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A ring is called semi-weakly periodic if each element which is not in the center or the
Jacobson radical can be written as the sum of a potent element and a nilpotent element.
After discussing some basic properties of such rings, we investigate their commutativity
behavior.

1. Introduction

An element x of the ring R is called periodic if there exist distinct positive integers m, n
such that xm = xn; and x is potent if there exists n > 1 for which xn = x. We denote the set
of potent elements by P or P(R), the set of nilpotent elements by N or N(R), the center
by Z or Z(R), and the Jacobson radical by J or J(R).

The ring R is called periodic if each of its elements is periodic, and R is called weakly
periodic if R = P +N . It is easy to show that every periodic ring is weakly periodic, but
whether the converse holds is apparently not known. It has long been known that peri-
odic rings have nice commutativity behavior; in particular, Herstein [10] showed that if
R is periodic and N ⊆ Z, then R is commutative—a result which extends easily to weakly
periodic rings. Various generalized periodic and weakly periodic rings have been intro-
duced in recent years, and their commutativity behavior has been explored [6, 7, 13,
14].

Define R to be semi-weakly periodic if R\(J ∪ Z) ⊆ P + N . Clearly the class of semi-
weakly periodic rings is quite large; it contains all weakly periodic rings, all commutative
rings, and all Jacobson radical rings. Our purpose is to point out some general properties
of semi-weakly periodic rings and to investigate commutativity of such rings.

2. Preliminaries

We fix some more notation. If x, y ∈ R, the symbol [x, y] denotes the commutator xy−
yx; and if S,T ⊆ R, [S,T] denotes the set {[s, t]/s∈ S, t ∈ T}. For x ∈ R, the symbol 〈x〉
denotes the subring generated by x; and the symbols C(R) and E stand for the commu-
tator ideal and the set of idempotents of R. If ℘ is a ring property, a ring R having the
property is called a ℘-ring.
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We also state some known results we require, the first of which is trivial.

Lemma 2.1. If R is any ring and S is any proper additive subgroup of R, the centralizer of
R\S is equal to Z(R).

Lemma 2.2 [9]. If R is a ring such that for each x ∈ R, there exists an integer n > 1 such that
xn− x ∈ Z, then R is commutative. In particular, if R= P∪Z, then R is commutative.

Lemma 2.3. If R has an ideal I such that I and R/I are both commutative, then N is an ideal
and C(R)⊆N .

Proof. Since R/I is commutative, [x, y] ∈ I for all x, y ∈ R; and since I is commutative,
R satisfies the polynomial identity [[x, y],[z,w]]= 0, which is not satisfied by the ring of
2× 2 matrices over any GF(p). The result now follows by [1, Theorem 1]. �

Lemma 2.4 [8]. Let R be a ring such that for each x ∈ R, there exist a positive integer m and
a polynomial p(X) with integer coefficients for which xm = xm+1p(x). Then R is periodic.

Lemma 2.5 [4, Theorem 2]. Let R be an arbitrary ring, and let N∗ = {x ∈ R/x2 = 0}. If
N∗ is commutative and N is multiplicatively closed, then PN ⊆N .

We conclude this section with a theorem stating some basic results on semi-weakly
periodic rings.

Theorem 2.6. Let R be a semi-weakly periodic ring.
(a) Every ideal of R is semi-weakly periodic.
(b) Every epimorphic image of R is semi-weakly periodic.
(c) If N is an ideal, then for each x ∈ R\(J ∪Z), there exists n > 1 for which x− xn ∈N .
(d) R is weakly periodic if and only if Z is periodic and J is nil.
(e) If N ⊆ J ⊆ Z, then R is commutative.

Proof. (a) Let I be an ideal of R and x ∈ I\(J(I)∪ Z(I)). Clearly x /∈ Z(R); and since
J(I) = I ∩ J(R), x /∈ J(R). Therefore, x = a + u, where u ∈ N and a ∈ P; and we may
choose n > 1 such that un = 0 and an = a. It follows that a= an = (x−u)n ∈ I and hence
u∈ I . Consequently, I is semi-weakly periodic.

(b) Let S be a ring and let ϕ : R→ S be an epimorphism. Let y ∈ S\(J(S)∪Z(S)), and
let x ∈ ϕ−1(y). Since ϕ(J(R)) ⊆ J(S), we have x /∈ J(R)∪Z(R) and therefore x ∈ P(R) +
N(R). It follows that y ∈ P(S) +N(S), hence S is semi-weakly periodic.

(c) Let x ∈ R\(J ∪Z); and write x = a+ u, where u ∈ N and an = a, n > 1. Then x−
xn = a− an +u−w where w ∈N , hence x− xn ∈N .

(d) Clearly, if Z is periodic and J is nil, then R is weakly periodic. Conversely, suppose
R is weakly periodic. By the argument in the proof of (a), J is weakly periodic; and since
J contains no nonzero idempotents and hence no nonzero potent elements, J is nil. Let
z ∈ Z and write z = a+u with u∈N and an = a, n > 1. Then [a,u]= 0 and hence z− zn

is a sum of commuting nilpotent elements, so that z− zn ∈N . It follows from Lemma 2.4
that Z is periodic.

(e) Since N ⊆ Z, N is an ideal; and by (c), for each x ∈ R\(J ∪Z), there exists n > 1 for
which x− xn ∈N ⊆ Z. Since J ⊆ Z, Lemma 2.2 now implies that R is commutative. �
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3. Commutativity results

It is proved in [2] that if R is periodic and N is commutative, then N is an ideal. Surpris-
ingly, this result extends to semi-weakly periodic rings.

Theorem 3.1. Let R be a semi-weakly periodic ring with R 	= J . If N is commutative, then
N is an ideal.

Proof. Since N is commutative, N is an additive subgroup and is closed under multipli-
cation. By Lemma 2.5, PN ⊆N ; and it follows that (R\(J ∪Z))N ⊆N . Since ZN ⊆N , we
have (R\J)N ⊆N . Now let u∈N and y ∈ J , and let x ∈ R\J . Then x+ y ∈ R\J , and hence
yu= (x+ y)u− xu∈N . Therefore, JN ⊆N and hence RN ⊆N . �
Corollary 3.2. If R is a semi-weakly periodic ring in which J is commutative and N is
commutative, then N is an ideal and C(R)⊆N .

Proof. If R = J , then R is commutative and the conclusion is immediate. If R 	= J , N is
an ideal by Theorem 3.1 and hence N ⊆ J . Therefore, in R/J every element is either po-
tent or central, so that R/J is commutative by Lemma 2.2. Our result now follows from
Lemma 2.3. �

Herstein’s theorem on commutativity of periodic rings with N ⊆ Z also has an exten-
sion to semi-weakly periodic rings.

Theorem 3.3. Let R be a semi-weakly periodic ring with R 	= J . If N ⊆ Z, then R is commu-
tative.

Proof. Since N ⊆ Z, N is an ideal and hence N ⊆ J . By Theorem 2.6(c), for each x ∈
R\(J ∪Z), there exists n > 1 such that xn− x ∈N ⊆ Z; moreover, since ex− exe and xe−
exe are in N for all x ∈ R and all e ∈ E, we can use a standard argument to show that
E ⊆ Z.

By Theorem 2.6(e), we need only show that J ⊆ Z. Assume first that R has 1, and sup-
pose that w ∈ J\Z. Since 1 /∈ J , we see at once that 1−w /∈ J ∪ Z. It follows that there
exist at most one prime q such that q(1−w) ∈ J and at most one prime q such that
q(1−w)∈ Z, hence there exists a prime p such that p(1−w) /∈ J ∪Z. Thus, there exists
n > 1 such that (1−w)n − (1−w) ∈ N and (p(1−w))n − p(1−w) ∈ N ; consequently,
(pn − p)(1−w) ∈ N . Since 1−w is invertible, this yields k > 1 such that (pn − p)kR =
{0}; and this fact, together with the fact that (1−w)n − (1−w) ∈ N , shows that 〈w〉 is
finite and hence w is periodic. But the only periodic elements in J are nilpotent, so we
have contradicted our hypothesis that w ∈ J\Z. Thus, J ⊆ Z as required.

Now suppose R does not have 1. If R= J ∪Z, then we must have R= Z, since a group
cannot be the union of two proper subgroups; therefore we may suppose that R 	= J ∪Z,
in which case P 	= {0}, since N ⊆ J . Let a∈ P\{0} with an = a, n > 1. Then e = an−1 is an
idempotent, necessarily central; and by Theorem 2.6(a), eR is semi-weakly periodic with
multiplicative identity e and nilpotent elements central. Hence, by the argument above,
J(eR) ⊆ Z(eR). If u ∈ J(R), then eu ∈ eR∩ J(R) = J(eR), hence [ea,eu] = 0 = e[a,u] =
[a,u]. Thus, [J(R),P +N]= 0= [J(R),R\(J(R)∪Z(R))]= [J(R),R\J(R)], so J(R)⊆ Z(R)
by Lemma 2.1. �

Our next theorem may be regarded as an extension of [3, Theorem 2].
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Theorem 3.4. Let R be a semi-weakly periodic ring with R 	= J . If N is commutative and
each element of R\(J ∪Z) is uniquely expressible as a sum of a potent element and a nilpotent
element, then R is commutative.

Proof. We begin by showing that E ⊆ Z—a fact which will enable us to pass from the
case of R with 1 to the general case by an argument similar to that used in the proof of
Theorem 3.3.

Suppose e ∈ E\Z. Then if [e,x] 	= 0, either ex− exe 	= 0 or xe− exe 	= 0; and we assume
ex− exe 	= 0, in which case the nonzero idempotent f = e+ ex− exe is not in J ∪Z. Then
we have (e+ ex− exe) + 0= e+ (ex− exe)—two representations of f as a sum of a potent
element and a nilpotent element. Therefore, ex− exe = 0—a contradiction.

It does not seem necessary to write out the details of the case R without 1, so we
assume henceforth that R has 1. In view of Theorem 3.3, we need only show that N ⊆ Z.
Suppose that w ∈N\Z. The same argument used in the previous proof shows that (R,+)
is a torsion group and there exists n > 1 such that (1 +w)n− (1 +w)∈ N ; and it follows
that 〈1 +w〉 is finite. Thus, 1 +w is a periodic invertible element, that is, a potent element.
Now 1 + w /∈ J ∪ Z and (1 + w) + 0 = 1 + w, where 1 and 1 + w are in P, and 0 and w
are in N ; therefore w = 0, contradicting our assumption that w /∈ Z. Thus, N ⊆ Z as
required. �

It appears from our proofs that the serious work of establishing commutativity of
semi-weakly periodic rings is proving the result for R with 1. This observation suggests
the following general theorem.

Theorem 3.5. Let ℘ be a ring property which is inherited by ideals and which implies that
N is an ideal, and suppose that every semi-weakly periodic ℘-ring with 1 is commutative.
If R is any semi-weakly periodic ℘-ring in which E ⊆ Z and J is commutative, then R is
commutative.

Proof. If R = J ∪ Z, then R = J or R = Z and hence R is commutative. Otherwise, if
a ∈ P\{0}, let an = a and an−1 = e. Then e is a central idempotent; and eR is commu-
tative, since it is a semi-weakly periodic ℘-ring with 1. Thus [ea,ex] = 0 for all x ∈ R,
that is, an−1[a,x]= 0= [a,x] for all x ∈ R. Therefore, P ⊆ Z and in particular [P, J]= 0.
Since N ⊆ J , [N , J] = 0 and we conclude that [R\J , J] = 0, so that J ⊆ Z by Lemma 2.1.
Commutativity of R now follows from Theorem 2.6(e). �

Of course there are many applications of this theorem, since there are many conditions
known to imply commutativity of rings with 1 but not of arbitrary rings. We conclude
with one example.

Theorem 3.6. Let n > 1 be a fixed positive integer and let R be an n(n− 1)-torsion-free
semi-weakly periodic ring with E ⊆ Z and J commutative. If

(∗)

(xy)n = xnyn ∀x, y ∈ R\N , (3.1)

then R is commutative.

Proof. Let℘ be the following property: R is n(n− 1)-torsion-free with J commutative and
R satisfies (∗). It is proved in [5] that any n(n− 1)-torsion-free ring with 1 which satisfies
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(∗) is commutative. Hence, our theorem follows from Theorem 3.5 once we show that
property ℘ forces N to be an ideal. In fact, we show that (∗) together with the hypothesis
that J is commutative forces N to be an ideal. Consider R/J , which is a subdirect product
of primitive rings Rα satisfying (∗). Since (∗) is inherited by subrings and epimorphic
images, it follows from Jacobson’s density theorem that either all Rα are division rings,
or there exist a division ring D and an integer m > 1 for which the ring of m×m matri-
ces over D satisfies (∗). A simple substitution shows that the second alternative cannot
occur, so each Rα is a division ring such that (xy)n = xnyn for all x, y ∈ Rα. But such di-
vision rings are commutative by a well-known theorem of Herstein [11, 12], so R/J is
commutative and hence N is an ideal by Lemma 2.3. �
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