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The object of this paper is to solve a fractional integro-differential equation involving
a generalized Lauricella confluent hypergeometric function in several complex variables
and the free term contains a continuous function f(7). The method is based on cer-
tain properties of fractional calculus and the classical Laplace transform. A Cauchy-type
problem involving the Caputo fractional derivatives and a generalized Volterra integral
equation are also considered. Several special cases are mentioned. A number of results
given recently by various authors follow as particular cases of formulas established here.

1. Introduction and preliminaries

The first-order integro-differential equation of Volterra type [7, 9]

%a(r) = —ingy JOT ga(t — ¢)exp(ivg)ds (1.1)

describes the unsaturated behavior of the free electron laser (FEL). Here 7 is a dimension-
less time variable, g is a positive constant called the small signal gain, and the detuning
parameter is the constant v. The function a(7) is the complex-field amplitude which is as-
sumed to be dimensionless satisfying the initial condition a(0) = 1. The exact closed form
solution of (1.1) valid in the whole range of practical interest and suitable for numerical
calculations was given by Dattoli et al. [8].

Fractional calculus has gained importance during the last three decades or so due to
its various applications in the solution of fractional differential and fractional integral
equations arising in various problems of physics engineering and applied sciences, such
as diffusion in porous media, fractal geometry, kinematics in viscoelastic media, propa-
gation of seismic waves, anomalous diffusion, and so forth. In this connection, one can
refer to the works mentioned in [6, 12, 16, 18, 20, 21, 25].

The Riemann-Liouville operator of fractional integration of order v is defined by

D [h(x)] = ﬁ L (=) h(t)dt  (Re(v) >0), (1.2)

provided that the integral (1.2) exists.
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The Riemann-Liouville fractional derivative of order v is defined in the form [19, 20,
21, 25]

Defh(x)] = —— & Jt hwdu | ca<n), (1.3)

T T(n-a) dm ), (t — u)a—n+l

By the application of the convolution theorem of the Laplace transform [11, page 131],
we find from (1.2) that

v—1

L{D;"h(t);s} = L{t

o) }L{h(t)} = sH(s), (1.4)

where H(s) is the Laplace transform of h(t) defined by
L{h(t):s} = Loo h(e'dt = H(s), Re(s)>0, (1.5)
which may be written symbolically as follows:
H(s) = L{h(t) : s} or h(t) = LY {H(s) : t}, (1.6)
provided that the function h(t) is continuous for ¢ > 0 and of exponential order as t — .

Boyadjiev et al. [5, (7), page 4] studied the following nonhomogeneous form of frac-
tional integro-differential equation of Volterra type:

Da(r) = Ar ga(t — Q) exp(iv{)d{ + Bexp(ivt), 0=<71<1, (1.7)
0

where 5, € Cand v € R.
Al-Shammery et al. [3, (14), page 82] considered a generalization of (1.4) in the form

D¢a(r) = AJ wa(r — u)exp(ivr)du+ fexp(ivt) (0<7<1) (1.8)
0
with §,1,6 € C, v € R, Re(«) >0, and Re(§) > —1.
Al-Shammery et al. [2, (14), page 503] further studied another generalization of (1.7)
in the form
Dé¢a(r) = /\J wa(t —u)®(b, 6+ Livu)du+ pO(Y, 1;ivt), (1.9)
0
where0 <7 =<1, a,,16 € G b,b" € R, Re(ar) >0, Re(5) >0, and D(a,b;2) is the Kum-
mer confluent hypergeometric function defined in [10, (1), page 248].
Saxena and Kalla [26] derived the solution of a further generalizaion of (1.9) in the
form

D;“h(r))tj Ph(r — )D(b,8 + 1;ivu)du +ut?©(B,y + 1L;ivr), (1.10)
0

where 0 <7 <1, a,8,A,4 € C,7,b,8 € R, Re(a) >0, Re(y) >—1, Re(d) > -1.
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Recently Kilbas et al. [13] systematically studied a generalization of (1.10) in the fol-
lowing form:

D2h(x) = ij(x — B Jw(x — P h(t)dE+ f(x), (1.11)

where a < x < b; L,u,p,y € GG w € R, Re(a) >0, Re(y) >0, and f is assumed to be
Lebesgue integrable over the interval (a,b) and the function EZ,H(Z) is defined by [22]

E;)J),y(Z) = Z r( (Y)trzr (112)

S T(rp+p)(r!)’

where Re(p) > 0; (y), := I'(y +n)/T(y) is a generalization of the classical Mittag-Leftler
functions E,(z) and E, ,(2). In terms of the H-function, we have [14]

g (1-y1)
Huta = |2 o 5 ] (113)

A comprehensive account of the various generalizations of FEL equations is recently
given in a survey paper by Boyadjiev and Kalla [4]. A description of various special func-
tions appearing in this paper is available in [1, 10, 11, 31].

A detailed account of various operators of fractional integration and their applica-
tions can be found in a recent survey paper of Srivastava and Saxena [32]. An interesting
account of convolution integral equations has been given by Srivastava and Buschman
[28].

The main object of the present paper is to introduce a further generalization of (1.11)
in an interesting and unified form in which the generalized Mittag-Leffler function, the
involved kernel, is replaced by a generalized Lauricella confluent hypergeometric function
in several complex variables and the free term contains a continuous function f (7). The
method followed here in finding the solution of Cauchy-type problem (3.1) and (3.2)
and other Cauchy problems is based upon certain properties of fractional calculus and
the classical Laplace transform. The solutions derived are in closed forms and are suitable
for numerical computation.

2. Integral representations of generalized Lauricella confluent
hypergeometric function of several complex variables

The following result is quite interesting and useful as it gives the inverse Laplace trans-
forms of the product of binomial functions:

n w17 ,—:‘ﬁ _:(yl)l);---;()}nal);_

Ll{s*]_[ [1 - Tf] } A s W1tP,.. ., W, tP , (2.1)
! s
j=1 | Aiprseespn)i—i—

where A,s,y;,p,w; € C, Re(s) >0, max;<j<,|w;/sP| < 1, min; <j<, Re(p;j) >0, Re(A) > 0.
The formula (2.1) can be easily established by expanding each of the binomial functions
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appearing in (2.1) and interpreting it with the help of the formula

tr!

Lil[Sip . t] = m,

min { Re(p),Re(s)} >0, (2.2)

where the function

— —:(y1,1)5. 5 (puo 1)5—
Flioi WP, WtPn (2.3)

L ipnespn) i -

is defined for complex A,y;,pj,wj,z;j(Re(p;) >0) j = 1,...,n, in terms of a multiple series
in the following form:

0’1-)7 — Ol ()i S (YI)kl"'()’n)kJZ]fl"'Zﬁ"
Fro;750 215 Zn = ’
— - r stk Teve (ky)!
L (epnenpn) im0 kka0 Al )( )
2.4

which is a special case of the generalized Lauricella series in several complex variables,
introduced by Srivastava and Daoust [29, page 454]. According to the convergence con-
ditions investigated by Srivastava and Daoust [30, page 157] for the generalized Lauricella
series in several variables, the series in (2.4) converges for Re(p;) >0 for j = 1,...,n. Its
Mellin-Barnes type integral representation has been given by Saigo and Saxena [24, page
46] as

o = (y11)5005 (y 1)5 -
Fro) 7 ZlseeesZn
T (/\3P1’-~-a,0n)1—:—

_ 1 [ [T +s)T(=s) H (-2)"}]
T o] R My e ererevorn

dsy - - -ds,.
(2.5)

Here the contours (2;’s are given by Q; = Qis;00 (i = (=12, Re(s;) = ;) starting at the
point v; — ico and terminating at the point v; +ico; v; € R (j = 1,...,n). All the poles of
the gamma functions appearing in the integrand of (2.5) are assumed to be simple.

When #n = 1, (2.1) reduces to the generalized Mittag-Leffler function due to Prabhakar
[22] defined by (1.12), consequently the results obtained in this paper will generalize the
work reported earlier by Kilbas et al. [13].

If we take p; = - - - = p, = 1 in (2.1), we arrive at a known result [11, page 222, Art.
4.24, equation (5)], namely, if Re(s) > 0, |w;/s| < 1, min; <<, Re(p;) > 0,Re(A) > 0,,p;,p;
eC(j=1,..,n),

n w;\ Vi 1 .
L{s*ﬂ(l—!) }zmﬂICDS)[yl,...,y,,;/l;wlt,...,wnt], (2.6)
j=1
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which is defined as

(Dgn)[“lh--yan;A;Zl,...,Zn]

i (f’él)k1 T (‘xn)kn z]f1 - -z',z" 2.7)

Kiyoskn=0 ()L)k1+~~-+kn (kl)! o (kn)!

(max{lzil,...,|za} <005 A € Zy).
For n = 1, (2.1) yields the following result given by Kilbas et al. [14, page 37]; also see
[22, page 11]: if Re(s) > 0, Re(A) >0, Re(p) > 0; |w/s”| < 1; A,p,y,w,s € C, then

_ _ w\
LI#'E) (wt) :s] = s A(1— S—p) . (2.8)
Remark 2.1. Various practical problems of probability and statistics where ¢(2m)(_) ap-
pears naturally are discussed by Mathai and Saxena [17].

By the application of the well-known convolution theorem of the Laplace transform,
the following summation formula is obtained for the generalized Lauricella confluent

hypergeometric function of “#” complex variables. Let A,u,zj,p;,yj,0; € C, min{Re(A),
Re(u)} >0, minj<j<mRe(p;) >0, maxi<j<pm{lzjt? |} < oo (j = 1,...,n), then

,L[— Sy 1)s... ;(ynnzl);—]

X
j A1 pOL ] QP Z P

0 L Aipeespn)i— -
S [= (B 1)s5.5(8n i 1)s

X (x — OF TR |z (x = )P,z (x — t)P | dt (2.9)
\T (#:pla--wpn):_:_

[ +8i:1);. 5 (pu+8u:1)5—
= MU R Z21XPL, ., ZpxP .

— A+p:pryespn):i—:—
If wesetd; =--- =03, =01in (2.9), it yields
x —— [l (pa1)s—
J A o= RN [ 2 — 0P za(x — 1P | dt
0 —— . e
- (H:p1.spn) (2.10)
= s (s 1)5—
= MR Z1XPY,. L Zp X P
T Atpiproepn) i — i —
which holds under the various conditions stated along with (2.9). If we set p; = - - - =
pn = 1, then by virtue of the identity
=l 1)s5e (o 1)5— )
F?é::& Z15..+5Zn = W(Dgn)[0(1,...,0(,1;/1;21,...,2,1], (211)
= (LL,...,1) @)
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the generalized Lauricella confluent hypergeometric function reduces to the Lauricella
confluent hypergeometric function @Y (-) of “n” variables, and consequently we arrive
at the following result recently given by Srivastava and Saxena [33]:

J tl 1 ” 1(1) n)[al) )an:A;Alt,...,Ant]
O [byy.., bus s hi (x = 1), A (x — )]t (2.12)
=B(A,y)x“"’1®z (a1 +b1y..rn+ b+ A1, .. Anx],

where min{Re(1),Re(¢)} >0, max{[A;x|,..., [Apx|} < c0.
Ifwesetb; =--- =b,=0in(2.12), it yields

I A (x — t)/‘*ld)gn)[al,...,an;)t;)tlx,...,)t,,x]dt
0 (2.13)

= B()L,‘u)q)é") [at,..csamA+pshix,.. Aux],

where min{Re(1),Re(y)} >0, max{|A,xl,...,[A.x]} < oo.

When n = 1, we obtain the following result for the generalized Mittag-Leffler functions
due to Kilbas et al. [13].

Let a,p,y,6,A,u4,z € C, Re(p) >0, Re(A) >0, Re(u) >0, |zx”| < 1, then

L tA*IEZ’A(th) (x— t)“*lEg,H[z(x —t)f]dt = x“”’lEZ;i# (zxP). (2.14)

Let y,u,p,z € C, min{Re(A),Re(u)} >0, Re(p) >0, then if we set § = 1, (2.14) reduces
to

X
_ _ _ 1
L B (267 (x = O Epy 2 — ] = #HIEN, (anf), (2.15)

where min{Re(1),Re(u)} > 0; |A#] < 1. It is interesting to note that by virtue of the identity
[13, (1.8), page 379], we arrive at a well-known result [10, (15), page 271]:

t
J PNt — w)E T D[y, A zu) D[ 8, s z(t — w) | dt = B, )M D(y + 8,4 + s zt),

0

(2.16)

where min{Re(1),Re(y)} > 0.

Remark 2.2. A detailed and comprehensive account of the multiple Gaussian hypergeo-
metric functions is available from Srivastava and Karlsson [31].

The following result will be found useful in the analysis that follows [19, 21]:

L{,D¥h(t)} = s*H(s) — Zs“ Ipeklpt) ],y (n—1<Re(a) <n). (2.17)
k=0
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3. Solution of the generalized fractional integro-differential equation

TaEOREM 3.1. Consider the following generalized integro-differential equation of Volterra
type:

7L rpnenpn) o

n

. S = (o 1) (o 1)5—
Dthtr) = [ 0k~ ORER | 0wt |deuf, GO
0 )

where 0 < 7 < 1; k,y,4,aj,pj,w; € GG min{Re(a),Re(y)} >0; Re(p;) >0 (j = 1,...,n), to-
gether with the initial conditions

D*n(t)| =ar (k=1,...,N),
(3.2)

(N:=—[—Re(a)] : N—1<Re(a) <N; N €N),

where ay,...,an are prescribed constants and f(t) is assumed to be continuous on every
finite closed interval [0,T] (0 < T < o), and of exponential order exp(nt) when T — oo,
Then there exists a unique continuous solution of the Cauchy-type problem (3.1) and (3.2)
given by

N T
h(r) = ZakAk(xHujo O(r — {) f()dC, (3.3)
k=1
where
Ak(T _ ¢ Z Kr.[(aer)r

Tla+(a+y)r—k+1]

,_3; —i(ar:1)5. 5 (s 1);— (3.4)
XF?;(%;;.-.-.-;;& w1TP‘,...,wnTPn ,
(

| (atar+yr—k+1:pr,...,pn):i—:—

K" (tx+ ) z—L ((le' 1) ((an 1)
O(r) =1 IZ—Y iy WP, ., W, TP ) (3.5)
Tla+(a+yyr] - (atar+yripi,..pn):i—:—

Proof. Applying the Laplace transform to (3.1) and using (2.17), we find that

N n -
SH() - 3 DS h(r) | = []‘[( Sp]) }H(S)WF(S), (3.6)

k=1 j=1

min{Re(«),Re(y)} >0, Re(s) >0, where H(s) and F(s) represent, respectively, the Laplace
transform of the functions h(7) and f (7).
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Solving (3.6) under the initial conditions (3.2), we find that

S scifeo9) "]

k=1

+;4F(s)[1 - Ks*“*)’ﬁ ( - %)aj}_la

(3.7)

where it is tacitly assumed that

i)

j=1

<1 (3.8)

By the application of the formula (2.1) once again, it is found from (3.7) that
K" Ta+((x+y)r7k
h(z) = ZAkl"[oc+ (a+y)r—k+1]

k=1
—_ —:(oqr:1);.. 5 (apr:1);—
) W1 TP, W, TP
T (atar+yr—k+1:pi,...,pn) i —:—

(T )zx+(a+y)r 1
+z J [la+ (a+y)r]

ﬁ[ —1(061711);.-.;(0cnr: 1);—
(

(3.9)

XFign | ol =0 wu(t =P | FOdC

T | (ar+yr+aipr,.,pa) - —
The above expression can be expressed in the form (3.3). This completes the proof of
Theorem 3.1. O

In order to establish the uniqueness of the solution (3.3), we set { — 7 — { in (3.1) and
operate upon both sides by D;%(Re(«) > 0). Next, if we apply the Dirichlet formula [25]
and make use of the Eulerian integral for the Beta function, we arrive at the following
equation:

B ,_,”H — (o 1) 5 (00 1);—
h(t) = uD;*f (1) + "L h(g)(r — Q™ FY i | wi(7 = 9P, wa(T — 0P | de.
——

M (+y:pryecspn):—:—
(3.10)

Since (3.10) is a Volterra integral equation with a continuous kernel, it does admit a
unique continuous solution (see [15]).

Remark 3.2. The solution of the Cauchy-type problem (3.1) and (3.2) can also be devel-
oped by the method of successive approximations. In this connection, see [13, 23].
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4. Special cases of Theorem 3.1

If we set
pr=---=pp=1, (4.1)

then by virtue of the identity (2.10), we arrive at the following result recently obtained by
Srivastava and Saxena [33].

CoROLLARY 4.1. Under the various relevant hypotheses of Theorem 3.1, a unique continuous
solution of the Cauchy-type problem involving the Volterra-type integro-differential equation

D%h(t) = JCV Tt = OO [as... o : y;01G,.. ., wa(dt +uf (1), (4.2)

where 0 < 7 < 1, aj,x,y,4 € C, min{Re(a),Re(y)} >0, together with the initial conditions
(3.2), is given by

N T
o) = S au(n)+ yL B(r - 1) (1)L, (4.3)
k=1

where

e kz KrT(oH—y)r
[[(a+y)r+a—k+1]

><®2 [(xlr, o (a+ P r+a—k+ LwT,...,0nt] (k=1,...,N),
(4.4)

rT(oc+y)r

[I]

Z -@;”)[oclr,...,ocnr;(x+(oc+y)r;a)1‘r,...,wn1]. (4.5)

[la+ (a+y)r]

If we take n = 1, then Theorem 3.1 reduces to the following result given by Kilbas et al.
[13].

COROLLARY 4.2. Under the various relevant hypotheses of Theorem 3.1, a unique continuous
solution of the Cauchy-type problem involving the Volterra-type integro-differential equation

D%h(t) = KJ: (Ut - QB u[wlP]dE + (1), (4.6)

0<7=<1LK7p wu € C min{Re(a),Re(y),Re(w),Re(u)} >0, together with the initial
conditions (3.2), is given by

N

W = Y (e j 01 (r — O f(dL, (4.7)
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where

\Pk(() = Taik Z KrT(a+H)rEgra+(a+y)r k+1 (pr) (k =1... ’N)’
=0 (4.8)

O1(1) == x*"" > xr@HrE" (@),

prot(atp)r
r=0

If we set p = 1 and use the identity [13, (1.8), page 379], Corollary 4.2 reduces to the
following result given by Kilbas et al. [13, (4.8), page 391].

CoROLLARY 4.3. Under the various relevant hypotheses of Theorem 3.1, a unique continuous
solution of the Cauchy-type problem involving the Volterra-type integro-differential equation

Deh(r J O Wh(r = O0F) (B M)A+ pf (7) (4.9)

(0=<71=<1,pB9xuecC min{Re(x),Re(y)} >0), together with the initial conditions (3.2),
is given by

N T
h(r) = Zakskmwfo 8z — () f (), (4.10)
k=1

where

. K (oc+y)r
e
' z Tla+(a+y)r—k+1)

1Fi(fr;a+ (a+y)r—k+1;A1) (k=1,...,N),

0 iy KT A
(T) =T ;ml 1([31’,06*’(0(‘1‘)2)1‘, T).
(4.11)
Remark 4.4. In its further special case, when
1 s
f(T) - WT IFI(P)(S)(UT)) (412)

then if we apply the integral addition formula (2.17), Corollary 4.3 would yield the main
result of Saxena and Kalla [26, Theorem 1, page 91], which itself is a generalization of the
result given earlier by Al-Shammery et al. [2, (14), page 504].

Next, if we set

w1 TP, ., W, TP
= (Viprespn) i — i —

(4.13)

.....

HH[— (80 1)5... ;(5,,;1);_]

and apply the general (multivariable) integral addition formula (2.9), then Theorem 3.1
gives us the following result.
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COROLLARY 4.5. Under the various relevant hypotheses of Theorem 3.1, a unique continuous
solution of the Cauchy-type problem involving the Volterra-type integro-differential equation

. S =(ar 1) (o 1)5—
Dehx) = | O i - OFf B A

n )’3/31, )Pn)-_-_ (4 14)
= (01)5.5(80,1)5— '
+ut R WITPY. ., W, TP
Hr:—J (V:Pl)'-wpn):_ -

O0O=<7t=<1 K,y,y,v,ocj,(?j,a)j,pj € G min{Re(a),Re(y),Re(v)} > 0), Re(p;) >0 (j =
1,...,n), with the initial conditions (3.2) is given by

N
h(7) := >  AxAk(T) + uA(T), (4.15)
k=1
where
o @ = (ar+81:1)5 s (aur + 8, 1) —
A7) := 7%~ 12 —_— ?éé w1 TP, .., w, TP ,
Tla+(a+yyr] | (ar+yr+a+vipr,..pn)i—:—

(4.16)
and Ay’s are given in (3.4).

5. A Cauchy-type problem involving the Caputo fractional derivatives

In connection with certain investigations, especially in the theory of viscoelasticity and
hereditary solid mechanics, Caputo introduced the following definition for the fractional
derivative of order « > 0 of a casual function f(¢) (i.e., f(t) = 0, for t < 0), which arose in
several important earlier works (see, for details [21, page 78]):

L= H W) (a=meNg=NU{0}) (5.1)
R R G .
e b e m-l<a<mmeN),  (52)

where h"(t) denotes the usual (ordinary) derivative of h(t) of order m (m € Ny). It
readily follows from the definitions (1.5) and (5.1) that

{%h(t) S} —S“H S) ZS“ k— lh k) (m—l<oc§m; me N), (53)

which is preferred for initial-value problems of physical sciences than (2.17), H(s) is given
by (1.5).

The method of proof of Theorem 3.1 can now be applied mutatis mutandis in order
to solve the following Cauchy problem involving Caputo derivatives defined by (5.1).
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THEOREM 5.1. Consider the following generalized fractional integro-differential equation of
Volterra type

d« T ,—i—‘ —:((Xlzl);...;(oc,,:l);—
dTah(T) = KI O h(r = OFi W1 GPL,..., @, CPr di+uf(r),  (5.4)
0 — (Yipireeorpn) i =1 —

where 0 < 7 < 1; &,u,aj,pj,w; € GG min{Re(a),Re(y)} >0; Re(p;) >0 (j = 1,...,n), to-
gether with the initial conditions

dk

Th@] g =be (k=1,...N) (5.5)

(N := —[-Re(a)]; N—1<Re(a) < N; N € N), where by,...,by are prescribed constants
and f (1) is constrained as in Theorem 3.1.Then there exists a unique continuous solution of
the Cauchy-type problem (5.4) and (5.5) given by

N T
TOEDY bkAk(x>+uj0 O(r— () f(O)dL, (5.6)
k=1

where Ai(7) (k =1,...,N) and O(t) are already defined by (3.4) and (3.5), respectively.

Clearly, the assertions of Theorems 3.1 and 5.1 would coincide when we set
a=N (NeN). (5.7)

More interestingly, it is fairly straightforward to apply Theorem 5.1 in order to deduce
analogues of Corollaries 4.1 and 4.2 for the corresponding Cauchy problems involving the
Caputo fractional derivatives defined by (5.1). For example, by taking p; = - - - =p, =1,
it yields the following analogues of Corollary 4.1 dealing with a more general Cauchy
problem than that associated with FEL equation (1.1).

CoROLLARY 5.2. Under the various relevant hypotheses of Theorem 3.1, a unique continuous
solution of the Cauchy-type problem involving the Volterra-type integro-differential equation

D%h(r) = %y) IOT O h(r = OO [ar, ..oty : y;010,...,w,(dt + f (1), (5.8)

where 0 < 7 < 1, y,a;,k€C, min{Re(a),Re(y)} > 0, together with the initial conditions
(3.2) is given by

N T
hr) = S beQu(r) +J E(r - O f(ndt, (5.9)
k=1 0

where Qi(t) (k = 1,...,n) and E(7) are defined by (4.4) and (4.5), respectively.
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6. Solution of the generalized Volterra integral equation

In this section, we present a generalization of the Volterra integral equation quite recently
given by Srivastava and Saxena [33].

THEOREM 6.1. The Volterra-type integral equation

i [ —ilas1)s (@ 1)
D;Vh(T)=KJ (1= OV QOFYE L w1 (t = Oyt = 0P | dC+uf(z)  (6.1)
0 o ()’lph...,pn);_;_

n

has its solution given explicitly by

h(t) = —yin” JOT (r—mtryryd (%f(())

S (=alr+1): )55 (—an(r+1):1);— (6.2)

X F?::(;;;.‘.‘.‘;;é w(T =P (T = ()P
— (M+Vr = Pr —opeespn) i — 1 —

n

(0 < Re(y) <min{m,v}; f € C"[0,00); fD(0)=0(j=0,1,...,(m—1);meN; x,u € G
v = 0). Re(p;) >0).

Proof. In view of the results (1.4) and (2.1), if we apply the Laplace transform operator
on both sides of Volterra integral equation (6.1), it readily follows that

H(s) = uF(s) [ﬂ _ st]ﬁ { (1 - %)7%}71], (6.3)

v = 0; Re(y) >0, Re(s) > max{0,Re(w;),Re(rn)}, max,<j<,lw;/sPi| < 1, Re(p;) >0 (j =
1,...,n), where F(s) and H(s) denote the Laplace transforms of f(7) and h(7), respec-
tively.

Now, if we assume that

n w; —aj
17 _ oY _
K 'S KS 11_11{(1 st) }

it is found from (6.3) that

-1
<1, (6.4)

0 ' m wj aj(r+l)
H(s) = —u > & 1m0 [ | {( -9 }[smF(s)]
r=0 j=1

(0 < Re(y) < min{m,v}; me N; v>0),

(6.5)

which leads us easily to the desired result (6.2) under the conditions stated along with
Theorem 6.1. O
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When p; = - - - = p, = 1, then using the relation (2.12), it immediately yields the fol-

lowing result recently given by Srivastava and Saxena [33], which itself is a generalization
of Srivastava’s result [27].

COROLLARY 6.2. The Volterra-type integral equation

T _ =1
D;"h(1) = KL %h(()

O [y, @3 Y301 (T = )y 0 (T = )] A+ puf ()

(6.6)

has its solution given explicitly by

B T C)m-%—(v y)r—y-1 am
h(r) = —#ZK -l (

o I(m+(v—y)r—y) d(’”f(())

. (1)2 [—ocl(r+ 1)eco,—u(r+1)sm+(v—y)r —ps1(t = {),..., w0 (7 = {)]dC
(6.7)

(0 < Re(y) < min{m,v}; f € C"[0,0); f(0)=0(j=0,1,....m—1); me N; x,u € G
v >0).
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