is
not adjacent to all vertices of T . Therefore, we obtain

n

2
≤ dG

(
u1
)≤m1− 1 + s+ (t− 1)≤ n− s− t

3
+ s+ t− 2. (2.33)

Hence, it follows that

4s≥ n− 4t+ 12. (2.34)

On the other hand, by (2.8) and (2.31), we have that

(3k+ 1)s≤ n− [3(h1− k
)

+ 1
]
t. (2.35)

This inequality, together with (2.34), implies that

3(k− 1)n≤ (3k+ 1)(4s+ 4t− 12)− 4n

≤ 12
(
2k−h1

)
t− 36k− 12

≤ 12
(
2k−h1

)(
h1 + 1

)− 36k− 12 < 12(k− 1)2,

(2.36)

which contradicts that n≥ 4k+ 1.
Thus we may assume that T \NT[x1] �= ∅. Let p = |NT[x1]|. We know that t ≥ p+ 1,

h1 ≥ p− 1.
Case 4 (0≤ h1 ≤ k− 1 and T \NT[x1] �= ∅).
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Subcase 4.1 (h1 ≤ h2 ≤ k− 1). Since ω ≤ n− s− t and k−h2 ≥ 1, it follows by (2.15) that
(
k−h2

)
(n− s− t)≥ ω ≥ ks+

(
h1− k

)
p+

(
h2− k

)
(t− p). (2.37)

Therefore
(
k−h2

)
(n− s)− ks≥ (h1−h2

)
p ≥ (h1−h2

)(
h1 + 1

)
. (2.38)

Since p ≤ h1 + 1 and, by hypothesis, it holds that n≥ 4k+ 1 > 4k, we get that

h2 · n2 > h2 · 2k. (2.39)

We may suppose that s≥ n/2−h2, since otherwise (C) holds. So, we have that(
s− n

2

)(
2k−h2

)≥−h2
(
2k−h2

)
. (2.40)

Adding (2.38), (2.39), and (2.40), we obtain

0 > h2
2−h2

(
h1 + 1

)
+h2

1 +h1

= 1
4

(
2h1−h2

)2
+

3
4

(
h2− 2

3

)2

+h1− 1
3
.

(2.41)

For nonnegative integers h1 and h2, h2
2 − h2(h1 + 1) + h2

1 + h1 ≥ −1/3 implies that h2
2 −

h2(h1 + 1) +h2
1 +h1 ≥ 0. So, the above inequality is impossible.

For the case where 0 ≤ h1 ≤ k − 1 and h2 ≥ k, since t ≥ p + 1, we have n− s− t ≤
n− s− p− 1. Further, since h2 ≥ k, using (2.8), (2.15) we have

n− s− p− 1≥ n− s− t ≥ 3ω ≥ 3
[
ks+

(
h1− k

)
p
]
, (2.42)

that is,

(3k+ 1)s≤ n+
(
3k− 3h1− 1

)
p− 1. (2.43)

Subcase 4.2 (h2 = k). Since 3k− 3h1− 1 > 0 and h1 ≥ p− 1, it follows by (2.43) that

(3k+ 1)s≤ n+
(
3k− 3h1− 1

)(
h1 + 1

)− 1. (2.44)

By the same reason as in the proof of Subcase 4.1, we may suppose that s≥ n/2−h2 =
n/2− k. This inequality, together with (2.44), gives

(3k− 1)n≤ (3k+ 1)(2s+ 2k)− 2n

≤ 2
[(

3k− 3h1− 1
)(
h1 + 1

)− 1
]

+ 6k2 + 2k

=−6h2
1 + (6k− 8)h1 + 6k2 + 8k− 4

<−3h2
1 + (6k− 12)h1 + 6k2 + 8k− 2

=−3
[
h1− k+ 2

]2
+ 9k2− 4k+ 10

≤ 9k2− 4k+ 10 < (3k+ 1)(3k− 1),

(2.45)

which contradicts that n≥ 4k+ 1, for k ≥ 3.
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Subcase 4.3 (h2 ≥ k+ 1). By (2.15) and (2.22),

ω ≥ ks+
(
h1− k

)
p+

(
h2− k

)
(t− p) (2.46)

≥ (k−h1
)
(k− p) + t+ k− p. (2.47)

Subcase 4.3.1 (p ≤ k− 1). Let ω0 = 2k− h1− p + t. Then ω ≥ ω0 ≥ 5 by (2.47). Suppose
that m2 − 1 + s+ t ≥ n/2, since otherwise (A) holds. Hence, by (2.10), the hypotheses of
Lemma 2.4 are satisfied for m=m2. Therefore

m2− 1 + s+ t ≤ 1
3

[
n+ 2

(
s+ t+ 1− 2k+h1 + p− t

)]
. (2.48)

This, together with the inequality m2− 1 + s+ t ≥ n/2, gives

n≤ 4
(
s+h1 + p− 2k

)
+ 4. (2.49)

By (2.43) and (2.49), we obtain

3(k− 1)n≤ (3k+ 1)
[
4s+ 4h1 + 4p− 8k+ 4

]− 4n

≤ 4
[(

3k− 3h1− 1
)
p− 1

]
+ (3k+ 1)

(
4h1 + 4p− 8k+ 4

)
≤ 4

(
3k− 3h1− 1

)
(k− 1) + (3k+ 1)

(
4h1− 4k

)− 4≤−4k− 16.

(2.50)

This is obviously impossible.
Subcase 4.3.2 (p = k). In this case h1 = k − 1. Then by (2.22), s ≥ 2. Since t ≥ p + 1 =
k + 1 ≥ 4, by (2.46), we have ω ≥ ks+ t− 2k ≥ t. Let ω0 = t, then ω ≥ ω0 ≥ 4 by (2.46).
Hence, by (2.10), the hypotheses of Lemma 2.4 are satisfied for m=m2. Therefore,

m2− 1 + s+ t ≤ n+ 2s+ 2
3

. (2.51)

By the same reason as in the proof of Subcase 4.3.1, we may suppose that m2− 1 + s+
t ≥ n/2. This, together with (2.51), gives

n≤ 4s+ 4. (2.52)

Further, when p = k and h1 = k− 1, (2.43) is as follows:

(3k+ 1)s≤ n+ 2k− 1. (2.53)

By (2.52) and (2.53), we get

(3k+ 1)s≤ 4s+ 2k+ 3, (2.54)

which contradicts that s≥ 2 in this case.
Case 5 (h1 = k and T \NT[x1] �= ∅).
Subcase 5.1 (k ≤ h2 ≤ k + 1). In this case t ≥ 2, so that n− 2− s≥ n− s− t. Since h1 = k
and t ≥ p+ 1, we have

(
h1− k

)
p+

(
h2− k

)
(t− p)≥ h2− k. (2.55)
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By (2.8) and (2.46), we get

n− s− 2≥ n− s− t ≥ 3
[
ks+

(
h2− k

)]
, (2.56)

that is,

s≤ n− 2 + 3
(
k−h2

)
3k+ 1

≤ n− 2
3k+ 1

. (2.57)

We still suppose that s + h2 ≥ n/2, since otherwise (C) holds. Therefore, this, together
with (2.57), gives

n

2
≤ s+h2 ≤ n− 2

3k+ 1
+ k+ 1, (2.58)

that is,

(3k− 1)n≤ 6k2 + 8k− 2 <

(
2k+

11
3

)
(3k− 1), (2.59)

which contradicts that n≥ 4k+ 1, for k ≥ 3.
Subcase 5.2 (h2 ≥ k + 2). By (2.22), we have s≥ 1. Since t ≥ p+ 1 and p ≤ h1 + 1= k + 1,
by (2.46), we get ω ≥ ks+ 2(t− p). Let ω0 = ks+ 2(t− p), then ω ≥ ω0 ≥ 5. By (2.9), the
hypotheses of Lemma 2.4 are satisfied for m=m2, we get

m2− 1 + s+ t ≤ 1
3

[
n+ 2(s+ t+ 1− ks− 2t+ 2p)

]
≤ 1

3

[
n− 2(k− 1)s− 2(p+ 1) + 2 + 4p

]
≤ 1

3

[
n− 2(k− 1)s+ 2(k+ 1)

]≤ n+ 4
3

<
n

2
.

(2.60)

This shows that (A) holds in this case. This completes the proof of Theorem 1.4. �

3. Sharpness of Theorem 1.4

The condition δ(G) ≥ k + 1 in Theorem 1.4 is necessary. The assumption that G is 2-
connected and n ≥ 4k + 1 in Theorem 1.4 cannot be weakened any further. Let k be
an odd integer such that k ≥ 3, and let n be an even integer such that n ≥ 4k + 1. G1

is a graph obtained by adding an edge e to connect Kk+2 and Kn−k−2. Then G1 sat-
isfies all the conditions of Theorem 1.4 except that G1 is 1-connected and G1 has no
k-factors excluding edge e. Let G2 = K2k−1 + (K1

⋃
kK2), then G2 satisfies all the condi-

tions of Theorem 1.4 except n= 4k. Setting S=V(K2k−1) and T =V(K1
⋃
kK2), we have

δG(S,T)= 0 < ε(S,T)= 2; by Lemma 2.2, Theorem 1.4 does not hold.
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