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We consider the Diophantine equation of the form x2−Dy2 = c, where c =±1,±2, and
provide a generalization of results of Lagrange with elementary proofs using only basic
properties of simple continued fractions. As a consequence, we achieve a completely gen-
eral, simple, and elegant criterion for the central norm to be 2 in the simple continued
fraction expansion of

√
D.

1. Introduction

As is often the case, some results get rediscovered over time. In particular, some rather
striking results of Lagrange are often recreated. For instance, in [6], a result pertain-
ing to the Pell equation for a prime discriminant was recast in the light of nonabelian
cohomology groups. Yet, in [1], the authors acknowledged the fact that the result “has
been discovered before,” and provided an elementary proof of it and two other results
related to Lagrange. In this paper, we present complete generalizations of these results
(see Theorems 3.1, 3.5, and 3.9 below), and do so with only elementary properties of the
simple continued fraction expansions of general

√
D. As a consequence, we obtain

x0 ≡±1(modD) iff Q�/2 = 2, (1.1)

where x2
0 −Dy2

0 = 1 is the fundamental solution, � is the (even) period length of the con-
tinued fraction expansion of

√
D, and Q�/2 is the central norm (see Theorem 3.11 below).

2. Notation and preliminaries

Herein, we will be concerned with the simple continued fraction expansions of
√
D, where

D is an integer that is not a perfect square. We denote this expansion by

√
D = 〈q0;q1,q2, . . . ,q�−1,2q0

〉
, (2.1)

where � = �(
√
D) is the period length, q0 = �

√
D� (the floor of

√
D), and q1,q2, . . . ,q�−1 is

a palindrome.
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The kth convergent of α for k ≥ 0 is given by

Ak

Bk
= 〈q0;q1,q2, . . . ,qk

〉
, (2.2)

where

Ak = qkAk−1 +Ak−2, (2.3)

Bk = qkBk−1 +Bk−2, (2.4)

with A−2=0, A−1=1, B−2=1, and B−1 = 0. The complete quotients are given by (Pk +√
D)/Qk, where P0 = 0, Q0 = 1, and for k ≥ 1,

Pk+1 = qkQk −Pk,

qk =
⌊
Pk +

√
D

Qk

⌋
,

D = P2
k+1 +QkQk+1.

(2.5)

We will also need the following facts (which can be found in most introductory texts
in number theory, such as [3]; also, see [2] for a more advanced exposition):

AkBk−1−Ak−1Bk = (−1)k−1. (2.6)

Also,

Ak−1 = PkBk−1 +QkBk−2, (2.7)

DBk−1 = PkAk−1 +QkAk−2, (2.8)

A2
k−1−B2

k−1D = (−1)kQk. (2.9)

In particular, for any k ∈N,

A2
k�−1−B2

k�−1D = (−1)k�. (2.10)

Also, we will need the elementary facts that for any k ≥ 1,

Q�+k =Qk, P�+k = Pk, q�+k = qk. (2.11)

When � is even,

P�/2 = P�/2+1 = P(2k−1)�/2+1 = P(2k−1)�/2. (2.12)

Also Q�/2 =Q(2k−1)�/2, so by (2.5),

Q(2k−1)�/2 | 2P(2k−1)�/2, (2.13)

where Q�/2 is called the central norm, (via (2.9)). Furthermore,

Q(2k−1)�/2 | 2D, (2.14)

q(2k−1)�/2 = 2P(2k−1)�/2/Q(2k−1)�/2. (2.15)
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In the next section, we will be considering what are typically called the standard Pell
equations (2.16) and (2.18), given below. The fundamental solution of such an equation
means the (unique) least positive integers (x, y)= (x0, y0) satisfying it. The following re-
sult shows how all solutions of the Pell equations are determined from continued frac-
tions.

Theorem 2.1. Suppose that � = �(
√
D) and k is any positive integer. Then if � is even, all

positive solutions of

x2− y2D = 1 (2.16)

are given by

x = Ak�−1, y = Bkl−1, (2.17)

whereas there are no solutions to

x2− y2D =−1. (2.18)

If � is odd, then all positive solutions of (2.16) are given by

x = A2k�−1, y = B2k�−1, (2.19)

whereas all positive solutions of (2.18) are given by

x = A(2k−1)�−1, y = B(2k−1)�−1. (2.20)

Proof. This appears in many introductory number theory texts possessing an in-depth
section on continued fractions. For instance, see [3, Corollary 5.3.3, page 249]. �

In the following (which we need in the next section), and all subsequent results, the
notation for the Ak, Bk, Qk, and so forth apply to the above-developed notation for the
continued fraction expansion of

√
D.

Theorem 2.2. Let D be a positive integer that is not a perfect square. Then � = �(
√
D) is

even if and only if one of the following two conditions occurs.
(1) There exists a factorization D = ab with 1 < a < b such that the following equation

has an integral solution (x, y):

ax2− by2 =±1. (2.21)

Furthermore, in this case, each of the following holds, where (x, y)= (r,s) is the fundamental
solution of (2.21).

(a) Q�/2 = a.
(b) A�/2−1 = ra and B�/2−1 = s.
(c) A�−1 = r2a+ s2b and B�−1 = 2rs.
(d) r2a− s2b = (−1)�/2.
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(2) There exists a factorization D = ab with 1 ≤ a < b such that the following equation
has an integral solution (x, y) with xy odd:

ax2− by2 =±2. (2.22)

Moreover, in this case each of the following holds, where (x, y) = (r,s) is the fundamental
solution of (2.22).

(a) Q�/2 = 2a.
(b) A�/2−1 = ra and B�/2−1 = s.
(c) 2A�−1 = r2a+ s2b and B�−1 = rs.
(d) r2a− s2b = 2(−1)�/2.

For the proof of all this, see [4].
Lastly, we will require the following number-theoretic results.

Theorem 2.3. If c is an odd positive integer, then the following Jacobi symbol identities hold:

(
2
c

)
= (−1)(c2−1)/8,

(−1
c

)
= (−1)(c−1)/2.

(2.23)

Proof. This may be found in introductory number theory texts. For instance, see [3, The-
orem 4.2.1, page 197]. �

3. Central norms and Diophantine equations

The following extends Lagrange’s [1, Theorem, page 181] to its greatest possible general-
ity. In the proof, we use only elementary continued fraction results. The end product is
that we reveal the underlying reason for the phenomenon in terms of the central norm
being equal to 2.

Theorem 3.1. Let D > 2 be an integer that is not a perfect square. Also assume that (x0, y0)
is the fundamental solution of (2.16). Then the following are equivalent.

(1) x0 ≡ 1(modD).
(2) There exists an integral solution to the equation

x2−Dy2 = 2. (3.1)

(3) � ≡ 0(mod4) and Q�/2 = 2.

Proof. First we assume that part 2 holds. Using Theorem 2.2, part 2, with a= 1 and b=D,
since there are integer solutions to x2 −Dy2 = 2, then letting (r,s) be the fundamental
solution, r2−Ds2 = 2, we have (using part 2(c)) that 2A�−1 = r2 +Ds2. Hence,

2A�−1 = 2 + 2Ds2 ≡ 2(mod2D), (3.2)

so it follows that A�−1 ≡ 1(modD). However, Theorem 2.2 shows that � is even so that
x0 =A�−1, by Theorem 2.1. We have shown that part 2 implies part 1.
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Now assume that x0 ≡ 1(modD). If � were odd, then by (2.10), A2
�−1 ≡ −1(modD).

However, by Theorem 2.1, x0 = A2�−1. Therefore, since Theorem 2.1 tells us that, in this
case,

A2�−1 +B2�−1

√
D =

(
A�−1 +B�−1

√
D
)2 =A2

�−1 +B2
�−1D+ 2A�−1B�−1

√
D, (3.3)

then x0=A2
�−1 +B2

�−1D ≡ A2
�−1 ≡−1(modD), a contradiction, sinceD > 2. We have shown

that � is even. Thus, by Theorem 2.2, there is a factorization of D = ab such that one of
(2.21)-(2.22) holds.

If (2.21) holds, then by part 1(d) in Theorem 2.2, r2a− s2b = (−1)�/2. However, by
part 1(c) of that theorem, x0 = A�−1 = r2a+ s2b. It follows that

1≡ x0 ≡ r2a+ s2b ≡ (−1)�/2 + 2s2b(modD). (3.4)

Hence, �/2 must be even since otherwise b | 2, where 1 < a < b, which is impossible.
Therefore, a | 2s2, but by part 1(b) in Theorem 2.2, A�/2−1 = ra and B�/2−1 = s, and by
(2.6), gcd(A�/2−1,B�/2−1) = 1, so a | 2. Since Q�/2 = a > 1 by part 1(a) of Theorem 2.2,
then Q�/2 = 2= a. Thus, part 3 holds.

Now we assume that (2.22) holds. From Theorem 2.2, parts (c)-(d),

2x0 = r2a+ s2b, 2(−1)�/2 = r2a− s2b. (3.5)

Since x0 = 1 +ND = 1 +Nab, for some N ∈N, then

2
(
1− (−1)�/2 +Nab

)= 2s2b, (3.6)

so b | (1− (−1)�/2). If �/2 is odd, then a = 1, b = 2 = D, which is excluded. Hence, �/2
is even, and Na = s2. Now the same argument as in the above for (2.21) shows that
gcd(a,s)= 1, so a= 1.

We have shown that part 1 implies part 3. It remains to prove that part 3 implies part 2
to complete the logical circle. However, this is an immediate consequence of Theorem 2.2.

�

Corollary 3.2 [1, Theorem, page 181]. If D = p is an odd prime, then

x0 ≡ 1(mod p) iff p ≡ 7(mod8). (3.7)

Proof. If p ≡ 7(mod8), then � is even by (2.10). Thus, by Theorem 2.2, (3.1) must be
solvable, so Theorem 3.1 yields that x0 ≡ 1(mod p). Conversely, if x0 ≡ 1(mod p), then
x2 − py2 = 2 is solvable by Theorem 3.1. Thus, x and y are both odd, so x2 ≡ y2 ≡
1(mod8), and p ≡ 7(mod8). �

Note that in Theorem 3.1, all odd primes p dividing D must be of the form p ≡
±1(mod8), and 4 does not divide D.
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Remark 3.3. A dual formulation of Theorem 3.1 is that the following are equivalent.
(1) x0 ≡−1(modD), and � is even.
(2) There exists an integral solution to the equation

x2−Dy2 =−2. (3.8)

(3) Q�/2 = 2 and �/2 is odd.
This may be proved in a very similar fashion to that of Theorem 3.1. One must assume

that � is even along with x0 ≡ −1(modD) since the latter is insufficient to conclude the
former, unlike the dual condition 1 in Theorem 3.1 which is sufficient to conclude that
� is even. For instance, if D = 74, then x0 = 3699 ≡ −1(modD). Here �(

√
D) = 5, and

x0 =A2�−1 =A9.
Note that in the above dual formulation, all odd primes p dividing D must be of the

form p ≡ 1,3(mod8) by Theorem 2.3.
In both of these scenarios, Q�/2 = 2, which is the focus for the balance of the paper

since it is the key to this investigation and explanation of the full generality of Lagrange’s
result, which we developed in Theorem 3.1.

Example 3.4. If D = 2 · 19, then � = 2, A�−1 = 37 ≡ −1(modD), and Q�/2 = 2, which il-
lustrates Remark 3.3. Moreover, if D = 2 · 37, then A�−1 = 456335045≡−1(modD), and
Q�/2 = 2.

If D = 2 · 73, then � = 16, A�−1 = 10850138895≡ 1(modD), and Q�/2 = 2, which illus-
trates Theorem 3.1.

Some instances with a mix of primes are as follows. If D = 2 · 7 · 17, then � = 8,
Q�/2 = 2, and A�−1 = 11663≡ 1(modD). Similarly, if D = 7 · 17, then � = 4, Q�/2 = 2, and
A�−1 = 120 ≡ 1(modD). If D = 2 · 7 · 23 · 31 · 47, then � = 36, Q�/2 = 2, and A�−1 =
9918684752958020825955≡1(modD).

The following result focuses on the central norm. It also corrects [1, Theorem, page
183] and explains the phenomenon behind the result (see Remark 3.6 after the proof
below).

Theorem 3.5. If D > 2 is a positive integer that is not a perfect square, then the following
are equivalent.

(1) x2−Dy2 =±2 is solvable for some integers x, y.
(2) � is even and for any odd j ≥ 1, Qj�/2 = 2.
(3) � is even and for any odd j ≥ 1, q�/2 = qj�/2 = Pj�/2 = P�/2.
(4) � is even and for any odd j ≥ 1, g = gcd(Aj�/2−1,D) | 2, and if g = 2, then D ≡

2(mod4).
(5) � is even and for any odd j ≥ 1, Aj�/2−1 = Bj�/2 +Bj�/2−2.
(6) � is even and for any odd j ≥ 1, DBj�/2−1 = Aj�/2 +Aj�/2−2.

Proof. Parts 1 and 2 are equivalent for j = 1 by Theorem 2.2; and by properties (2.11),
(2.14), and (2.15), they hold for all odd j ≥ 1.

Parts 2 and 3 are equivalent by (2.15).
If part 2 holds, then by (2.9), part 4 must hold.
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If part 4 holds, then by (2.9),

A2
j�/2−1−B2

j�/2−1D = (−1) jQj�/2, (3.9)

and by (2.14),

Qj�/2 | 2D. (3.10)

Let p be a prime dividing both Qj�/2 and D. Then by (3.9), p | Aj�/2−1. Therefore, p = g =
2 and D ≡ 2(mod4), by hypothesis. Since (2.6) tells us that gcd(Aj�/2−1,Bj�/2−1)=1, then
(3.9) tells us that 4 cannot divide Qj�/2, so Qj�/2=2. If gcd(D,Qj�/2)= 1, then Q�/2 | 2, by
(3.10). Hence, Qj�/2 = 2 since Qj�/2 = 1 can only occur when j is even (see (2.9)-(2.10)).
We have completed the proof that parts 2 and 4 are equivalent. (Note that in the case of
part 4, the condition g = 2 being tied toD ≡ 2(mod4) prevents 4 |Qj�/2 from occurring—
see Remark 3.6 after the proof.)

If part 5 holds, then by (2.4),

Aj�/2−1 = Bj�/2 +Bj�/2−2 = qj�/2Bj�/2−1 + 2Bj�/2−2, (3.11)

and by (2.7),

Aj�/2−1 = Pj�/2Bj�/2−1 +Qj�/2Bj�/2−2. (3.12)

Hence,

Bj�/2−1
(
qj�/2−Pj�/2

)= Bj�/2−2
(
Qj�/2− 2

)
. (3.13)

Since Pj�/2 = qj�/2Qj�/2/2 from (2.15), then (3.13) becomes

Bj�/2−1qj�/2
(
2−Qj�/2

)= 2Bj�/2−2
(
Qj�/2− 2

)
. (3.14)

If Qj�/2 �= 2, then

−Bj�/2−1qj�/2 = 2Bj�/2−2, (3.15)

which is impossible since Bj�/2−1, qj�/2, and Bj�/2−2 are all positive (unless j�/2 = 1, in
which case (3.15) becomes−B0q1 = 0, again impossible since B0 = 1 and q1≥1). We have
shown that part 5 implies part 2. That part 2 implies part 5 is easy using (2.7).

It remains to bring part 6 into the picture. If part 6 holds, then by (2.3),

DBj�/2−1 =Aj�/2 +Aj�/2−2 = qj�/2Aj�/2−1 + 2Aj�/2−2, (3.16)

and by (2.8), this also equals Pj�/2Aj�/2−1 +Qj�/2Aj�/2−2. Hence,

Aj�/2−1
(
qj�/2−Pj�/2

)= (Qj�/2− 2
)
Aj�/2−2, (3.17)

but by (2.15), Qj�/2qj�/2 = 2Pj�/2, so (3.17) becomes

Aj�/2−1qj�/2
(
2−Qj�/2

)= (Qj�/2− 2
)
2Aj�/2−2. (3.18)
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Now, by assuming that Qj�/2 �= 2, we argue in a similar fashion to the above and achieve
a contradiction. Thus, part 6 implies part 2. Conversely, if part 2 holds, then using (2.3)
and (2.8), we easily deduce that part 2 implies part 6, which completes the proof. �

Remark 3.6. If condition 4 in Theorem 3.5 did not have the stipulation that g = 2 must
entail D ≡ 2(mod4), the result would fail. For instance, if D = 8, then A�/2−1 = A0 = 2, so
g = 2, but Q�/2 = 4.

Condition 4 is where the error in [1, Theorem, page 183] occurs. They attempt to prove
that the condition is gcd(Aj�/2−1,D) = 1. The following example is a counterexample to
their claim that the conditions 1–3 and 5-6 of Theorem 3.5 are equivalent to the relatively
primality cited above.

Example 3.7. Let D = 2 · 17 · 41. Then � = 6, Q�/2 = 2, A�/2−1 = 112, and gcd(D,A�/2−1)=
2. This is condition 4 of Theorem 3.5 with nontriviality of the gcd condition, which con-
tradicts the assertion in [1] on the contrary. Moreover, it points to the central norm
Q�/2 = 2, being the underlying feature of Theorem 3.5.

Remark 3.8. Condition 2 of Theorem 3.5 implicitly tells us that �/2 is odd if and only if
condition 1 has the minus sign and �/2 is even if and only if condition 1 has the plus sign.

Observe that, as a consequence of the above development, when Q�/2 = 2 in the simple
continued fraction expansion of

√
D, we may never have a prime p ≡ 5(mod8) dividing

D. Moreover, we may never have both primes of the form p ≡ 3(mod8) and primes of the
form p ≡ 7(mod8) dividing D. Thus, when Q�/2 = 2, the odd primes must be either only
primes of the form p ≡±1(mod8) dividing D, or only primes of the form p ≡ 1,3(mod8)
dividing D. Lastly, 4 cannot divide D when Q�/2 = 2.

A motivation for the authors of [1] to present their result discussed in Remark 3.6
and Example 3.7 was the following result of Lagrange from 1770. For a prime p, �(

√
p) is

odd if p = 2 or p ≡ 1(mod4). A related known result for which they provide a proof as
well is the following. If p ≡ 7(mod8), then �(

√
p)≡ 0(mod4), and if p ≡ 3(mod8), then

�(
√
p)≡ 2(mod4). We now generalize this result in an elementary fashion.

Theorem 3.9. If D = 2ac, where a∈ {0,1}, c ≡ 3(mod4), and Q�/2 = 2, then the following
hold.

(1) c ≡ 3(mod8) if and only if � ≡ 2(mod4).
(2) c ≡ 7(mod8) if and only if � ≡ 0(mod4).

Proof. By Theorem 2.2,A2
�/2−1−DB2

�/2−1 = (−1)�/22. Thus, by Theorem 2.3, the following
Jacobi symbol identity holds:

1=
(
A2
�/2−1

c

)
=
(

(−1)�/22
c

)
=
(

(−1)�/2

c

)(
2
c

)
= (−1)(2�(c−1)+c2−1)/8, (3.19)

from which one easily deduces the results. �

Corollary 3.10 (Lagrange). If p ≡ 3(mod4), � is even and � ≡ 2(mod4) if and only if
p ≡ 3(mod8), or (equivalently) � ≡ 0(mod4) if and only if p ≡ 7(mod8).
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Proof. That � is even follows from (2.10), and that Q�/2 = 2 follows from Theorem 2.2.
�

We close with a result that brings together all the features we have been discussing,
while at the same time presenting a general criterion for the central norm to be 2. The
following completes a study begun by the author into the search for such a general crite-
rion (see [5]).

Theorem 3.11. Suppose that D is a positive integer that is not a perfect square, that (x, y)=
(x0, y0) is the fundamental solution of (2.16), and that � = �(

√
D) is even. Then

x0 ≡±1(modD) iff Q�/2 = 2. (3.20)

Proof. If x0 ≡±1(modD), then by Theorem 3.1 and its dual formulation in Remark 3.3,
Q�/2 = 2. Conversely, given the two cases in Theorem 3.1 and Remark 3.3, then we need
only to show that Q�/2 = 2 implies a solution to one of x2−Dy2 =±2, but this is imme-
diate from Theorem 3.5. �

Theorem 3.11 tells us that when � is even, the condition x0 ≡±1(modD) is equivalent
to all the conditions in Theorem 3.5.

Theorem 3.11 is a result which Lagrange might well have appreciated as a classification
and generalization of the results he gave us.
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