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It is well known that the main difficulty in solving eigenvalue problems under shape de-
formation relates to the continuation of multiple eigenvalues of the unperturbed config-
uration. These eigenvalues may evolve, under shape deformation, as separated, distinct
eigenvalues. In this paper, we address the integral equation method in the evaluation of
eigenfunctions and the corresponding eigenvalues of the two-dimensional Laplacian op-
erator under boundary variations of the domain. Using surface potentials, we show that
the eigenvalues are the characteristic values of meromorphic operator-valued functions.

1. Introduction

The properties of eigenvalue problems under shape deformation have been the subject
of comprehensive studies [7, 13] and the area continues to carry great importance up to
now [14]. A substantial portion of these investigations is related to smoothness properties
of eigenfunctions with respect to boundary perturbations. Recently, Bruno and Reitich
have presented in [4] explicit constructions of high-order boundary perturbation expan-
sions for eigenelements. Their algorithm is based on certain properties of joint analytic
dependence on the boundary perturbations and spatial variables of the eigenfunctions.
The main difficulty in solving eigenvalue problems relates to the continuation of multi-
ple eigenvalues of the unperturbed configuration. These eigenvalues may evolve, under
shape deformation, as separated, distinct eigenvalues, and this splitting may only become
apparent at high orders in their Taylor expansions.

In this paper, we use the technique of integral equation to evaluate the analyticity
properties and asymptotic expansions of the eigenfunctions and the eigenvalues of the
Laplacian operator under boundary variations of the domain of definition. Using surface
potentials, we show that the eigenvalues are the characteristic values of meromorphic
operator-valued functions which are of Fredholm type with index 0. We then proceed
using the generalized Rouché’s theorem [6] and the result found in [10] to construct
their complete asymptotic expressions. Our approach concerning the question of analytic
dependence and asymptotic expansion is based on a holomorphic formulation of the
boundary integral equations and its characteristic problem version.
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Our analysis and uniform asymptotic formulas of the eigenfunctions, which are rep-
resented as sum of a single-layer potential and of a double-layer potential involving the
Green’s function, are considerably different from that in [9]. We would here like to find
an efficient and accurate method, different from what we have presented in [2]. Power-
ful techniques from the theory of meromorphic operator-valued functions and careful
asymptotic analysis of integral kernels are combined for solving this problem. Similar
results can be obtained when considering the homogeneous Neumann boundary condi-
tion with only minor modifications of the arguments and techniques presented in this
work. We just replace the Dirichlet Green’s function by the Neumann Green’s function in
the integral representation and in a way completely similar, we establish our asymptotic
formulas.

2. Problem formulation

Let γ(t) : [0,1]→R2 and β(t) : [0,1]→R2 be two analytic, 1-periodic functions satisfying
|γ′(t)| > C for all t ∈ [0,1], where C is a positive constant. We introduce

γε(t)= γ(t) + εβ(t), ε ∈R. (2.1)

With this definition, (t,ε) �→ γε(t) is an analytic function on [0,1]×R, 1-periodic in the
variable t, and satisfies

∣∣γ′ε(t)∣∣ > C

2
(2.2)

for any ε such that 2|ε||β′(t)|�0([0,1]) < C. We consider the bounded domain Ωε in R2

with boundary ∂Ωε parameterized by the function γε(t):

∂Ωε =
{
γε(t), t ∈ [0,1]

}
. (2.3)

The outward unit normal to ∂Ωε is denoted by νε.
In this paper, we deal with the asymptotics of eigenvalues and eigenfunctions associ-

ated to the following eigenvalue problem:

∆u(ε) + λ2(ε)u(ε)= 0 in Ωε, u(ε)= 0 on ∂Ωε. (2.4)

It is well known that the operator −∆ on L2(Ωε) with domain H2(Ωε)∩H1
0 (Ωε) is

selfadjoint with compact resolvent. Consequently, its spectrum only consists of isolated,
real, and positive eigenvalues with finite multiplicity, and there are corresponding eigen-
functions which build an orthonormal basis of L2(Ωε).

Let λ2
0 > 0 denote an eigenvalue of the eigenvalue problem (2.4) for ε = 0 with geo-

metric multiplicity m≥ 1. There exists a small constant r0 > 0 such that λ2
0 is the unique

eigenvalue of (2.4) for ε = 0 in the set {λ2,λ∈Dr0 (λ0)}, where Dr0 (λ0) is a disc of center
λ0 and radius r0. We define the λ0-group as the whole perturbed eigenvalues of (2.4) for
ε > 0 generated by splitting from λ0. The following analyticity result is well known [7].

Theorem 2.1. There exists ε0 > 0 such that for |ε| < ε0, the λ0-group consists ofm eigenval-
ues, λi(ε), i = 1, . . . ,m (repeated according to their multiplicity). Moreover, these λi(ε) are
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analytic functions with respect to ε satisfying λi(0)= λ0, i= 1, . . . ,m. The normalized eigen-
functions associated to the λ0-group of eigenvalues are analytic with respect to ε and their
values at 0 are m linearly independent solutions of the unperturbed eigenvalue problem.

Classical regularity results and the previous theorem imply that the eigenfunctions
associated to the λ0-group of eigenvalues are separately analytic in the small parameter ε
and the spatial variable x. Using an integral equation technique, we will also establish the
joint analytic dependence of these functions with respect to (x,ε). As it is well known,
joint analyticity does not follow from separate real analyticity properties.

3. Integral equation method

The use of integral equations is a convenient tool for a number of investigations [5].
We now develop a boundary integral formulation for solving the eigenvalue problem
(2.4). We use this method to characterize the eigenvalue and the normal derivative of the
eigenfunction as characteristic value and root function of some operator-valued function.
This characterization is the key point in deriving our results and asymptotic formulae.

Let u be the solution to the Helmholtz equation:

∆u+ λ2u= 0, in R2. (3.1)

We begin by defining the outgoing Green’s function G(x, y) as the solution of

∆xG(x, y) + λ2G(x, y)=−δy(x), in R2, (3.2)

with the radiation condition as |x| → +∞:∣∣∣∣ ∂G∂|x| − iλG
∣∣∣∣=O( 1

|x|
)
. (3.3)

In fact, G is explicitly given as

G(x, y)= i

4
H(1)

0

(
λ|x− y|), (3.4)

where H(1)
0 (z) is the Hankel function of the first kind and of order zero [1]. Its singularity

has the form

G(x, y)∼ 1
2π

log|x− y|+ ··· as x −→ y. (3.5)

3.1. Preliminary results. Consider (3.1) for the function u in the exterior ofΩε, multiply
by the Green’s function G and integrate by parts, we get that for x ∈R2 \Ωε,

u(x)=
∫
∂Ωε

(
∂u

∂νε

∣∣∣∣
+

(y)G(x, y)−u(y)
∂G

∂νε(y)

∣∣∣∣
+

(x, y)
)
dσ(y). (3.6)

The jump condition for ∂u/∂νε on ∂Ωε yields

u(x)=−
∫
∂Ωε

∂G

∂νε(y)

∣∣∣∣
+

(x, y)u(y)dσ(y) +
∫
∂Ωε

G(x, y)
∂u

∂νε

∣∣∣∣
−

(y)dσ(y). (3.7)
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Of course, the above equations does not hold up to the boundary of Ωε, but if we take
the limit as x→ ∂Ωε, we get from, for instance, [5, 12] that

1
2
u
∣∣∣∣
∂Ωε

(x)=−
∫
∂Ωε

∂G

∂νε(y)

∣∣∣∣
+

(x, y)u(y)dσ(y)

+
∫
∂Ωε

G(x, y)
∂u

∂νε

∣∣∣∣
−

(y)dσ(y) for x ∈ ∂Ωε.

(3.8)

We introduce the following operators, called single- and double-layer potentials, re-
spectively:

Sl(λ)g(x)=
∫
∂Ωε

G(x, y)g(y)dσ(y), x ∈R2 \ ∂Ωε,

Dl(λ)g(x)=
∫
∂Ωε

∂νε(y)G(x, y)g(y)dσ(y), x ∈R2 \ ∂Ωε.
(3.9)

For g ∈ �∞(∂Ωε), or even g ∈ L1(∂Ωε), the functions Sl(λ)g and Dl(λ)g are well de-
fined and smooth for x ∈R2 \ ∂Ωε.

Now define the following operators:

S(λ) :H−1/2(∂Ωε
)−→H1/2(∂Ωε

)
, D(λ) :H1/2(∂Ωε

)−→H1/2(∂Ωε
)
, (3.10)

where

S(λ) : g −→
∫
∂Ωε

G(·, y)g(y)dσ(y),

D(λ) : g −→
∫
∂Ωε

∂G

∂νε(y)

∣∣∣∣
+

(·, y)g(y)dσ(y).
(3.11)

For such g and every x ∈ ∂Ωε, we denote by g+(x) and g−(x) the limits of g(y) as
y → x, from y ∈ Ωε and y ∈ R2 \Ωε, respectively, when these limits exist. It is a well-
known classical result that, for x ∈ ∂Ωε,(

Sl(λ)g
)

+(x)= (Sl(λ)g
)
−(x)= S(λ)g(x),(

Dl(λ)g
)
±(x)=±1

2
g(x) +D(λ)g(x),

(3.12)

where S(λ) is pseudodifferential operator of order −1.
Throughout this paper, we use for simplicity the notation Hs

�(]0,1[) = Hs(R/]0,1[),
for s ∈ R, where Hs(R/]0,1[) denotes the classical Sobolev Hs-space on the quotient
R/]0,1[.

Using a change of variables and integral equations, the following important result im-
mediately holds from Taylor [16, page 184].

Proposition 3.1. Let Lε(λ) :H−1/2
� (]0,1[)→H1/2

� (]0,1[) be defined as follows:

Lε(λ) f (t)= (S(λ) f
(
γ−1
ε
))(

γε(t)
)

= i

4

∫ 1

0
H(1)

0

(
λ
∣∣γε(t)− γε(s)∣∣)∣∣γ′ε(s)∣∣ f (s)ds for f ∈H−1/2

�
(
]0,1[

)
.

(3.13)



Abdessatar Khelifi 1205

Then the operator-valued function Lε(λ) is Fredholm analytic with index 0 inC \ iR−. More-
over, L−1

ε (λ) is a meromorphic function and its poles are in
{	(z) ≤ 0

}
. 	(z) means the

imaginary part of z and�(z) is the real part.

From now on we will focus our attention on solving the eigenvalue problem (2.4).

3.2. Joint analyticity of kernel. Based on the result found in [3] and on the argument
of Millar [11], we will now prove the following proposition. The following result will be
useful in Sections 4 and 5.

Proposition 3.2. There exist a constant η > 0 and a complex neighborhood � of 0 such that
for every function ϕ(t,ε)∈H−1/2

� (]0,1[) analytic in (t,ε)∈ {|	(t)| ≤ η}×�, the function
Lε(λ)ϕ(t,ε)∈H1/2

� (]0,1[) is analytic with respect to (t,ε,λ) in
{|	(t)| ≤ η}×�×Dr0 (λ0),

where Dr0 (λ0) is a disc of center λ0 and radius r0.

Proof. The proof of this proposition heavily relies on the work of Bruno and Reitich [3]
where they expressed the kernel of Lε(λ) in the following form:

i

4
H(1)

0

(
λ
∣∣γε(t)− γε(s)∣∣)∣∣γ′ε(s)∣∣

=−
1∑

p=−1

log
(|t− s− p|)h(λ2

∣∣γε(t)− γε(s)∣∣2
)∣∣γ′ε(s)∣∣+ k(t,s,ε,λ),

(3.14)

for (t,s,ε,λ) ∈ �∩{	(t) = 0}∩ {	(s) = 0}∩ {	(ε) = 0}, s /∈ {t, t + 1, t− 1}, where h is
an analytic function in C, and k is analytic in �. Here � = {|	(t)| ≤ η;|	(s)| ≤ η;|ε| ≤
δ;λ ∈ Dr0 (λ0);−ρ ≤�(t) ≤ 1 + ρ;−ρ ≤�(s) ≤ 1 + ρ}, for the positive numbers ρ, r0, η,
and δ.

The central difficulty to prove the analytic property of the operator Lε comes from the
spatial regularity of its kernel. We show that logarithmic singularity of the kernel of Lε(λ)
is independent of the parameter ε.

We introduce

Φ(t,ε,λ)=−
∫ 1

0

1∑
p=−1

log|t− s− p|h
(
λ2
∣∣γε(t)− γε(s)∣∣2

)
ϕ(s,ε)

∣∣γ′ε(s)∣∣ds. (3.15)

Using a change of variables, this function can be rewritten as follows:

Φ(t,ε,λ)=−
∫ 2

−1
log|t− s|h

(
λ2
∣∣γε(t)− γε(s)∣∣2

)
ϕ(s,ε)

∣∣γ′ε(s)∣∣ds. (3.16)

An integration by parts leads to

Φ(t,ε,λ)= log
(|t− 2|)ψ(t,2,ε,λ)

− log
(|t+ 1|)ψ(t,−1,ε,λ)−

∫ 2

−1

ψ(t,s,ε,λ)
|t− s| ds,

(3.17)
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where

ψ(t,s,ε,λ)=−
∫ s
t
h
(
λ2
∣∣γε(t)− γε(z)

∣∣2
)
ϕ(z,ε)

∣∣γ′ε(z)
∣∣dz. (3.18)

Clearly, Φ(t,ε,λ) can be extended to a complex analytic function in C×�×Dr0 (λ0).
Furthermore, from the following identity

Lε(λ)ϕ(t,ε)=Φ(t,ε,λ) +
∫ 1

0
k(t,s,ε,λ)ϕ(s,ε)ds, (3.19)

we deduce the desired result applying (3.14). �

4. Reduction to a characteristic value problem

In this section, we first recall some definitions and notations from [6, 10]. Using bound-
ary integral equations, we reduce the problem (2.4) to the existence and the distribution
of the characteristic values of selfadjoint integral operators in the complex plane.

4.1. Notations and definitions. Let � and � be two Banach spaces and let �(�,�) be
the algebra of all bounded-valued function acting from � into �. �′ and �′ denote the
dual spaces of � and �, respectively.

Let λ0 be a fixed complex value in C. We denote by �(λ) an operator-valued function
acting from Dr0 (λ0) into �(�,�), where Dr0 (λ0) is a disc of center λ0 and radius r0 > 0.
λ0 is called a characteristic value of �(λ) if

(i) �(λ) is holomorphic in some neighborhood of λ0, except possibly at λ0,
(ii) there exists a vector-valued function φ(λ): Dr0 (λ0)→� holomorphic at λ0 and

verifying φ(λ0) �= 0, such that �(λ)φ(λ) is holomorphic at λ0 and vanishes at this
point.

φ(λ) is called a root function of �(λ) associated to λ0 and the vector φ0 = φ(λ0) is
called an eigenvector. The closure of the linear set of eigenvectors corresponding to λ0 is
denoted by Ker�(λ0).

Suppose that λ0 is a characteristic value of the function �(λ) and φ(λ) is a root func-
tion satisfying (ii). Then there exists a number m(φ) ≥ 1 and a vector-valued function
ψ(λ): Dr0 (λ0)→� holomorphic such that

�(λ)φ(λ)= (λ− λ0
)m(φ)

ψ(λ), ψ(λ0) �= 0. (4.1)

The number m(φ) is called the multiplicity of the root function φ(λ). Let φ0 be an eigen-
vector corresponding to λ0 and let

	
(
φ0
)= {m(φ);φ(λ) is a root function such φ

(
λ0
)= φ0

}
. (4.2)

Then by rank of φ0 we mean rank(φ0) =max	(φ0). Suppose that n = dimKer�(λ0) <

+∞ and that the ranks of all vectors in Ker�(λ0) are finite. A system of eigenvectors φ
j
0,

j = 1, . . . ,n, is called a canonical system of eigenvectors of �(λ) associated to λ0 if the ranks

possess the following property: rank(φ
j
0) is the maximum of the ranks of all eigenvectors
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in some direct complement in dimKer�(λ0) of the linear span of the vectors φ1
0, . . . ,φ

j−1
0 .

Let r j = rank(φ
j
0). Then (r j) j uniquely determines the function �(λ). We call

N
(
�
(
λ0
))= n∑

j=1

r j (4.3)

the null multiplicity of the characteristic value λ0 of �(λ).
If λ0 is not a characteristic value of �(λ), we put N(�(λ0))= 0.
Suppose that �−1(λ) exists and is holomorphic in some neighborhood of λ0, except

possibly at λ0. Then the number

M
(
�
(
λ0
))=N(�(λ0

))−N(�−1(λ0
))

(4.4)

is called the multiplicity of the characteristic value λ0 of �(λ). Suppose that λ1 is a pole of
the operator-valued function. The Laurent expansion of �(λ) in λ1 is given by

�(λ)=
∑
j≥−s

(
λ− λ1

) j
Aj . (4.5)

If in the last expression the operators A− j , j = 1, . . . ,s, are finite dimensional, then �(λ)
is called finitely meromorphic at λ1.

The operator-valued function �(λ) is said to be of Fredholm type at the point λ1 if the
operator A0 in the last expansion is a Fredholm operator.

If �(λ) is holomorphic at the point λ0 and the operator �(λ0) is invertible, then λ0 is
called a regular point of �(λ).

We set

(y⊗ v)(w) := (w,v)y (w ∈�),

(v⊗ y)(u) := (y,u)v
(
u∈�′

) (4.6)

for y ∈ � and v ∈ �′. Note that y ⊗ v ∈ �(�,�), v ⊗ y ∈ �(�′,�′), and (y ⊗ v)∗ =
v⊗ y. An ordered set {y0, y1, . . . , yh} ⊂ � is called a chain of eigenvectors and associated
vectors (CEAV) of � at λ if

Y =:
h∑
l=0

(·− λ)l yl (4.7)

is a root function of � at λ with m(Y)≥ h+ 1. Conversely, if Y is a root function of � at
λ and m(Y)≥ h+ 1, then the function

Y(µ)=:
∞∑
l=0

(µ− λ)l yl, (4.8)

{y0, y1, . . . , yh} is CEAV.
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A system {y( j)
l : 1 ≤ j ≤ h, 0 ≤ l ≤ mj} is called a canonical system of eigenvectors

and associated vectors (CSEAV) of � at λ if {y( j)
0 : 1 ≤ j ≤ h} is a basis of Ker(�(λ)),

{y( j)
0 , y

( j)
1 , . . . , y

( j)
mj} is a CEAV of � at λ ( j = 1, . . . ,h), mj = sup{m(y) : y ∈ Ker(�(λ)) \

Span{y(k)
0 : k < j}}; (1≤ j ≤ h). Obviously mj =m(y

( j)
0 ).

We recall the generalization of Steinberg’s theorem [15].

Theorem 4.1. Suppose that � is an operator-valued function which is finitely meromorphic
and of Fredholm type in the domain Dr0 (λ0). If the operator �(λ) is invertible at one point
of Dr0 , then �(λ) has a bounded inverse for all λ ∈ Dr0 , except possibly for certain isolated
points.

We will reduce, as mentioned in the introduction, the eigenvalue problem to some
characteristic problem. From Proposition 3.1, we know that if λ2

0 is an eigenvalue of (2.4),
then λ0 is a characteristic value of L0(λ). Moreover, for r0 small enough, the function
L−1

0 (λ) is meromorphic in Dr0 (λ0), where Dr0 (λ0) the disc of center λ0 and radius r0, and
λ0 is its unique pole in Dr0 .

We begin by establishing the following lemma which characterises the eigenvalues of
(2.4) if ε = 0.

Lemma 4.2. Any eigenvalue of the problem (2.4) is a simple pole of L−1
0 (λ).

Proof. Let λ2
0 be an eigenvalue of (2.4). Let u0 be an associated eigenfunction normalized

in L2(Ω0). Using an integration by parts, we know that ∂ν0u0 is in fact a characteristic
function of the operator-valued function λ �→ L0(λ) corresponding to the characteristic
value λ0, that is, L0(λ0)∂ν0u0 = 0 on ∂Ω0. We define φ(λ) as a root function of L0(λ) corre-
sponding to (λ0;∂ν0u0); it is holomorphic in Dr0 (λ0), φ(λ0)= ∂ν0u0 and satisfies the iden-
tity L0(λ)φ(λ)|λ=λ0 = 0. The multiplicity of φ(λ) is the order of λ0 as a zero of L0(λ)φ(λ).
But it is well known that the order of λ0 as a pole of L−1

0 (λ) is precisely the maximum of
the ranks of the eigenvectors in KerL0(λ0). Then it suffices to show that the rank of an
arbitrary eigenvector is equal to one.

We write L0(λ)φ(λ) = (λ2 − λ2
0)ψ(λ), where ψ(λ) is a holomorphic function in H1/2

(∂Ω0). For λ∈Dr0 (λ0), we denote by u(λ) the unique solution of (∆+ λ2)u(λ)= 0 in Ω0

with the boundary condition u(λ)= ψ(λ)γ−1 on ∂Ω0. Using a trivial integration by parts
over Ω0, we find that∫

Ω0

u(λ)u0dx =
(
λ2− λ2

0

)−1
∫
∂Ω0

u(λ)∂ν0u0dσ(x)=
∫
∂Ω0

ψ(λ)∂ν0u0dσ(x), (4.9)

which immediately implies that

∫
∂Ω0

ψ
(
λ0
)
∂ν0u0dσ(x)=

∫
Ω0

∣∣u0
∣∣2
dx = 1, (4.10)

since
∫
Ω0
u(λ)u0dx is holomorphic in Dr0 (λ0). Therefore, |ψ(λ0)|2L2(∂Ω0) �= 0 and thus the

function ψ(λ0) is nontrivial. �

Our main results in this section are summarized in the following theorem.
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Theorem 4.3. There exists a positive constant ε1 = ε1(r0,ε0) such that ε1 ≤ ε0 and for
|ε| < ε1, the operator-valued function λ �→ Lε(λ) has exactly m characteristic values (λi(ε))i
(counted according to their multiplicity) in Dr0 (λ0). These characteristic values build the λ0-
group associated to the perturbed eigenvalue problem (2.4), and are analytic with respect to

ε in ]− ε1,ε1[. They satisfy λi(0) = λ0, for i = 1, . . . ,m. Moreover, if (λ̂i(ε))τεi=1 denotes the
set of distinct values of (λi(ε))mi=1, then the following assertions hold:

τε∑
i=1

M
(
Lε
(
λ̂i(ε)

))=m,

L−1
ε (λ)=

τε∑
i=1

(
λ− λ̂i(ε)

)−1
�i(ε) + 	ε(λ),

(4.11)

where �i(ε) : Ker(Lε(λ̂i(ε)))→ Ker(Lε(λ̂i(ε))) and 	ε(λ) is a holomorphic function with
respect to (ε,λ)∈]− ε0,ε0[×Dr0 (λ0).

Proof. We first recall that m is the geometric multiplicity of λ2
0 as an eigenvalue of the

eigenvalue problem (2.4). Proposition 3.2 implies that Lε(λ) is an analytic operator-val-
ued function with respect to (ε,λ)∈R×Dr0 (λ0). Then there exists a constant ε1(r0,ε0) >
0 such that for any ε lying in ]− ε1,ε1[, the following holds:

∣∣(Lε(λ)−L0(λ)
)
L−1

0 (λ)
∣∣

�(H1/2
� ,H1/2

� ) < 1, ∀λ∈ ∂Dr0

(
λ0
)
. (4.12)

From the generalized Rouché’s theorem and the results of Gohberg and Sigal [6], we

deduce that Lε(λ) is invertible on ∂Dr0 and has τε characteristic values
(
λ̂i(ε)

)
i in Dr0 (λ0)

which are (obviously) the poles of the function L−1
ε (λ) in the disc Dr0 (λ0). Thus, with the

definitions introduced earlier, the following holds:

τε∑
i=1

M
(
Lε
(
λ̂i(ε)

))=M(L0
(
λ0
))
. (4.13)

Using Theorem 2.1 and Proposition 3.2, it can now be easily seen that the set of these
characteristic values build precisely the λ0-group of eigenvalues introduced in the last

section, that is, (λ̂i(ε))i ≡ (λi(ε))i. Hence, they are analytic in the variable ε. Notice that
in general we haveM(L0(λ0))≥ dimKerL0(λ0)=m. But Lemma 4.2 impliesM(L0(λ0))=
m. Furthermore, we have the Laurent expansion

L−1
0 (λ)= (λ− λ0

)−1
�0 + 	0(λ), (4.14)

where �0 =
∑τ0

i=1 �i(0) and 	0(λ) is a holomorphic function. From the decomposition
(4.14), we obtain

�0L0
(
λ0
)= 0 in �

(
H−1/2
�

(
]0,1[

)
,H−1/2

�
(
]0,1[

))
,

L0
(
λ0
)
�0 = 0 in �

(
H1/2
�
(
]0,1[

)
,H1/2

�
(
]0,1[

))
.

(4.15)
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It follows that �0 : KerL∗0 (λ0)→ KerL0(λ0). But from the properties of the Green’s func-
tion G(x, y), we know that

KerL∗0
(
λ0
)= KerL0

(
λ0
)
. (4.16)

Note that using similar arguments, we can prove that (λi(ε))i are also simple poles of
L−1
ε (λ) and M(Lε(λi(ε)))= dimKerLε(λi(ε)), for i= 1, . . . ,m. Moreover, we have

L−1
ε (λ)=

τε∑
i=1

(
λ− λ̂i(ε)

)−1
�i(ε) + 	ε(λ),

�i(ε) : Ker
(
Lε
(
λ̂i(ε)

))−→ Ker
(
Lε
(
λ̂i(ε)

))
,

(4.17)

where 	ε(λ) is a holomorphic function which completes the proof of the theorem. �

Let λ0 be a characteristic value of L0(λ). From Keldys’s theorem which is simplified in
[10, page 462], there exist {φi0 : 1≤ i≤m} CSEAV of L0 at λ0 and {ψi0 : 1≤ i≤m} CSEAV
of L∗0 such that the operator

A0 = 1
2iπ

∫
|λ−λ0|=ρ

(
L0(λ)

)−1
dλ=

m∑
i=1

φi0⊗ψi0 (4.18)

is well defined.
Analogously, by the result of Reinhard and Möller which is due to Keldyš [8], for each

characteristic value λi(ε) (1≤ i≤m), there exist {φi, j(ε) : 1≤ i≤m, 1≤ j ≤mi} CSEAV
of Lε at λi(ε) and {ψi, j(ε) : 1≤ i≤m, 1≤ j ≤mi} CSEAV of L∗ε such that the operator

Ai(ε)= 1
2iπ

∫
|λ−λi(ε)|=ρ

(
Lε(λ)

)−1
dλ=

mi∑
j=1

φi, j(ε)⊗ψi, j(ε) (4.19)

is well defined. Introduce the operator

A(ε)=
m∑
i=1

Ai(ε), for |ε| < ε1. (4.20)

Based on Theorem 4.3, [15] and on relation (4.20), one can see that the operator A(ε) is
selfadjoint and holomorphic function with respect to ε ∈]− ε1,ε1[. It is quite easy to see
that A0 = A(ε = 0) and the following results hold.

Proposition 4.4. For |ε| < ε1 and for i∈ {1, . . . ,τε},
(1) the operator Ai(ε) satisfies

Ai(ε)
∣∣

(Ker(Lε(λi(ε))))⊥ ≡ 0; (4.21)

(2) if λi(ε) and λj(ε) are two characteristic values of Lε(λ) with i �= j, then

KerLε
(
λi(ε)

)⊥ KerLε
(
λj(ε)

)
. (4.22)
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Proof. (1) Let φ∈H−1/2
� such that Ai(ε)φ = 0, then

mi∑
j=1

(
φ,ψi, j(ε)

)
φi, j(ε)= 0. (4.23)

The fact that (φij)i j and (ψij)i j are CSEAV implies that φ = 0 and, therefore, yields the
desired result.

(2) It suffices to prove the result only for i = 1 and j = 2. From relation (4.16), we
deduce that

Lε
(
λ1(ε)

)
KerLε

(
λ2(ε)

)⊂ KerLε
(
λ2(ε)

)
. (4.24)

Then,

Lε
(
λ1(ε)

)
Ker

(
Lε
(
λ2(ε)

))⊂ Ker
(
Lε
(
λ2(ε)

))∩ (Ker
(
Lε
(
λ1(ε)

)))⊥
. (4.25)

Using the last relation, the relation

Ker
(
Lε
(
λ2(ε)

))= Lε(λ1(ε)
)

Ker
(
Lε
(
λ2(ε)

))
+
(
I −Lε

(
λ1(ε)

))
Ker

(
Lε
(
λ2(ε)

))
(4.26)

becomes

(
I −Lε

(
λ1(ε)

))
Ker

(
Lε
(
λ2(ε)

))= 0. (4.27)

The operator-valued function Lε(λ1(ε)) is Fredholm of index 0 which completes the
proof. �

Our strategy now is to investigate the properties of the eigenelements corresponding

to the operators A0 and Aε. Let (µ
j
0)1≤ j≤h be the family of eigenvalues of the operator

A0 with multiplicity mj each. Using the generalisation of Theorem 2.1, see [7, 13], we

know that there exists ε2 = ε2(ε1) > 0 such that for |ε| < ε2 and for j ∈ {1, . . . ,h}, the µ
j
0-

group consists ofmj eigenvalues of A(ε), µj,l(ε), l = 1, . . . ,mj (repeated according to their
multiplicity).

Let ε3 = inf(ε1,ε2). For |ε| < ε3, the following projector is well defined:

Pj(ε)= 1
2iπ

∫
|µ−µj,i(ε)|=ρ1

(
µ−A(ε)

)−1
dµ=

mj∑
l=1

mj,l∑
s=1

q
( j)
l,s (ε)⊗ q( j)

l,s (ε), (4.28)

where for 1≤ j ≤ h and for 1≤ l ≤mj , the family (q
( j)
l,s (ε))1≤s≤mjl denotes the orthogonal

family of eigenfunctions corresponding to the eigenvalues µj,l(ε). For ε = 0, we have

Pj(0)= 1
2iπ

∫
|µ−µj0|=ρ2

(
µ−A(0)

)−1
dµ=

mj∑
l=1

q
( j)
l (0)⊗ q( j)

l (0), (4.29)
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where the family (q
( j)
l (0))1≤l≤mj is the orthogonal family of eigenfunctions correspond-

ing to the eigenvalue µ
j
0. Now it seems natural, from the previous results, that for all

j = 1, . . . ,h, the family (q
( j)
l (0))1≤l≤mj is mj-characteristic functions of L0(λ0) and for all

l = 1, . . . ,mj , the family (q
( j)
l,s (ε))1≤s≤mj,l is mj,l-characteristic functions of Lε(λi(ε)) and∑h

j=1mj =m.
We set

P(ε)=
h∑
j=1

Pj(ε), for |ε| < ε3, P(0)=
h∑
j=1

Pj(0). (4.30)

5. Analyticity and asymptotic expansion

This section is devoted to the study of the asymptotics of the characteristic elements and,
therefore, the asymptotics of the eigenelements of (2.4) when the parameter ε goes to
zero. We will give a method in order to calculate the coefficients of the expansions of the
eigenelements in a neighborhood of zero when the eigenvalue λ2

0 of−∆ is not simple. Our
strategy, for deriving asymptotic expansions of the perturbations in a multiple eigenvalue
λ0 with multiplicity m that are due to boundary deformations, relies on finding the ana-
lyticity and complete asymptotic expansions of the eigenelements of A(ε). The following
holds.

Proposition 5.1. For |ε| < ε3,
(1) the operator P(ε) is holomorphic for ε ∈]− ε3,ε3[ and P(ε) = P(0) +R(ε), where

R(ε) is holomorphic with respect to ε,
(2) P(ε) =∑m

j=1 q
( j)(ε)⊗ q( j)(ε), where (q( j)(ε))1≤ j≤m denotes an orthonormal basis

of KerLε(λi(ε)). Also, P(0) =∑m
j=1 q

( j)(0)⊗ q( j)(0), where (q( j)(0))1≤ j≤m is an or-
thonormal basis of KerL0(λ0).

Proof. (1) This property is clear by recalling that the operator A(ε) is holomorphic and
has the expansion A(ε) = A(0) + Ã(ε), where the operator Ã(ε) is holomorphic with
respect to ε and goes to 0 as ε→ 0 and by considering, for ε ∈]− ε3,ε3[, the Neumann
series

(
µ−A(ε)

)−1 = (µ−A(0)
)−1

+
∞∑
p=1

(
µ−A(0)

)−1
[
Ã(ε)

(
µ−A(0)

)−1
]p

, (5.1)

which converges uniformly with respect to µ in a neighborhood of µj,i.

(2) As said at the end of Section 4, the elements of the family (q
( j)
l (0))1≤ j≤h,1≤l≤mj are

characteristic functions of L0(λ0) and the idea here is to organize this family as follows:

q(1)
1 (0)= q(1)

0 ,q(1)
2 (0)= q(2)

0 , . . . ,q(h)
mh

(0)= q(m)
0 . (5.2)

Then, the family (q
( j)
0 )1≤ j≤m defines an orthogonal basis in KerL0(λ0). Using similar ar-

guments, the family (q
( j)
l,s (ε))1≤l≤mj ,1≤s≤mjl ,1≤ j≤h, given by (4.28), can be organized:

q(1)
1,1(ε)= q(1)(ε),q(1)

1,2(0)= q(2)(ε), . . . ,q(h)
mh,mhmh

(ε)= q(m)(ε), (5.3)
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where for all j = 1, . . . ,m, q( j)(ε) → q
( j)
0 as ε → 0. The family (q( j)(ε))1≤ j≤m defines an

orthogonal basis in
⊕m

i=1 Ker(Lε(λi(ε))), and so the order of organization of its elements

directly depends on the order of organization of the basis (q
( j)
0 )1≤ j≤m. �

Let Bε = [als] be the (m×m) matrix, where for l = 1, . . . ,m and for s= 1, . . . ,m,

als =
(
q(l)

0 ,q(s)
ε

)
. (5.4)

Then, B0 = Im, where Im denotes the identity matrix. From Proposition 5.1, we have

m∑
j=1

(
·,q( j)(ε)

)
q( j)(ε)=

m∑
j=1

(
·,q( j)

0

)
q

( j)
0 +R(ε). (5.5)

Relation (5.5) implies that (
Bεφε

)
l = q(l)

0 +R(ε)q(l)
0 , (5.6)

where

q0 =
(
q(1)

0 , . . . ,q(m)
0

)T
, φε =

(
q(1)(ε), . . . ,q(m)(ε)

)T
. (5.7)

Proposition 5.2. There exists some constant ε4 = ε4(ε3) > 0, (ε4 ≤ ε3), such that for j ∈
{1, . . . ,m},

(1) the functions q( j)(ε)(t) are holomorphic in (t,ε) and satisfy the following uniform
expansions: for t ∈ [0,1],

q( j)(ε)(t)= q( j)
0 (t) +

∑
n≥1

q
( j)
n (t)εn, (5.8)

where the first coefficient satisfies

q
( j)
1 = R1q

( j)
0 , (5.9)

and for n≥ 2, the coefficients q
( j)
n are given by

q
( j)
n = Rnq( j)

0 −
n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)
q(i)
n−k, (5.10)

with R0 = 0 and Rn (n≥ 1) being the Taylor coefficients of R(ε),
(2) the characteristic values λj(ε)= λ( j)(ε) satisfy

λ( j)(ε)= λ0 +
∑
n≥1

λ
( j)
n εn. (5.11)

The first coefficient satisfies

λ
( j)
1 =−1−

(
L0
(
λ0
)
q

( j)
1 , l(0)

1 q
( j)
0

)
∥∥∥l(0)

1 q
( j)
0

∥∥∥2 (5.12)
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and for n≥ 2,

λ
( j)
n =− 1∥∥∥l(0)

1 q
( j)
0

∥∥∥2

[ n∑
i=2

( ∑
s1+···+si=n

λ
( j)
s1 λ

( j)
s2 ···λ( j)

si

)(
l(0)
i q

( j)
0 , l(0)

1 q
( j)
0

)

+
n−1∑
l=0

l∑
k=0

(
Fk,l−kq

( j)
n−l, l

(0)
1 q

( j)
0

)
+

n∑
k=1

(
Fk,n−kq

( j)
0 , l(0)

1 q
( j)
0

)]
.

(5.13)

Here for all integers k and s, the expressions l(s)k and Fk,s are two operator-valued functions
with simple forms.

Proof. (1) Define the matrix: 
ε = (dεsp)sp; the coefficients dεsp are given by

dεsp = δps +
(
R(ε)q(s)

0 ,q
(p)
0

)
,

(
δ
p
s = 1 if p = s and δ

p
s = 0 if p �= s). (5.14)

The analyticity of the operator-valued function R(ε) with respect to ε ∈]− ε3,ε3[ guar-

antees the analyticity of 
ε. The inner product of (5.5) by q
(p)
0 gives

m∑
l=1

(
q(s)

0 ,q(l)(ε)
)(
q(l)(ε),q

(p)
0

)
= δps +

(
R(ε)q(s)

0 ,q
(p)
0

)
(5.15)

which implies that

B2
ε =
ε. (5.16)

Relation (5.5) implies

Bεφε = φ0 +R(ε)φ0. (5.17)

We now verify that the function φε is jointly analytic in (t,ε). Through relation (5.17),
we deduce that

φε =
(
Bε
)−1(

φ0 +R(ε)φ0
)
. (5.18)

The analyticity of φ0(t) in t is a classical result. Then we deduce the result by using the
analyticity of the matrix B−1

ε in ε, which is obvious from (5.16), and the fact that the
function R(ε)φ0(t) is jointly analytic in (t,ε). From relation (5.7), we then deduce the
analyticity of the functions q( j)(ε) follows for all j = 1, . . . ,m.

The analyticity of the matrix operator Bε allows writing, in a neighborhood of 0, the
expansion

Bε = B0 + εB1 + ε2B2 + ··· . (5.19)

By expanding

φε =
∑
k≥0

εkqk, for |ε| < ε4, (5.20)
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and (5.7), relation (5.17) implies( +∞∑
n=0

εnBn

)(+∞∑
s=0

εsqs

)
= q0 +

+∞∑
n=1

εnRnq0, (5.21)

where we have considered φ0 = q0 and R(ε)=∑n≥1 εnRn. Then,

n∑
k=0

Bkqn−k = q0 +Rnq0. (5.22)

The jth component of the vector Bkqn−k is given by

(
Bkqn−k

)
j =

m∑
i=1

(
q

( j)
0 ,q(i)

k

)
q(i)
n−k (5.23)

and then relation (5.22) becomes

(
B0qn

)
j +

n∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)
q(i)
n−k = q( j)

0 +Rnq
( j)
0 . (5.24)

The relation B0 = Im implies

q
( j)
n =−

n∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)
q(i)
n−k + q

( j)
0 +Rnq

( j)
0 . (5.25)

Therefore,

q
( j)
n =−

m∑
i=1

(
q

( j)
0 ,q(i)

n

)
q(i)

0 −
n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)
q(i)
n−k + q

( j)
0 +Rnq

( j)
0 . (5.26)

Taking the inner product with q(s)
0 , s= 1, . . . ,m, we have

(
q(s)

0 ,q
( j)
n

)
=−

(
q

( j)
0 ,q(s)

n

)
−

n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)(
q(s)

0 ,q(i)
n−k
)

+ δs j +
(
q(s)

0 ,Rnq
( j)
0

)
. (5.27)

Then,

(
q

( j)
0 ,q(s)

n

)
=−

(
q(s)

0 ,q
( j)
n

)
−

n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)(
q(s)

0 ,q(i)
n−k
)

+ δs j +
(
q(s)

0 ,Rnq
( j)
0

)
. (5.28)

If we replace this equality in (5.26), we find

q
( j)
n =

m∑
i=1

(
q(i)

0 ,q
( j)
n

)
q(i)

0 +
m∑
s=1

[n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)(
q(s)

0 ,q(i)
n−k
)
− δs j −

(
q(s)

0 ,Rnq
( j)
0

)]
q(s)

0

−
n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)
q(i)
n−k + q

( j)
0 +Rnq

( j)
0 .

(5.29)
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We recall that

P(0)q
( j)
n =

m∑
i=1

(
q(i)

0 ,q
( j)
n

)
q(i)

0 . (5.30)

Then relation (5.29) becomes

(
I −P0

)
q

( j)
n =

m∑
s=1

[n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)(
q(s)

0 ,q(i)
n−k
)
− δs j −

(
q(s)

0 ,Rnq
( j)
0

)]
q(s)

0

−
n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)
q(i)
n−k + q

( j)
0 +Rnq

( j)
0 .

(5.31)

From the previous relation and the properties of the operator I −P0, we deduce

(
I −P0

)(
q

( j)
n +

n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)
q(i)
n−k −Rnq( j)

0

)
= 0. (5.32)

In other words, it is obvious that Rnq
( j)
0 /∈ Ker(L0(λ0)) for all j = 1, . . . ,m. Then

(
q

( j)
n +

n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)
q(i)
n−k −Rnq( j)

0

)
/∈ Ker

(
L0
(
λ0
))
. (5.33)

Thus, relation (5.32) means that

q
( j)
n +

n−1∑
k=1

m∑
i=1

(
q

( j)
0 ,q(i)

k

)
q(i)
n−k −Rnq( j)

0 = 0. (5.34)

(2) In order to find out the coefficients in (5.11), our method is based on expanding
the expression Lε(λ( j)(ε)) for ε near zero. To handle this, we have to expand, first, the
operator-valued function Lε(λ) around ε = 0 and so the resulting expression around λ=
λ0.

We first recall the formula (see [1] and [3, page 332])

H(1)
0 (z)= J0(z) + iY0(z), (5.35)

where J0 and Y0 are the Bessel functions

J0(z)=
+∞∑
n=0

(−1)n(
n!
)2

(
z

2

)2n

,

Y0(z)= 2
π

(
Γ0 + log

(
z

2

))
J0(z)− 2

π

+∞∑
n=1

(−1)n

(n!)2

(
z

2

)2n(
1 +

1
2

+ ··· 1
n

)
.

(5.36)
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Thus, in particular, we can write

H(1)
0 (z)= h1

(
z2)+h2

(
z2) log(z)= h1

(
z2)+

(
Γ0 + z2h3

(
z2)) log(z), (5.37)

for some entire functions h1, h2, and h3, with Γ0 being a real constant.
Combining the last result and the kernel of the operator Lε(λ) (see Proposition 3.1), we

formally obtain the following uniform expansion: for all (λ, t,s)∈Dr0 (λ0)× [0,1]× [0,1],

G(λ, t,s)= i

4
H(1)

0

(
λ
∣∣γε(t)− γε(s)∣∣)=∑

n≥0

Gn(λ, t,s)εn, (5.38)

with the Taylor coefficients

Gn(λ, t,s)= i

4n!

n∑
k=0

λk
((
β(t)−β(s),γ(t)− γ(s)

)∣∣γ(t)− γ(s)
∣∣

)k((β′(s),γ′(s)
)∣∣γ′(s)∣∣
)n−k

× dkH(1)
0

dzk
(
λ
∣∣γ(t)− γ(s)

∣∣).
(5.39)

As an immediate consequence, the following holds:

Lε(λ)=
+∞∑
n=0

Ln
(
λ
)
εn, for ε small enough. (5.40)

By considering Proposition 3.1, it seems clear that each operator Ln(λ) has kernel Gn(λ,
t,s). One also gets from (5.39) the following uniform expansion: for (t,s)∈ [0,1]× [0,1],

Gn(λ, t,s)=
+∞∑
k=0

(
λ− λ0

)k
G(n)
k (t,s), (5.41)

where λ is in a neighborhood of λ0, with the coefficients

G(n)
k (t,s)= i

4n!

n∑
i=0

k∑
l=0

1
l!(k− l)!

[(
β(t)−β(s),γ(t)− γ(s)

)]i∣∣γ(t)− γ(s)
∣∣i+l−k

×
((
β′(s),γ′(s)

)∣∣γ′(s)∣∣
)n−i dl(λi)

dλl

∣∣∣∣
λ=λ0

dk+i−l

dzk+i−l H
(1)
0

(
λ0
∣∣γ(t)− γ(s)

∣∣).
(5.42)

Now, for (ε,λ) in a neighborhood of (0,λ0), we have the following expansions:

Lε(λ)=
+∞∑
n=0

+∞∑
k=0

εn
(
λ− λ0

)k
l(n)
k , (5.43)
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where the operator l(n)
k has kernel G(n)

k (t,s). We know that λ( j)(ε)→ λ0 as ε→ 0. Then for
ε small enough, we can replace λ( j)(ε) given by (5.11) in relation (5.43), and so we obtain

Lε
(
λ( j)(ε)

)= +∞∑
n=0

( n∑
k=0

Fk,n−k

)
εn, (5.44)

where

Fn,0 = l(n)
0 ,

Fn,k =
k∑
i=1

( ∑
s1+···+si=k

λ
( j)
s1 λ

( j)
s2 ···λ( j)

si

)
l(n)
i .

(5.45)

Remember that

Lε
(
λ( j)(ε)

)
q( j)(ε)= 0, ∀ j = 1, . . . ,m. (5.46)

Then by using (5.10) and (5.44) at order n≥ 1, we can easily write

n∑
l=0

l∑
k=0

Fk,l−kq
( j)
n−l = 0. (5.47)

Thus, from (5.45) and by simple calculus, we find for n≥ 2,

λ
( j)
n =− 1∥∥∥l(0)

1 q
( j)
0

∥∥∥2

[ n∑
i=2

( ∑
s1+···+si=n

λ
( j)
s1 λ

( j)
s2 ···λ( j)

si

)(
l(0)
i q

( j)
0 , l(0)

1 q
( j)
0

)

+
n−1∑
l=0

l∑
k=0

(
Fk,l−kq

( j)
n−l, l

(0)
1 q

( j)
0

)
+

n∑
k=1

(
Fk,n−kq

( j)
0 , l(0)

1 q
( j)
0

)]
.

(5.48)

�

We now give the following lemma which seems useful to prove the fundamental result
in this section.

Lemma 5.3. Let �0 be a bounded neighborhood of Ω0 in R2. The functions ûi, j(ε)(x) =
S(λ̂ j(ε))q(i)(ε)(γ−1) are jointly analytic in the variables (x,ε)∈�0×]− ε4,ε4[.

Proof. The function ûi, j(ε)(x) = S(λ̂ j(ε))q(i)(ε)(γ−1) satisfies the Helmholtz equation
in Ωε with the boundary conditions ûi, j(ε)|∂Ωε = 0 and ∂νε ûi, j(ε)(γε(t)) = q( j)(ε)(t),
which are jointly analytic with respect to the variables (t,ε)∈ [0,1]×]− ε4,ε4[. The out-
ward unit normal νε to ∂Ωε is given by γ′ε(t)/|γ′ε(t)|, as a function of t = γ−1(x). The
symbol of the operator ∆x = ∂2

x1
+ ∂2

x2
is �(ξ1,ξ2,ε) = ξ2

1 + ξ2
2 . Thus �(νε) = 1 > 0. Since

the surface ∂Ωε is noncharacteristic for ∆x, the Cauchy-Kowaleski theorem implies that
ûi, j(ε)(x) is jointly analytic with respect to (x,ε) in {|x− γ(t)| ≤ α0}×]− ε4,ε4[, where
α0 is a positive constant. �

The following result holds.
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Theorem 5.4. Let �0 be a bounded neighborhood of Ω0 in R2. Then there exists a con-
stant ε5 > 0 smaller than ε4 such that an orthonormal basis of eigenfunctions (uj(ε)) j corre-
sponding to the λ0-group, (λj(ε)) j , in H1

0 (Ωε) can be chosen to depend holomorphically on
(x,ε)∈�0×]− ε5,ε5[. Moreover, these eigenfunctions satisfy the following uniform expan-
sion: for x ∈�0,

uj(ε)= u( j)
0 +

∑
n≥1

u
( j)
n εn, (5.49)

where the family u
( j)
0 builds a basis of eigenfunctions of (2.4) associated to λ2

0 and normalized

in L2(Ω0). The terms u
( j)
n are computed from the Taylor coefficients of q( j)(ε).

Proof. Propositions 5.1 and 5.2 imply that there exists an orthonormal basis

(q(i)(ε))1≤i≤mj(t,ε)∈H−1/2
� (]0,1[) of Ker(Lε(λ̂( j)(ε))), which is analytic in (t,ε)∈ [0,1]×

]− ε4,ε4[. We know that S(λ̂ j(ε))q(i)(ε)(γ−1) builds a basis of eigenfunctions of the eigen-

value problem (2.4) associated to λ̂2
j (ε). Using the Schmidt orthogonalization process

once again, we construct the desired orthonormal basis. Clearly, the functions (ûi, j(ε))i j ,
introduced in Lemma 5.3, build a basis of the eigenspaces corresponding to the λ0-group,
(λj(ε)) j in H1

0 (Ωε). We will now give the asymptotic expansion of these functions when
ε tends to 0. To simplify notations, we drop the subscripts i and j. Integral equations give

û(ε)(x)=
∫ 1

0
G
(
λ(ε)

∣∣x− γε(t)∣∣)q(ε)(t)
∣∣γ′ε(t)∣∣dt, x ∈�0. (5.50)

The perturbed eigenvalue λ(ε) lies in a small neighborhood of λ0 for small values of ε.
Then, there exists ε5 > 0 (ε5 ≤ ε4), such that we have the following Taylor expansion:

G
(
λ(ε)

∣∣x− γε(t)∣∣)∣∣γ′ε(t)∣∣=G(λ0
∣∣x− γ(t)

∣∣)∣∣γ′(t)∣∣+
∑
k≥1

εkGk(x, t), (5.51)

which holds uniformly in x ∈�0 and t ∈ [0,1]. We use Proposition 5.2 to write

q(ε)(t)= q0(t) +
∑
k≥1

εkqk(t), (5.52)

uniformly in t ∈ [0,1]. Substituting the last two expansions into (5.50), we find

û(ε)= û(0) +
∑
k≥1

εk
[ k∑
n=1

∫ 1

0
qk−n(t)Gn(x, t)dt

]
. (5.53)

Now we use the Schmidt orthogonalization process to construct from the eigenfunctions
(û j(ε)) j an orthonormal basis (uj(ε)) j of the direct sum of eigenspaces associated to the
λ0-group. This method allows us to compute the asymptotic expansion of these functions.

�
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