ON HORIZONTAL AND COMPLETE LIFTS FROM A MANIFOLD WITH $f_{\lambda}(7,1)$-STRUCTURE TO ITS COTANGENT BUNDLE

LOVEJOY S. DAS, RAM NIVAS, AND VIRENDRA NATH PATHAK

Received 1 August 2003

The horizontal and complete lifts from a manifold M^{n} to its cotangent bundles $\stackrel{*}{T}\left(M^{n}\right)$ were studied by Yano and Ishihara, Yano and Patterson, Nivas and Gupta, Dambrowski, and many others. The purpose of this paper is to use certain methods by which $f_{\lambda}(7,1)$ structure in M^{n} can be extended to $\stackrel{*}{T}\left(M^{n}\right)$. In particular, we have studied horizontal and complete lifts of $f_{\lambda}(7,1)$-structure from a manifold to its cotangent bundle.

1. Introduction

Let M be a differentiable manifold of class c^{∞} and of dimension n and let $C_{\text {TM }}$ denote the cotangent bundle of M. Then C_{TM} is also a differentiable manifold of class c^{∞} and dimension $2 n$.

The following are notations and conventions that will be used in this paper.
(1) $\mathfrak{J}_{s}^{r}(M)$ denotes the set of tensor fields of class c^{∞} and of type (r, s) on M. Similarly, $\mathfrak{J}_{s}^{r}\left(C_{\mathrm{TM}}\right)$ denotes the set of such tensor fields in C_{TM}.
(2) The map Π is the projection map of C_{TM} onto M.
(3) Vector fields in M are denoted by X, Y, Z, \ldots and Lie differentiation by L_{X}. The Lie product of vector fields X and Y is denoted by $[X, Y]$.
(4) Suffixes $a, b, c, \ldots, h, i, j, \ldots$ take the values 1 to n and $\bar{i}=i+n$. Suffixes A, B, C, \ldots take the values 1 to $2 n$.

If A is a point in M, then $\Pi^{-1}(A)$ is fiber over A. Any point $p \in \Pi^{-1}(A)$ is denoted by the ordered pair $\left(A, p_{A}\right)$, where p is 1 -form in M and p_{A} is the value of p at A. Let U be a coordinate neighborhood in M such that $A \in U$. Then U induces a coordinate neighborhood $\Pi^{-1}(U)$ in C_{TM} and $p \in \Pi^{-1}(U)$.

2. Complete lift of $f_{\lambda}(7,1)$ - structure

Let $f(\neq 0)$ be a tensor field of type $(1,1)$ and class c^{∞} on M such that

$$
\begin{equation*}
f^{7}+\lambda^{2} f=0, \tag{2.1}
\end{equation*}
$$

1292

where λ is any complex number not equal to zero. We call the manifold M satisfying (2.1) as $f_{\lambda}(7,1)$-structure manifold. Let f_{i}^{h} be components of f at A in the coordinate neighborhood U of M. Then the complete lift f^{c} of f is also a tensor field of type (1,1) in C_{TM} whose components \tilde{f}_{B}^{A} in $\Pi^{-1}(U)$ are given by [2]

$$
\begin{align*}
& \tilde{f}_{i}^{h}=f_{i}^{h} ; \quad f_{\bar{i}}^{h}=0, \tag{2.2}\\
& \tilde{f}_{i}^{\bar{h}}=P_{a}\left(\frac{\partial f_{h}^{a}}{\partial x^{i}} \frac{\partial f_{i}^{a}}{\partial x^{h}}\right) ; \quad \tilde{f}_{\bar{i}}^{\bar{h}}=f_{h}^{i}, \tag{2.3}
\end{align*}
$$

where $\left(x^{1}, x^{2}, \ldots, x^{n}\right)$ are coordinates of A relative to U and p_{A} has a component (p_{1}, p_{2}, $\left.\ldots, p_{n}\right)$.

Thus we can write

$$
f^{C}=\left(\tilde{f}_{B}^{A}\right)=\left(\begin{array}{cc}
f_{i}^{h} & 0 \tag{2.4}\\
p_{a}\left(\partial_{i} f_{h}^{a}-\partial_{h} f_{i}^{a}\right) & f_{h}^{i}
\end{array}\right),
$$

where $\partial_{i}=\partial / \partial x^{i}$.
If we put

$$
\begin{equation*}
\partial_{i} f_{h}^{a}-\partial_{h} f_{i}^{a}=2 \partial\left[i f_{h}^{a}\right] \tag{2.5}
\end{equation*}
$$

then we can write (2.4) in the form

$$
f^{C}=\left(f_{B}^{A}\right)=\left(\begin{array}{cc}
f_{i}^{h} & 0 \tag{2.6}\\
2 p_{a} \partial\left[i f_{h}^{a}\right] & f_{h}^{i}
\end{array}\right)
$$

Thus we have

$$
\left(f^{C}\right)^{2}=\left(\begin{array}{cc}
f_{i}^{h} & 0 \tag{2.7}\\
2 p_{a} \partial\left[i f_{h}^{a}\right] & f_{h}^{i}
\end{array}\right)\left(\begin{array}{cc}
f_{j}^{i} & 0 \\
2 p_{t} \partial\left[j f_{i}^{t}\right] & f_{i}^{j}
\end{array}\right),
$$

or

$$
\left(f^{C}\right)^{2}=\left(\begin{array}{cc}
f_{i}^{h} f_{j}^{i} & 0 \tag{2.8}\\
2 p_{a} f_{j}^{l} \partial\left[i f_{h}^{a}\right]+2 p_{t} f_{h}^{i} \partial\left[j f_{i}^{t}\right] & f_{i}^{j} f_{h}^{i}
\end{array}\right) .
$$

If we put

$$
\begin{equation*}
2 p_{a} f_{j}^{l} \partial\left[i f_{h}^{a}\right]+2 p_{t} f_{h}^{i} \partial\left[j f_{i}^{t}\right]=L_{h j} \tag{2.9}
\end{equation*}
$$

then (2.8) takes the form

$$
\left(f^{C}\right)^{2}=\left(\begin{array}{cc}
f_{i}^{h} f_{j}^{i} & 0 \tag{2.10}\\
L_{h j} & f_{i}^{j} f_{h}^{i}
\end{array}\right)
$$

Thus we have

$$
\left(f^{C}\right)^{4}=\left(\begin{array}{cc}
f_{i}^{h} f_{j}^{i} & 0 \tag{2.11}\\
L_{h j} & f_{i}^{j} f_{h}^{i}
\end{array}\right)\left(\begin{array}{cc}
f_{k}^{j} f_{l}^{k} & 0 \\
L_{j l} & f_{k}^{l} f_{j}^{k}
\end{array}\right),
$$

or

$$
\left(f^{C}\right)^{4}=\left(\begin{array}{cc}
f_{i}^{h} f_{j}^{i} f_{k}^{j} f_{l}^{k} & 0 \tag{2.12}\\
f_{k}^{j} f_{l}^{k} L_{h j}+f_{i}^{j} f_{h}^{i} L_{j l} & f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i}
\end{array}\right) .
$$

Putting again

$$
\begin{equation*}
f_{k}^{j} f_{l}^{k} L_{h j}+f_{i}^{j} f_{h}^{i} L_{j l}=P_{h l}, \tag{2.13}
\end{equation*}
$$

then we can put (2.12) in the form

$$
\left(f^{C}\right)^{4}=\left(\begin{array}{cc}
f_{i}^{h} f_{j}^{i} f_{k}^{j} f_{l}^{k} & 0 \tag{2.14}\\
P_{h l} & f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i}
\end{array}\right) .
$$

Thus,

$$
\begin{gather*}
\left(f^{C}\right)^{6}=\left(\begin{array}{cc}
f_{i}^{h} f_{j}^{i} f_{k}^{j} f_{l}^{k} & 0 \\
P_{h l} & f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i}
\end{array}\right)\left(\begin{array}{cc}
f_{m}^{l} f_{n}^{m} & 0 \\
L_{l n} & f_{m}^{n} f_{l}^{m}
\end{array}\right), \tag{2.15}\\
\left(f^{C}\right)^{6}=\left(\begin{array}{cc}
f_{i}^{h} f_{j}^{i} f_{k}^{j} f_{l}^{k} f_{m}^{l} f_{n}^{m} & 0 \\
P_{h l} f_{m}^{l} f_{n}^{m}+L_{l n} f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i} & f_{m}^{n} f_{l}^{m} f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i}
\end{array}\right) . \tag{2.16}
\end{gather*}
$$

Putting again

$$
\begin{equation*}
P_{h l} f_{m}^{l} f_{n}^{m}+L_{l n} f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i}=Q_{h n} \tag{2.17}
\end{equation*}
$$

then (2.16) takes the form

$$
\left(f^{C}\right)^{6}=\left(\begin{array}{cc}
f_{i}^{h} f_{j}^{i} f_{k}^{j} f_{l}^{k} f_{m}^{l} f_{n}^{m} & 0 \tag{2.18}\\
Q_{h n} & f_{m}^{n} f_{l}^{m} f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i}
\end{array}\right)
$$

Thus,

$$
\begin{gather*}
\left(f^{C}\right)^{7}=\left(\begin{array}{cc}
f_{i}^{h} f_{j}^{i} f_{k}^{j} f_{l}^{k} f_{m}^{l} f_{n}^{m} & 0 \\
Q_{h n} & f_{m}^{n} f_{l}^{m} f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i}
\end{array}\right)\left(\begin{array}{cc}
f_{p}^{n} & 0 \\
2 p_{r} \partial\left[p f_{n}^{r}\right] & f_{n}^{p}
\end{array}\right), \tag{2.19}\\
\left(f^{C}\right)^{7}=\left(\begin{array}{cc}
f_{i}^{h} f_{j}^{i} f_{k}^{j} f_{l}^{k} f_{m}^{l} f_{n}^{m} f_{p}^{n} & 0 \\
Q_{h n} f_{p}^{n}+2 p_{r} \partial\left[p f_{n}^{r}\right] f_{m}^{n} f_{l}^{m} f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i} & f_{n}^{p} f_{m}^{n} f_{l}^{m} f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i}
\end{array}\right) \tag{2.20}
\end{gather*}
$$

In view of (2.1), we have

$$
\begin{equation*}
f_{i}^{h} f_{j}^{i} f_{k}^{j} f_{l}^{k} f_{m}^{l} f_{n}^{m} f_{p}^{n}=-\lambda^{2} f_{p}^{h} \tag{2.21}
\end{equation*}
$$

and also putting

$$
\begin{equation*}
Q_{h n} f_{p}^{n}+2 p_{r} \partial\left[p f_{n}^{r}\right] f_{m}^{n} f_{l}^{m} f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i}=-\lambda^{2} p_{s} \partial\left[p f_{h}^{s}\right] \tag{2.22}
\end{equation*}
$$

then (2.20) can be given by

$$
\left(f^{C}\right)^{7}=\left(\begin{array}{cc}
-\lambda^{2} f_{p}^{n} & 0 \tag{2.23}\\
-\lambda^{2} p_{s} \partial\left[p f_{h}^{s}\right] & -\lambda^{2} f_{h}^{p}
\end{array}\right)
$$

In view of (2.6) and (2.23), it follows that

$$
\begin{equation*}
\left(f^{C}\right)^{7}+\lambda^{2}\left(f^{C}\right)=0 \tag{2.24}
\end{equation*}
$$

Hence the complete lift f^{C} of f admits an $f_{\lambda}(7,1)$-structure in the cotangent bundle $C_{\text {TM }}$.

Thus we have the following theorem.
Theorem 2.1. In order that the complete lift of f^{C} of a $(1,1)$ tensor field f admitting $f_{\lambda}(7,1)$-structure in M may have the similar structure in the cotangent bundle C_{TM}, it is necessary and sufficient that

$$
\begin{equation*}
Q_{h n} f_{p}^{n}+2 p_{r} \partial\left[p f_{n}^{r}\right] f_{m}^{n} f_{l}^{m} f_{k}^{l} f_{j}^{k} f_{i}^{j} f_{h}^{i}=-\lambda^{2} p_{s} \partial\left[p f_{h}^{s}\right] . \tag{2.25}
\end{equation*}
$$

3. Horizontal lift of $f_{\lambda}(7,1)$-structure

Let f, g be two tensor fields of type $(1,1)$ on the manifold M. If f^{H} denotes the horizontal lift of f, we have

$$
\begin{equation*}
f^{H} g^{H}+g^{H} f^{H}=(f g+g f)^{H} . \tag{3.1}
\end{equation*}
$$

Taking f and g identical, we get

$$
\begin{equation*}
\left(f^{H}\right)^{2}=\left(f^{2}\right)^{H} . \tag{3.2}
\end{equation*}
$$

Multiplying both sides by f^{H} and making use of the same (3.2), we get

$$
\begin{equation*}
\left(f^{H}\right)^{3}=\left(f^{3}\right)^{H} \tag{3.3}
\end{equation*}
$$

and so on. Thus it follows that

$$
\begin{equation*}
\left(f^{H}\right)^{4}=\left(f^{4}\right)^{H}, \quad\left(f^{H}\right)^{5}=\left(f^{5}\right)^{H} \tag{3.4}
\end{equation*}
$$

and so on. Thus,

$$
\begin{equation*}
\left(f^{H}\right)^{7}=\left(f^{7}\right)^{H} . \tag{3.5}
\end{equation*}
$$

Since f gives on M the $f_{\lambda}(7,1)$-structure, we have

$$
\begin{equation*}
f^{7}+\lambda^{2} f=0 \tag{3.6}
\end{equation*}
$$

Taking horizontal lift, we obtain

$$
\begin{equation*}
\left(f^{7}\right)^{H}+\lambda^{2}\left(f^{H}\right)=0 . \tag{3.7}
\end{equation*}
$$

In view of (3.5) and (3.7), we can write

$$
\begin{equation*}
\left(f^{H}\right)^{7}+\lambda^{2}\left(f^{H}\right)=0 . \tag{3.8}
\end{equation*}
$$

Thus the horizontal lift f^{H} of f also admits a $f_{\lambda}(7,1)$-structure. Hence we have the following theorem.

Theorem 3.1. Let f be a tensor field of type $(1,1)$ admitting $f_{\lambda}(7,1)$-structure in M. Then the horizontal lift f^{H} of f also admits the similar structure in the cotangent bundle C_{TM}.

4. Nijenhuis tensor of complete lift of f^{7}

The Nijenhuis tensor of a $(1,1)$ tensor field f on M is given by

$$
\begin{equation*}
N_{f, f}(X, Y)=[f X, f Y]-f[f X, Y]-f[X, f Y]+f^{2}[X, Y] . \tag{4.1}
\end{equation*}
$$

Also for the complete lift of f^{7}, we have

$$
\begin{align*}
N\left(f^{7}\right)^{C},\left(f^{7}\right)^{C}\left(X^{C}, Y^{C}\right)= & {\left[\left(f^{7}\right)^{C} X^{C},\left(f^{7}\right)^{C} Y^{C}\right]-\left(f^{7}\right)^{C}\left[\left(f^{7}\right)^{C} X^{C}, Y^{C}\right] } \tag{4.2}\\
& -\left(f^{7}\right)^{C}\left[X^{C},\left(f^{7}\right)^{C} Y^{C}\right]+\left(f^{7}\right)^{C}\left(f^{7}\right)^{C}\left[X^{C}, Y^{C}\right] .
\end{align*}
$$

In view of (2.1), the above (4.2) takes the form

$$
\begin{align*}
& N\left(f^{7}\right)^{C},\left(f^{7}\right)^{C}\left(X^{C}, Y^{C}\right) \\
&= {\left[\left(-\lambda^{2} f\right)^{C} X^{C},\left(-\lambda^{2} f\right)^{C} Y^{C}\right]-\left(-\lambda^{2} f\right)^{C}\left[\left(-\lambda^{2} f\right)^{C} X^{C}, Y^{C}\right] } \tag{4.3}\\
&-\left(-\lambda^{2} f\right)^{C}\left[X^{C},\left(-\lambda^{2} f\right)^{C} Y^{C}\right]+\left(-\lambda^{2} f\right)^{C}\left(-\lambda^{2} f\right)^{C}\left[X^{C}, Y^{C}\right],
\end{align*}
$$

or

$$
N\left(f^{7}\right)^{C},\left(f^{7}\right)^{C}\left(X^{C}, Y^{C}\right)=\lambda^{4}\left\{\begin{array}{c}
{\left[(f)^{C} X^{C},(f)^{C} Y^{C}\right]-(f)^{C}\left[(f)^{C} X^{C}, Y^{C}\right]} \tag{4.4}\\
-(f)^{C}\left[X^{C},(f)^{C} Y^{C}\right]+(f)^{C}(f)^{C}\left[X^{C}, Y^{C}\right]
\end{array}\right\} .
$$

We also know that [3]

$$
\begin{equation*}
(f)^{C} X^{C}=(f X)^{C}+v\left(\mathscr{L}_{X} f\right) \tag{4.5}
\end{equation*}
$$

where $v f$ has components

$$
\begin{equation*}
v f=\binom{O^{a}}{P_{a} f_{i}} . \tag{4.6}
\end{equation*}
$$

In view of (4.5), (4.4) takes the form

$$
\begin{align*}
& N\left(f^{7}\right)^{C},\left(f^{7}\right)^{C} X^{C}, Y^{C} \\
& \quad=\lambda^{4}\left\{\begin{array}{c}
{\left[(f X)^{C},(f Y)^{C}\right]+\left[v\left(\mathscr{L}_{X} f\right),(f Y)^{C}\right]+\left[(f X)^{C}, v\left(\mathscr{L}_{Y} f\right)\right]} \\
+\left[v\left(\mathscr{L}_{X} f\right), v\left(\mathscr{L}_{Y} f\right)\right]-(f)^{C}\left[(f X)^{C}, Y^{C}\right]-(f)^{C}\left[v\left(\mathscr{L}_{X} f\right), Y^{C}\right] \\
-(f)^{C}\left[X^{C},(f Y)^{C}\right]-(f)^{C}\left[X^{C}, v\left(\mathscr{L}_{Y} f\right)^{C}\right]+(f)^{C}(f)^{C}\left[X^{C}, Y^{C}\right]
\end{array}\right\} . \tag{4.7}
\end{align*}
$$

We now suppose that

$$
\begin{equation*}
\mathscr{L}_{X} f=\mathscr{L}_{Y} f=0 . \tag{4.8}
\end{equation*}
$$

Then from (4.7), we have

$$
N\left(f^{7}\right)^{C},\left(f^{7}\right)^{C}\left(X^{C}, Y^{C}\right)=\lambda^{4}\left\{\begin{array}{c}
{\left[(f X)^{C},(f Y)^{C}\right]-(f)^{C}\left[(f X)^{C}, Y^{C}\right]} \tag{4.9}\\
-(f)^{C}\left[X^{C},(f Y)^{C}\right]+(f)^{C}(f)^{C}\left[X^{C}, Y^{C}\right]
\end{array}\right\} .
$$

Further, if f acts as an identity operator on M [2], that is,

$$
\begin{equation*}
f X=X \quad \forall X \in \mathfrak{I}_{0}^{1}(M), \tag{4.10}
\end{equation*}
$$

then we have from (4.9)

$$
\begin{equation*}
N\left(f^{7}\right)^{C},\left(f^{7}\right)^{C}\left(X^{C}, Y^{C}\right)=\lambda^{8}\left\{\left[X^{C}, Y^{C}\right]-\left[X^{C}, Y^{C}\right]-\left[X^{C}, Y^{C}\right]+\left[X^{C}, Y^{C}\right]\right\}=0 \tag{4.11}
\end{equation*}
$$

Hence we have the following theorem.
Theorem 4.1. The Nijenhuis tensor of the complete lift of f^{7} vanishes if the Lie derivatives of the tensor field f with respect to X and Y are both zero and f acts as an identity operator on M.

References

[1] R. Dombrowski, On the geometry of the tangent bundle, J. reine angew. Math. 210 (1962), 7388.
[2] V. C. Gupta and R. Nivas, On problems relating to horizontal and complete lifts of ϕ_{μ} structure, Nepali Math Sciences Reports, Nepal, 1985.
[3] K. Yano and S. Ishihara, Tangent and Cotangent Bundles: Differential Geometry, Marcel Dekker, New York, 1973.
[4] K. Yano and E. M. Patterson, Horizontal lifts from a manifold to its cotangent bundle, J. Math. Soc. Japan 19 (1967), 185-198.

Lovejoy S. Das: Department of Mathematics, Kent State University Tuscarawas, New Philadelphia, OH 44663, USA

E-mail address: 1das@kent.edu
Ram Nivas: Lucknow University, Lucknow, UP 226007, India
E-mail address: rnivas@sify.com
Virendra Nath Pathak: Lucknow University, Lucknow, UP 226007, India

