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The purpose of this paper is to study n-dimensional compact CR-submanifolds of com-
plex hyperbolic space CH™"?”2, and especially to characterize geodesic hypersphere in
CH"*V’2 by an integral formula.

1. Introduction

Let M be a complex space form of constant holomorphic sectional curvature ¢ and let
M be an n-dimensional CR-submanifold of (n — 1) CR-dimension in M. Then M has an
almost contact metric structure (F,U,u,g) (see Section 2) induced from the canonical
complex structure of M. Hence on an n-dimensional CR-submanifold of (n — 1) CR-
dimension, we can consider two structures, namely, almost contact structure F and a
submanifold structure represented by second fundamental form A. In this point of view,
many differential geometers have classified M under the conditions concerning those
structures (cf. [3, 5, 8, 9, 10, 11, 12, 14, 15, 16]). In particular, Montiel and Romero [12]
have classified real hypersurfaces M of complex hyperbolic space CH""V"? which satisfy
the commutativity condition
(©)

FA = AF (1.1)

by using the S!-fibration 7 : HJ*> — CH""V"2 of the anti-de Sitter space HJ"*? over
CH"*12 and obtained Theorem 4.1 stated in Section 2. We notice that among the model
spaces in Theorem 4.1, the geodesic hypersphere is only compact.

In this paper, we will investigate n-dimensional compact CR-submanifold of (n — 1)
CR-dimension in complex hyperbolic space and provide a characterization of the geo-
desic hypersphere, which is equivalent to condition (C), by using the following integral
formula established by Yano [17, 18]:

. . . 1 .
f div {(VxX) = (divX)X) % 1= J SLRlc(X,X)+E||§EXg||2 _vx|2- (de)Z} %1=0,
M M
(1.2)
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where X is an arbitrary vector field tangent to M. Our results of the paper are complex
hyperbolic versions of those in [6, 15].

2. Preliminaries

Let M be an n-dimensional CR-submanifold of (n — 1) CR-dimension isometrically im-
mersed in a complex space form M"*?2(c). Denoting by (J,¢) the Kahler structure of
M#+P)2(¢), it follows by definition (cf. [5, 6, 8, 9, 13, 16]) that the maximal J-invariant
subspace

By i= TeM N JTeM (2.1)

of the tangent space TxM of M at each point x in M has constant dimension (n — 1). So
there exists a unit vector field U; tangent to M such that

%t =Span{U;}, VxeM, (2.2)

where 9; denotes the subspace of T,M complementary orthogonal to %,. Moreover, the
vector field & defined by

& :=JU, (2.3)
is normal to M and satisfies
JTM C TM & Span {&}. (2.4)

Hence we have, for any tangent vector field X and for a local orthonormal basis {&],

.....

components:

JX = FX +u"(X)é,, (2.5)
Jé=-Uy+P&, a=1,..,p. (2.6)
Since the structure (J,¢) is Hermitian and J?> = —I, we can easily see from (2.5) and (2.6)

that F and P are skew-symmetric linear endomorphisms acting on TxM and T, M*, re-
spectively, and that

g(FUuX) = —u'(X)g(&,PE,), (2.7)
g(Um Uﬁ) = 80([3 _g(PEtx,PEﬁ)) (2.8)

where T, M+ denotes the normal space of M at x and g the metric on M induced from g.
Furthermore, we also have

(U X) = u'(X)d14, (2.9)
and consequently,

g(ULX) =u'(X), U,=0, a=2,...,p. (2.10)
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Next, applying J to (2.5) and using (2.6) and (2.10), we have
F’X = -X+u'(X)U;,  u'(X)P& = —u'(FX)&, (2.11)
from which, taking account of the skew-symmetry of P and (2.7),
u!(FX) =0, FU, =0, P& =0. (2.12)
Thus (2.6) may be written in the form
J& = -U, Jéu =Py, a=2,..,p. (2.13)

These equations tell us that (F,g, U, u') defines an almost contact metric structure on
M (cf. [5,6, 8,9, 16]), and consequently, n = 2m + 1 for some integer m.

We denote by V and V the Levi-Civita connection on M"*£2(c) and M, respectively.
Then the Gauss and Weingarten formulas are given by

VxY =VxY+hX,Y), (2.14)
Vx€y = —AX+Vx&, a=1,...,p, (2.15)

for any vector fields X, Y tangent to M. Here V* denotes the normal connection induced
from V in the normal bundle TM* of M, and h and A, the second fundamental form and
the shape operator corresponding to &, respectively. It is clear that h and A, are related

by

P
g(AX,Y)E (2.16)

a:l

We put
P
Ve =D sap(X)&p. (2.17)

Then (s4p) is the skew-symmetric matrix of connection forms of V*.

Now, using (2.14), (2.15), and (2.17), and taking account of the Kihler condition V] =
0, we differentiate (2.5) and (2.6) covariantly and compare the tangential and normal
parts. Then we can easily find that

(VxF)Y = u (Y)A1X — g(A1Y,X) Uy, (2.18)

(Vxu')(Y) = g(FAIX,Y), (2.19)

VU = FAX, (2.20)

g(AULX) Zsm(x (Pés,Es), a=2,..,p, (2.21)
B=2

for any X, Y tangent to M.
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In the rest of this paper, we suppose that the distinguished normal vector field &, is parallel
with respect to the normal connection V+. Hence (2.17) gives

s1Ie=0, a=2,..,p, (2.22)
which, together with (2.21), yields
AU =0, a=2,..,p. (2.23)

On the other hand, the ambient manifold M®+P/2(¢) is of constant holomorphic sec-
tional curvature ¢ and consequently, its Riemannian curvature tensor R satisfies

RevZ = —{g (Y, 2)X -gX,2)Y +g(JY,2)JX —g(JX,2)JY - 28X, Y)JZ} ~ (2.24)
for any X, Y, Z tangent to M"*PY2(c) (cf. [1, 2, 4, 19]). So, the equations of Gauss and

Codazzi imply that

RyyZ =< {g(Y,Z)X —g(X,Z)Y +g(FY,Z)FX — g(FX,Z)FY — 2g(FX,Y)FZ}

Z (AaY,Z)AuX — g(AuX,Z) ALY}, (2.25)

(VxA)Y = (VyA))X = i{g(X, U)FY —g(Y,U))FX —2g(FX,Y)U;},  (2.26)

for any X, Y, Z tangent to M with the aid of (2.22), where R denotes the Riemannian
curvature tensor of M. Moreover, (2.11) and (2.25) yield

Ric(X, Y) = £ {(n+2)g(X,Y) = 3u' (0u' ()} + 3 {(trA)g(AaX, Y) g (42X, V)],

(2.27)
p= §<n+3><n—1>+n2||y||2—ztma2, (2.28)
o
where Ric and p denote the Ricci tensor and the scalar curvature, respectively, and
1
=2 (trAg) (2.29)

04

is the mean curvature vector (cf. [1, 2, 4, 19]).

3. Codimension reduction of CR-submanifolds of CH""*?)/?

Let M be an n-dimensional CR-submanifold of (n — 1) CR-dimension in a complex hy-
perbolic space CH"*#2 with constant holomorphic sectional curvature ¢ = —4.
Applying the integral formula (1.2) to the vector field U;, we have

j {Rlc(ul,ul —||$U1g|| _ VU = (divey) }*120. (3.1)
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.....

that
n—1
e« :=Fe,, a=1,..., 5
Then it follows from (2.11) and (2.20) that
(n—1)/2
diVUl =1r (FA]) = z {g(FAlemea) +g(FAlea*’eﬂ*)} =0.
a=1
Also, using (2.20), we have
(n—1)/2
||VU1|| —g FA1 Ul,FA U1 Z {g FAlea,FAlea) +g(FA1€a* FAlea*)}
a=1

from which, together with (2.11) and (2.12), we can easily obtain
IVULlI* = A - [la o).
Furthermore, (2.20) yields
(Lu.g)(X,Y) =g(VxU1,Y) +g(Vy Ui, X) = g((FA; - A1F)X,Y),
and consequently,
1L0gll* = [FA; - AV FI[,
On the other hand, (2.27) and (2.28) with ¢ = —4 yield

Ric (U, Uy) = —(n— 1) +u! (A, U)) (trAy) - ||A UL ][,

tr (A7) = —p— (n+3)(n—1)+n*ull* - itrAaz.
Substituting (3.3), (3.5), (3.7), (3.8), and (3.9) into (3.1), we have
JM{%HFAl — AyF|]* +Ric (U, Uy) +p — n? [l
+||A1U1|| +(n+3)(n—-1)+ ZtrA } *1=0,
or equivalently,

| 450FA = AP+ (4100 (1) = tead = 1= D] 1 =0

Thus we have the following lemma.

(3.2)

(3.3)

(3.4)

(3.5)

(3.6)

(3.7)

(3.8)

(3.9)

(3.10)

(3.11)
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LemMa 3.1. Let M be an n-dimensional compact orientable CR-submanifold of (n — 1) CR-
dimension in a complex hyperbolic space CH"*P2_ If the distinguished normal vector field
& is parallel with respect to the normal connection and if the inequality

Ric (Uy, Uy) +p — 22 llull? + |4 U |[* + (n+3)(n = 1) = 0 (3.12)

holds on M, then

A F = FA, (3.13)
and Ay =0 fora=2,...,p.
COROLLARY 3.2. Let M be a compact orientable real hypersurface of CH"™*V/? over which
the inequality
Ric (U, Up) +p — il + ||A U+ (n+3)(n—1) = 0 (3.14)

holds. Then M satisfies the commutativity condition (C).

Combining Lemma 3.1 and the codimension reduction theorem proved in [7, Theo-
rem 3.2, page 126], we have the following theorem.

THEOREM 3.3. Let M be an n-dimensional compact orientable CR-submanifold of (n — 1)
CR-dimension in a complex hyperbolic space CH"P2_ If the distinguished normal vector
field &, is parallel with respect to the normal connection and if the inequality

Ric (Uy, Uy) +p — w2 llull? + |4, U |[* + (n+3)(n—1) = 0 (3.15)

holds on M, then there exists a totally geodesic complex hyperbolic space CH"*V'? immersed

in CH™PY2 sych that M ¢ CH" V2. Moreover M satisfies the commutativity condition
(C) as a real hypersurface of CH"’2,

Proof. Let
No(x):= {n e TxM"* | A, =0} (3.16)
and let Hy(x) be the maximal holomorphic subspace of Ny(x), that is,
Hy(x) = No(x) N Ny (x). (3.17)
Then, by means of Lemma 3.1,
Hy(x) = No(x) = Span {&,...,&,}. (3.18)

Hence, the orthogonal complement H;(x) of Hy(x) in TM* is Span{&;} and so, H(x)
is invariant under the parallel translation with respect to the normal connection and
dimH,(x) = 1 at any point x € M. Thus, applying the codimension reduction theorem
in [4] proved by Kawamoto, we verify that there exists a totally geodesic complex hyper-
bolic space CH™V"2 immersed in CH"*?”? such that M ¢ CH""*V’2, Therefore, M can



J.S.Pakand H. S. Kim 993

be regarded as a real hypersurface of CH"*1/? which is totally geodesic in CH"**#”2, Ten-
tatively, we denote CH"*12 by M’, and by i; we denote the immersion of M into M’,
and by i, the totally geodesic immersion of M’ into CH"*?”2_ Then it is clear from (2.14)
that

VixhY =i VXY +H (X,Y) = i1 VxY +g(A'X,Y)E, (3.19)

where V'’ is the induced connection on M’ from that of CH"*?”2, I’ the second fun-
damental form of M in M’, and A’ the corresponding shape operator to a unit normal
vector field &' to M in M'. Since i = i o i; and M’ is totally geodesic in CH"P2 we can
easily see that (2.15) and (3.19) imply that

=0, A=A (3.20)
Since M’ is a holomorphic submanifold of CH" P2 for any X in TM,
JibX =i]'X (3.21)
is valid, where J’ is the induced Kihler structure on M’. Thus it follows from (2.5) that
JiX =JihoitX =i) i1 X =i, (it F' X +u' (X)¢&)
—F X+ (X)id = iF' X+ (X)E, (3.22)

for any vector field X tangent to M. Comparing this equation with (2.5), we have F = F’
and u' = u’, which, together with Lemma 3.1, implies that

A'F =FA (3.23)
0

4. An integral formula on the model space M§p+ 1,2g+1(7)

We first explain the model hypersurfaces of complex hyperbolic space due to Montiel and
Romero for later use (for the details, see [12]).

Consider the complex (n+ 3)/2-space C§”+3)/2
metric gy given by

endowed with the pseudo-Euclidean

g0 = —dadio+ Y dzdzy,  (mr1:="2), (4.1)
=1

where Z; denotes the complex conjugate of z.

On C§”+3)/ 2 we define

m
F(z,w) = —zowp + Z Zk Wr. (4.2)
k=1

Put

H'? = {z = (20,215...,2m) € CE"H)/Z (z,z) = —1}, (4.3)
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where (-,-) denotes the inner product on C{""*"? induced from go. Then it is known

that H]'*?, together with the induced metric, is a pseudo-Riemannian manifold of con-

stant sectional curvature — 1, which is known as an anti-de Sitter space. Moreover, H{"*?

is a principal S!'-bundle over CH"*V"2 with projection 7 : Hj*?> — CH""V"2 which is a

Riemannian submersion with fundamental tensor J and time-like totally geodesic fibers.
Given p, q integers with 2p +2g =n—1 and r € R with 0 < r < 1, we denote by

M;pi1,24+1(r) the Lorentz hypersurface of H 12 defined by the equations

m P m
—|zo|2+Z|zk|2:—l, r<—|zo|2+Z|zk|2>:— Z |zk|2, (4.4)
k=1 k=1

k=p+1

n+3)/2

where z = (z9,21,...,2m) € Cg . In fact, Map11,24+1(r) is isometric to the product

() (i5)

where 1/(r — 1) and r/(1 — r) denote the squares of the radii and each factor is embedded
in H*? in a totally umbilical way. Since Msp41,29+1() is S'-invariant, Mé’p+1,2q+1(”) =
(Map+1,24+1(r)) is a real hypersurface of CHD/2
condition (C).

As already mentioned in Section 1, Montiel and Romero [12] have classified real hy-
persurfaces M of CH™12 which satisfy the condition (C) and obtained the following
classification theorem.

which is complete and satisfies the

THEOREM 4.1. Let M be a complete real hypersurface of CH"V"2

tion (C). Then there exist the following possibilities.

(1) M has three constant principal curvatures tanh 0, coth 0, 2 coth20 with multiplici-
ties 2p, 2q, 1, respectively, 2p +2q = n — 1. Moreover, M is congruent to Mé’pﬂ,zqﬂ
(tanh’6).

(2) M has two constant principal curvatures Ay, A, with multiplicities n — 1 and 1, respec-
tively. (i) If \y > 1, then A; = coth 6, A, = 2coth26 with 6 > 0, and M is congruent to
a geodesic hypersphere M{’,n(tanh2 0). (i1) If A, < 1, then A, = tanh 6, A, = 2coth20
with 6 >0, and M is congruent to Mfl’,l (tanh2 0). (iii) If Ay = 1, then Ay = 2 and M is
congruent to a horosphere.

which satisfies the condi-

Combining Corollary 3.2 and Theorem 4.1, we have the following theorem.

n+l)/

THEOREM 4.2. Let M be a compact orientable real hypersurface of CH""V'? over which the

inequality
Ric (U, Uy) +p — n?|lull* + AU+ (n+3)(n—-1) 2 0 (4.6)

holds. Then M is congruent to a geodesic hypersphere M., (r) in CH"*1)/2,

Combining Theorems 3.3 and 4.2, we have the following theorem.
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THEOREM 4.3. Let M be an n-dimensional compact orientable CR-submanifold of (n — 1)
CR-dimension in a complex hyperbolic space CH"*P2_ If the distinguished normal vector
field &, is parallel with respect to the normal connection and if the inequality

Ric (U, Uy) +p — il +||A U + (n+3)(n—1) = 0 (4.7)

holds on M, then M is congruent to a geodesic hypersphere M {’)n(tanh2 6) in CH"2,
Remark 4.4. As already shown in (3.10) and (3.11), the equality

Ric (U, Uy) +p — n?lull* + ||A1U1||2+(n+3)(n— 1)

.8
=u' (A U)) (trA;) —trA?2 —(n—1) (48)

holds on M. On the other hand, the geodesic hypersphere M/ ,(tanh® §) in Theorem 4.1
has constant principal curvatures coth@ and 2coth26 with multiplicities n — 1 and 1,
respectively. Hence we can easily verify the equality

u (A U)) (trAy) —trAl —(n—1) =0, (4.9)
and consequently,
Ric (U, Uy) +p — i |l + [|A UL P + (n+3)(n—1) =0 (4.10)

on M{’,n(tanh2 0).

Remark 4.5. 1f we put V := Vy, Uy — (divU,;) Uy, then it easily follows from (2.11) that
V = FA,U,. Taking account of (3.3), (3.5), (3.7), and (3.8), we obtain

divV = %”FA] —A1F||2 + Ml (A]U])(U'Al) —tI‘A% - (1’1 - 1) (411)

Hence if the commutativity condition (C) holds on M, then the vector field V is zero
since U, is a principal vector of A;, and consequently,

u' (A U)) (trA)) —trA? —(n—1) = 0. (4.12)

Thus, on n-dimensional CR-submanifold M of (n — 1) CR-dimension in a complex hy-
perbolic space CH"*?”2 over which the commutativity condition C holds, the function
u'(A,U;) cannot be zero at any point of M. A real hypersurface of a complex hyperbolic
space CH"*P”"2 satisfying the commutativity condition (C) cannot be minimal.
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