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Cobalancing numbers and cobalancers are defined and introduced. Many properties of
cobalancing numbers are explored. A link between the Pythagorean triplets and the cobal-
ancing numbers is also established.

1. Introduction

Recently, Behera and Panda [1] introduced balancing numbers n∈ Z+ as solutions of the
equation

1 + 2 + ···+ (n− 1)= (n+ 1) + (n+ 2) + ···+ (n+ r), (1.1)

calling r ∈ Z+ the balancer corresponding to the balancing number n. The numbers 6,
35, and 204 are examples of balancing numbers with balancers 2, 14, and 84, respectively.
Behera and Panda [1] also proved that a positive integer n is a balancing number if and
only if n2 is a triangular number, that is, 8n2 + 1 is a perfect square. Though the definition
of balancing numbers suggests that no balancing number should be less than 2, in [1], 1
is accepted as a balancing number being the positive square root of the square triangular
number 1.

In [4, 5], Subramaniam has explored some interesting properties of square triangular
numbers. In a latter paper [6], he introduced the concept of almost square triangular
numbers (triangular numbers that differ from a square by unity) and established links
with the square triangular numbers. In this paper, we introduce cobalancing numbers and
see that they are very closely associated with balancing numbers and also with triangular
numbers which are products of two consecutive natural numbers. Observe that a number,
which can be expressed as a product of two consecutive natural numbers, is almost equal
to the arithmetic mean of squares of two consecutive natural numbers, that is, n(n+ 1)≈
[n2 + (n+ 1)2]/2. In what follows, we introduce the cobalancing numbers in a way similar
to the balancing numbers.

By slightly modifying (1.1), we call n∈ Z+ a cobalancing number if

1 + 2 + ···+n= (n+ 1) + (n+ 2) + ···+ (n+ r) (1.2)
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for some r ∈ Z+. Here, we call r the cobalancer corresponding to the cobalancing num-
ber n.

The first three cobalancing numbers are 2, 14, and 84 with cobalancers 1, 6, and 35,
respectively.

It is clear from (1.2) that n is a cobalancing number with cobalancer r if and only if

n(n+ 1)= (n+ r)(n+ r + 1)
2

, (1.3)

which when solved for r gives

r = −(2n+ 1) +
√

8n2 + 8n+ 1
2

. (1.4)

It follows from (1.4) that n is a cobalancing number if and only if 8n2 + 8n + 1 is a
perfect square, that is, n(n + 1) is a triangular number. Since 8× 02 + 8× 0 + 1 = 1 is
a perfect square, we accept 0 as a cobalancing number, just like Behera and Panda [1]
accepted 1 as a balancing number, though, by definition, a cobalancing number should
be greater than 1.

From the above discussion, it is clear that if n is a cobalancing number, then both
n(n+ 1) and n(n+ 1)/2 are triangular numbers. Thus, our search for cobalancing number
is confined to the pronic triangular numbers, that is, triangular numbers that are also
pronic numbers. It is worth mentioning here that a positive integer is called a pronic
number if it is expressible in the form n(n + 1) for some positive integer n. Since n <√
n(n+ 1) < n+ 1, it follows that if T is a pronic triangular number, then [

√
T] must be a

cobalancing number, where [·] denotes the greatest integer function. For example, T = 6
is a pronic triangular number, and therefore [

√
6]= 2 is a cobalancing number.

2. Some functions of cobalancing numbers

In this section, we introduce some functions of cobalancing numbers that also generate
cobalancing numbers. For any two cobalancing numbers x and y, we consider the follow-
ing functions:

f (x)= 3x+
√

8x2 + 8x+ 1 + 1,

g(x)= 17x+ 6
√

8x2 + 8x+ 1 + 8,

h(x)= 8x2 + 8x+ 1 + (2x+ 1)
√

8x2 + 8x+ 1 + 1,

t(x, y)= 1
2

[
2(2x+ 1)(2y + 1) + (2x+ 1)

√
8y2 + 8y + 1

+ (2y + 1)
√

8x2 + 8x+ 1 +
√

8x2 + 8x+ 1
√

8y2 + 8y + 1− 1
]
.

(2.1)

We first prove that the above functions always generate cobalancing numbers.

Theorem 2.1. For any two cobalancing numbers x and y, f (x), g(x), h(x), and t(x, y) are
all cobalancing numbers.
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Proof. Suppose that u= f (x). Then x < u and

x = 3u−
√

8u2 + 8u+ 1 + 1. (2.2)

Since x and u are nonnegative integers, 8u2 + 8u+ 1 must be a perfect square, and hence
u is a cobalancing number.

Since f ( f (x))= g(x), it follows that g(x) is also a cobalancing number.
We can also directly verify that 8h2(x) + 8h(x) + 1 and 8t2(x, y) + 8t(x, y) + 1 are per-

fect squares so that h(x) and t(x, y) are cobalancing numbers. But these verifications
would involve lengthy algebra. To avoid algebraic complications, we provide relatively
easy proofs of these results in Section 6 using Theorem 6.1. �

Next we show that for any cobalancing number x, f (x) is not merely a cobalancing
number, but it is the cobalancing number next to x.

Theorem 2.2. If x is any cobalancing number, then the cobalancing number next to x is
f (x)=3x+

√
8x2 + 8x+ 1+1 and consequently, the previous one is f̃ (x)=3x−√8x2 + 8x+ 1

+ 1.

Proof. The proof of the fact that f (x)= 3x+
√

8x2 + 8x+ 1 + 1 is the cobalancing number
next to x is exactly same as the proof of Theorem 3.1 of [1], and hence it is omitted. Since
f ( f̃ (x))= x, it follows that f̃ (x) is the largest cobalancing number less than x. �

3. Recurrence relations for cobalancing numbers

For n= 1,2, . . . , let bn be the nth cobalancing number. We set b1 = 0. The next two cobal-
ancing numbers are b2 = 2 and b3 = 14.

Behera and Panda [1], while accepting 1 as a balancing number, have set B0 = 1, B1 = 6,
and so on, using the symbol Bn for the nth balancing number. To standardize the notation
at par with Fibonacci numbers, we relabel the balancing numbers by setting B1 = 1, B2 =
6, and so on.

Theorem 2.2 suggests that

bn+1 = 3bn +
√

8b2
n + 8bn + 1 + 1,

bn−1 = 3bn−
√

8b2
n + 8bn + 1 + 1.

(3.1)

Adding the last two equations, we arrive at the conclusion that the cobalancing numbers
obey the second-order linear recurrence relation

bn+1 = 6bn− bn−1 + 2. (3.2)

An immediate consequence of (3.2) is the following theorem.

Theorem 3.1. Every cobalancing number is even.

Proof. The proof is based on mathematical induction. The first two cobalancing numbers
b1 = 0 and b2 = 2 are even. Assume that bn is even for n≤ k. Using (3.2), one can easily
see that bk+1 is also even. �
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Using the recurrence relation (3.2), we can derive some other interesting relations
among the cobalancing numbers.

Theorem 3.2. (a) (bn− 1)2 = 1 + bn−1bn+1,
(b) for n > k ≥ 2,

bn = bk +Bkbn−k+1−Bk−1bn−k, (3.3)

(c) b2n = Bnbn+1− bn(Bn−1− 1),
(d) b2n+1 = (Bn+1 + 1)bn+1−Bnbn.

Proof. From (3.2), we have

bn+1 + bn−1− 2
bn

= 6. (3.4)

Replacing n by n− 1, we obtain

bn + bn−2− 2
bn−1

= 6, (3.5)

which implies that

bn+1 + bn−1− 2
bn

= bn + bn−2− 2
bn−1

, (3.6)

which when rearranged gives

(
bn− 1

)2− bn−1bn+1 =
(
bn−1− 1

)2− bn−2bn. (3.7)

Now, iterating recursively, we obtain

(
bn− 1

)2− bn−1bn+1 =
(
b2− 1

)2− b1b3 = (2− 1)2− 0× 14= 1, (3.8)

from which (a) follows.
The proof of (b) needs an important link between balancing numbers and cobalancing

numbers, which is to be established in the next section after Theorem 4.1. Until then, we
postpone the proof of (b).

The proof of (c) follows from (b) by replacing n by 2n and k by n. Similarly, the proof
of (d) follows from (b) by replacing n by 2n+ 1 and k by n+ 1. �

4. Generating function for cobalancing numbers

In Section 3, we developed the recurrence relation bn+1 = 6bn − bn−1 + 2 for cobalanc-
ing numbers. Using this recurrence relation, we first obtain the generating function for
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cobalancing numbers and then establish a very interesting link between balancing num-
bers and cobalancing numbers.

Recall that the ordinary generating function [3, page 29] for a sequence {xn}∞n=0 of real
numbers is defined as

g(s)=
∞∑
n=0

xns
n. (4.1)

From [1], we know that the generating function for the sequence of balancing numbers
{Bn}∞n=0 is

g(s)= 1
1− 6s+ s2

. (4.2)

But in accordance with the new convention as suggested in the previous section, one can
easily see that the generating function for the sequence of balancing numbers {Bn}∞n=1

takes the form

g(s)= s

1− 6s+ s2
. (4.3)

Theorem 4.1. The generating function for the sequence of cobalancing numbers {bn}∞n=1 is

f (s)= 2s2

(1− s)
(
1− 6s+ s2

) , (4.4)

and consequently for n≥ 2,

bn = 2
(
B1 +B2 + ···+Bn−1

)
. (4.5)

Proof. From (3.2), for n = 1,2, . . ., we have bn+2− 6bn+1 + bn = 2. Multiplying both sides
by sn+2 and summing over n= 1 to n=∞, we obtain

∞∑
n=1

bn+2s
n+2− 6s

∞∑
n=1

bn+1s
n+1 + s2

∞∑
n=1

bns
n = 2s2

∞∑
n=1

sn, (4.6)

which in terms of f (s) can be expressed as

(
f (s)− 2s2)− 6s f (s) + s2 f (s)= 2s3

1− s
. (4.7)

Thus,

f (s)= 2s2

(1− s)
(
1− 6s+ s2

) = 2s
1− s

· s

1− 6s+ s2

= 2s
1− s

· g(s)= 2
(
s+ s2 + ···)g(s).

(4.8)

Now for n ≥ 2, the coefficient of sn in f (s) can be obtained by collecting the coefficient
of sr from g(s) and the coefficient of sn−r from 2(s+ s2 + ···) for r = 1,2, . . . ,n− 1. While
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the coefficient of sr in g(s) is Br , the coefficient of sn−r in 2(s+ s2 + ···) is 2. Hence,

bn = 2
(
B1 +B2 + ···+Bn−1

)
. (4.9)

This completes the proof. �

The following corollary and Theorem 3.1 are direct consequences of Theorem 4.1.

Corollary 4.2. Bn = (bn+1− bn)/2.

We are now in a position to prove Theorem 3.2(b).

Proof of Theorem 3.2(b). The proof is based on induction on k. It is easy to see that the
assertion is true for n > k = 2. Assume that the assertion is true for n > r ≥ k ≥ 2, that is,

bn = br +Brbn−r+1−Br−1bn−r . (4.10)

From [1], we know that the balancing numbers obey the recurrence relation

Bn+1 = 6Bn−Bn−1· (4.11)

Applying this relation, (3.2), (4.10), and Corollary 4.2 to (4.10), we obtain

br+1 +Br+1bn−r −Brbn−r−1

= br+1 +
(
6Br −Br−1

)
bn−r −Br

(
6bn−r − bn−r+1 + 2

)
= br+1− 2Br +Brbn−r+1−Br−1bn−r
= br +Brbn−r+1−Br−1bn−r = bn.

(4.12)

Thus, the assertion is also true for k = r + 1. This completes the proof of Theorem 3.2(b).
�

5. Binet form for cobalancing numbers

From Section 4, we know that the cobalancing numbers satisfy the recurrence relation

bn+1 = 6bn− bn−1 + 2 (5.1)

which is a second-order linear nonhomogeneous difference equation with constant coef-
ficients. Substituting cn = bn + 1/2, we see that cn obey the recurrence relation

cn+1 = 6cn− cn−1 (5.2)

which is homogeneous. The general solution of this equation is

cn =Aλn1 +Bλn2, (5.3)

where λ1 = 3 +
√

8 and λ2 = 3−√8 are the two roots of the auxiliary equation

λ2− 6λ+ 1= 0. (5.4)
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Substituting c1 = 1/2 and c2 = 5/2 into (5.3), we obtain

A= 1√
λ1
(
λ1− λ2

) , B = 1√
λ2
(
λ1− λ2

) , (5.5)

where
√
λ1 = 1 +

√
2 and

√
λ2 = 1−√2. Thus,

cn = Aλn1 +Bλn2 =
λn−1/2

1 − λn−1/2
2

λ1− λ2
, n= 1,2, . . . , (5.6)

which implies that

bn = λn−1/2
1 − λn−1/2

2

λ1− λ2
− 1

2
, n= 1,2, . . . . (5.7)

The above discussion proves the following theorem.

Theorem 5.1. If bn is the nth cobalancing number, then its Binet form is

bn = λn−1/2
1 − λn−1/2

2

λ1− λ2
− 1

2
, n= 1,2, . . . , (5.8)

where λ1 = 3 +
√

8, λ2 = 3−√8, λ1/2
1 = 1 +

√
2, and λ1/2

2 = 1−√2.

6. Relations among balancing numbers, cobalancing numbers,
balancers, and cobalancers

Let B be any balancing number with balancer R, and b any cobalancing number with
cobalancer r. Then by definition, the pairs (B,R) and (b,r) satisfy, respectively,

1 + 2 + ···+ (B− 1)= (B+ 1) + (B+ 2) + ···+ (B+R), (6.1)

1 + 2 + ···+ b= (b+ 1) + (b+ 2) + ···+ (b+ r). (6.2)

Solving (6.1) for B and (6.2) for b, we find

B = (2R+ 1) +
√

8R2 + 8R+ 1
2

, (6.3)

b= (2r− 1) +
√

8r2 + 1
2

. (6.4)

We infer from (6.3) that if R is a balancer, then 8R2 + 8R+ 1 is a perfect square and from
(6.4), we conclude that if r is a cobalancer, then 8r2 + 1 is a perfect square.

The above discussion proves the following theorem.

Theorem 6.1. Every balancer is a cobalancing number and every cobalancer is a balancing
number.

For n= 1,2, . . ., as usual, let Bn be the nth balancing number and bn the nth cobalancing
number. We also denote by Rn the balancer corresponding to Bn, and rn the cobalancer
corresponding to bn. What we are going to prove now is much stronger than Theorem 6.1.
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Theorem 6.2. For n= 1,2, . . . , Rn = bn and rn+1 = Bn.

Proof. We know that if B is a balancing number with balancer, R then

R= −(2B+ 1) +
√

8B2 + 1
2

(
see [1, page 98]

)
. (6.5)

Thus

Rn+1 =
−(2Bn+1 + 1

)
+
√

8B2
n+1 + 1

2
, (6.6)

Rn−1 =
−(2Bn−1 + 1

)
+
√

8B2
n−1 + 1

2
. (6.7)

Also, from Theorem 3.1 and [1, Corollary 3.2], we have

Bn+1 = 3Bn +
√

8B2
n + 1, (6.8)

Bn−1 = 3Bn−
√

8B2
n + 1. (6.9)

Substituting (6.8) and (6.9) into (6.6) and (6.7), respectively, we obtain

Rn+1 =
2Bn +

√
8B2

n + 1− 1

2
,

Rn−1 =
−14Bn + 5

√
8B2

n + 1− 1

2
.

(6.10)

Adding the last two equations, we get

Rn+1 +Rn−1 =
−12Bn + 6

√
8B2

n + 1− 2

2

= 6 ·
−(2Bn + 1

)
+
√

8B2
n + 1

2
+ 2= 6Rn + 2.

(6.11)

This gives

Rn+1 = 6Rn−Rn−1 + 2. (6.12)

Thus Rn satisfies the same recurrence relation as that of bn. Further, since R1 = b1 = 0
and R2 = b2 = 2, it follows that Rn = bn for n = 1,2, . . . . This proves the first part of the
theorem.

We prove the second part of the theorem in a similar way. Using (1.4), we obtain

rn+1 =
−(2bn+1 + 1

)
+
√

8b2
n+1 + 8bn+1 + 1

2
, (6.13)

rn−1 =
−(2bn−1 + 1

)
+
√

8b2
n−1 + 8bn−1 + 1

2
. (6.14)
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Substituting

bn+1 = 3bn +
√

8b2
n+1 + 8bn+1 + 1 + 1 (6.15)

into (6.13) and

bn−1 = 3bn−
√

8b2
n−1 + 8bn−1 + 1 + 1 (6.16)

into (6.14), we obtain

rn+1 =
2bn +

√
8b2

n+1 + 8bn−1 + 1 + 1

2
,

rn−1 =
−14bn + 5

√
8b2

n−1 + 8bn−1 + 1− 7

2
.

(6.17)

Adding the last two equations, we get

rn+1 + rn−1 =
−12bn + 6

√
8b2

n + 8bn + 1− 6

2

= 6 ·
−(2bn + 1

)
+
√

8b2
n + 8bn + 1

2
= 6rn.

(6.18)

Thus rn satisfies the same recurrence relation as that of Bn. Further, since B1 = r2 = 1
and B2 = r3 = 6, it follows that Bn = rn+1 for n= 1,2, . . . . This completes the proof of the
theorem. �

Corollary 6.3. Every balancer is even.

Proof. The proof follows directly from Theorem 3.1 and Theorem 6.2. �

Corollary 6.4. Rn+1 = Rn + 2Bn.

Proof. The proof follows directly from Corollary 4.2 and Theorem 6.2. �

We are now in a position to prove that h(x) and t(x, y) are cobalancing numbers as
stated in Theorem 2.1.

We first show that if x is a cobalancing number, then

h(x)= 8x2 + 8x+ 1 + (2x+ 1)
√

8x2 + 8x+ 1 + 1 (6.19)

is also a cobalancing number.

From [1, Theorem 3.1], we know that if y is a balancing number, then u= 2y
√

8y2 + 1
is also a balancing number and the balancer corresponding to u is

R= −(2u+ 1) +
√

8u2 + 1
2

= 8y2− 2y
√

8y2 + 1. (6.20)
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If x is the balancer corresponding to the balancing number y, then from (6.3), we find

y = (2x+ 1) +
√

8x2 + 8x+ 1
2

, (6.21)

so that

8y2 + 1= 24x2 + 24x+ 4(2x+ 1)
√

8x2 + 8x+ 1 + 5

=
(

2(2x+ 1) +
√

8x2 + 8x+ 1
)2
.

(6.22)

Substitution of (6.22) into (6.20) gives

R= 24x2 + 24x+ 4(2x+ 1)
√

8x2 + 8x+ 1 + 4

− 2

[
2(2x+ 1) +

√
8x2 + 8x+ 1

2

]
·
[

2(2x+ 1) +
√

8x2 + 8x+ 1
]

= 8x2 + 8x+ 1 + (2x+ 1)
√

8x2 + 8x+ 1= h(x).

(6.23)

Thus for any balancer x, h(x) is always a balancer. Since by Theorem 6.1 every balancer is
a cobalancing number, the result follows.

We next prove that if x and y are cobalancing numbers, then

t(x, y)= 1
2

[
2(2x+ 1)(2y + 1) + (2x+ 1)

√
8y2 + 8y + 1

+ (2y + 1)
√

8x2 + 8x+ 1 +
√

8x2 + 8x+ 1
√

8y2 + 8y + 1− 1
] (6.24)

is also a cobalancing number. From [1, Theorem 4.1], we know that if u and v are balanc-
ing numbers, then

w = u
√

8v2 + 1 + v
√

8u2 + 1 (6.25)

is also a balancing number. Let s, x, and y be the balancers corresponding to the balancing
numbers w, u, and v, respectively. Then,

s= −(2w+ 1) +
√

8w2 + 1
2

= 1
2

[
8uv+

√(
8u2 + 1

)(
8v2 + 1

)− 2u
√

8v2 + 1− 2v
√

8u2 + 1− 1
]
.

(6.26)

Now substituting

u= (2x+ 1) +
√

8x2 + 8x+ 1
2

,

v =
(2y + 1) +

√
8y2 + 8y + 1

2

(6.27)
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into (6.26), we find that

s= 1
2

[
2(2x+ 1)(2y + 1) + (2x+ 1)

√
8y2 + 8y + 1

+ (2y + 1)
√

8x2 + 8x+ 1 +
√

8x2 + 8x+ 1
√

8y2 + 8y + 1− 1
]
= t(x, y).

(6.28)

Again since every balancer is a cobalancing number by Theorem 6.1, the result follows.

Remark 6.5. t(x,x)= h(x).

7. An application of cobalancing numbers to the Diophantine
equation x2 + (x+ 1)2 = y2

As we know, the Diophantine equation (see [2, page 165]) x2 + (x+ 1)2 = y2, x, y ∈ Z+, is
a particular case of the equation x2 + y2 = z2, x, y,z ∈ Z+. Any solution (x, y,z) of the later
equation is called a Pythagorean triplet. Behera and Panda [1] established a link between
the solutions of the equation x2 + (x + 1)2 = y2 and balancing numbers. Here we are go-
ing to obtain an easy relation between the solutions of this equation with cobalancing
numbers.

Let b be any cobalancing number and r its cobalancer and c = b+ r. Then (1.2) can be
rewritten as

1 + 2 + ···+ b = (b+ 1) + (b+ 2) + ···+ c, (7.1)

from which we find b in terms of c as

b = −1 +
√

2c2 + 2c+ 1
2

. (7.2)

Thus 2c2 + 2c+ 1 is a perfect square, and also

2c2 + 2c+ 1= c2 + (c+ 1)2. (7.3)

This suggests that the Diophantine equation x2 + (x+ 1)2 = y2 has the solution

x = b+ r, y =
√

2c2 + 2c+ 1. (7.4)

Take for example b = 14 so that r = 6 and c = b+ r = 20. Further, 2c2 + 2c+ 1= 841= 292

and we have

202 + 212 = 292. (7.5)

Similarly for b = 84, we have 1192 + 1202 = 1692.

Acknowledgment

It is a pleasure to thank the anonymous referees for their valuable comments and sugges-
tions that greatly improved the presentation of the paper.



1200 Cobalancing numbers

References

[1] A. Behera and G. K. Panda, On the square roots of triangular numbers, Fibonacci Quart. 37
(1999), no. 2, 98–105.

[2] L. E. Dickson, History of the Theory of Numbers. Vol. II—Diophantine Analysis, Chelsea Pub-
lishing Company, New York, 1952.

[3] V. Krishnamurthy, Combinatorics: Theory and Applications, Affiliated East-West Press, New
Delhi, 1985.

[4] K. B. Subramaniam, A simple computation of square triangular numbers, Internat. J. Math. Ed.
Sci. Tech. 23 (1992), no. 5, 790–793.

[5] , A divisibility property of square triangular numbers, Internat. J. Math. Ed. Sci. Tech. 26
(1995), no. 2, 284–286.

[6] , Almost square triangular numbers, Fibonacci Quart. 37 (1999), no. 3, 194–197.

G. K. Panda: Department of Mathematics, National Institute of Technology, Rourkela-769 008,
Orissa, India

E-mail address: gkpanda@nitrkl.ac.in

P. K. Ray: Department of Mathematics, College of Arts, Science and Technology, Bondamunda,
Rourkela-770 032, Orissa, India

mailto:gkpanda_nit@rediffmail.com

