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We show that every finitely generated left R-module in the Auslander class over an n-
perfect ring R having a dualizing module and admitting a Matlis dualizing module has a
Gorenstein projective cover.

In 1966 [1], Auslander introduced a class of finitely generated modules having a certain
complete resolution by projective modules. Then using these modules, he defined the
G-dimension (G ostensibly for Gorenstein) of finitely generated modules. It seems ap-
propriate then to call the modules of G-dimension 0 the Gorenstein projective modules.
In [4], Gorenstein projective modules (whether finitely generated or not) were defined.
In the same paper, the dual notion of a Gorenstein projective module was defined and so
a relative theory of Gorenstein modules was initiated (cf. [2, 5] and references therein).
In [12], Grothendieck introduced the notion of a dualizing complex. A dualizing mod-
ule for R is one whose deleted injective resolution is a dualizing complex. Then a local
Noetherian ring R is Gorenstein if and only if R is itself a dualizing module for R. In
this case, Auslander announced the result that over such a ring, every finitely generated
module has a finitely generated Gorenstein projective cover (or equivalently, a minimal
maximal Cohen-Macaulay approximation). In [9], this result was generalized to the situ-
ation where R is a local Cohen-Macaulay ring having a dualizing module. More recently,
in [13], Jørgensen has shown the existence of Gorenstein projective precovers for ev-
ery module over a commutative Noetherian ring with a dualizing complex. Using Chris-
tensen [3], we here introduce the notion of a dualizing bimodule associated with a pair
of Noetherian rings (but not necessarily commutative ones). In [6], it was shown that in
this situation, every module in the Auslander class defined by the pair of rings admits a
Gorenstein projective precover. Now we give examples where the dualizing bimodule has
a double structure over the same noncommutative Noetherian ring and that in this case,
if the ring also admits a Matlis dualizing module, (cf. [8] or [10]), we particularize the re-
sult to the existence of a stronger approximation, that is, every finitely generated module
in the Auslander class has a finitely generated Gorenstein projective cover.

Given a class of R-modules �, an �-precover of a left R-module M is a morphism

F
ϕ→M with F ∈� and such that if F′

f→M is a morphism with F′ ∈�, then there is
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a morphism F′
g→ F such that ϕg = f . If whenever F = F′ and f = ϕ, then g is always an

automorphism, and we say that F
ϕ→M is an �-cover. �-preenvelopes and �-envelopes

are defined dually.
A left R-module M is said to be Gorenstein projective if there is an exact sequence

··· −→ P1 −→ P0 −→ P0 −→ P1 −→ ··· (1)

of projective left R-modules which remains exact whenever HomR(−,P) is applied to it
for every projective module P and such that M = Ker(P0 → P1). Gorenstein injectives are
defined dually (cf. [5]).

Definition 1 [6, Definition 2.1]. Let R be a right and left Noetherian ringand let RVR be
an R− R-bimodule such that End(RV) = R and End(VR) = R. Then V is said to be a
dualizing module if it satisfies the following three conditions:

(i) id(RV)≤ r and id(VR)≤ r for some integer r,
(ii) ExtiR(RV ,RV)= ExtiR(VR,VR)= 0 for all i≥ 1,

(iii) RV and VR are finitely generated.

The preceding definition is given in [6] for a bimodule SVR, where S and R are left
and right Noetherian rings, respectively, but through this paper, we will consider the case
S= R.

Examples. If R is a Cohen-Macaulay local ring of Krull dimension d admitting a dualizing
module Ω (see [7]), then Ω is a dualizing module in this sense.

If R is an n-Gorenstein ring (cf. [5, Definition 9.1.9]), then RRR is a dualizing module.
Let R=⊕g∈GRg be a strongly graded ring over a finite group G, right and left Noether-

ian and let ReVRe be a dualizing module (for Re, e ∈ G is the neutral element in G). Then
W = R⊗Re V ⊗Re R is a dualizing module (for R).

Let R be right and left Noetherian and let RVR be a dualizing module. Then

R[[x]]V[[x]]R[[x]] is a dualizing module.

In [11], the authors defined Auslander and Bass classes of modules over a Cohen-
Macaulay ring admitting a dualizing module. We now use the bimodule V to introduce
the corresponding classes in a noncommutative setting.

Definition 2. Let R be right and left Noetherian and let RVR be a dualizing module. De-
fine the left Auslander class �l(R) (relative to V) as those left R-modules M such that
TorRi (V ,M) = 0 and ExtiR(V ,V ⊗R M) = 0 for all i ≥ 1 and such that the natural mor-
phism M → HomR(V ,V ⊗R M) is an isomorphism. The right Auslander class �r(R) is
the class of right R-modules M such that TorRi (M,V) = 0 and ExtiR(V ,M ⊗R V) = 0 for
all i≥ 1 and such that the natural morphism M→HomR(V ,M⊗R V) is an isomorphism.

The left Bass class �l(R) (relative to V) is defined as those left R-modules N such that
ExtiR(V ,N)= 0 and TorRi (V ,HomR(V ,N))= 0 for all i≥ 1 and such that the natural mor-
phism V ⊗R HomR(V ,N)→N is an isomorphism. The right Bass class �r(R) is defined
as those right R-modules N such that ExtiR(V ,N)= 0 and TorRi (HomR(V ,N),V)= 0 for
all i≥ 1 and such that the natural morphism HomR(V ,N)⊗R V →N is an isomorphism.

We recall the following definition from [8].
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Definition 3. A ring R has a Matlis dualizing module if there is an (R,R)-bimodule E
such that RE and ER are both injective cogenerators and such that the canonical maps
R→HomR(RER, RER) and R→HomR(ER,ER) are both bijections. E will be called a Matlis
dualizing module for R.

Several examples of Matlis dualizing modules are given in [8]. We now give some ad-
ditional examples.

Examples. If R is left and right Noetherian having a Matlis dualizing module E, then
E[x−1] is a Matlis dualizing module for R[[x]].

If R is a strongly graded ring over a finite group, right and left Noetherian, and ReERe

is a dualizing module (for Re), then W = R⊗Re E⊗Re R is a dualizing module (for R).

In what follows, R will always be a right and left Noetherian ring and if E is a Matlis du-
alizing module for R, we will denote M∨ =HomR(M,E) for M ∈ R-Mod or M ∈Mod-R.

Proposition 4. Let R be a ring and let V and E be a dualizing module and a Matlis dual-
izing module for R, respectively. If M ∈ R-Mod is finitely generated, then M ∈�l(R) if and
only if M∨ ∈�r(R).

Proof. Suppose that M ∈�l(R). Since TorRi (V ,M)= 0, then

ExtiR
(
V ,M∨)∼= (TorRi (V ,M)

)∨ = 0 ∀i≥ 1. (2)

On the other hand, (TorRi (HomR(V ,M∨),V))∨ ∼= ExtiR(V , (HomR(V ,M∨))∨). But
(HomR(V ,M∨))∨ = HomR(HomR(V ,HomR(M,E)),E) ∼= HomR(HomR(V ⊗R M,E),
E)∼= (V ⊗R M)vv and since V ⊗R M is finitely generated, (V ⊗R M)∨∨ ∼=V ⊗R M (cf. [8]),
and so we get that

ExtiR
(
V ,
(

HomR
(
V ,M∨))∨)∼= ExtiR

(
V ,V ⊗R M

)= 0 ∀i≥ 1. (3)

Therefore, Tori(HomR(V ,M∨),V)= 0 for all i≥ 1.
Finally, by hypothesis M ∼=HomR(V ,V ⊗R M) and so HomR(V ,V ⊗R M)∨ ∼=M∨ is an

isomorphism. We also know that HomR(V ,M∨)⊗R V ∼= (V ⊗R M)∨ ⊗R V . Therefore, we
only have to show that (V ⊗R M)∨ ⊗R V →HomR(V ,V ⊗R M)∨ is an isomorphism to get
that HomR(V ,M∨)⊗R V ∼=M∨.

The functors (V ⊗R M)∨ ⊗R − and HomR(−,V ⊗R M)∨ are both right exact and the
natural morphism

(
V ⊗R M

)∨ ⊗R R
n −→HomR

(
Rn,V ⊗R M

)∨
(4)

is an isomorphism, and so the morphism is also an isomorphism for finitely generated
modules, in particular for V .

Conversely, let now N =M∨ and suppose that N ∈�r(R). Since M is finitely gen-
erated, we get that N∨ ∼=M. Now TorRi (V ,M)∨ ∼= ExtiR(V ,M∨) = ExtiR(V ,N) = 0 for all
i≥ 1 and so TorRi (V ,M)= 0 for all i≥ 1.

Moreover, TorRi (HomR(V ,N),V)= 0 for all i≥ 1 and so

0= TorRi
(

HomR(V ,N),V
)∨ ∼= ExtiR

(
V ,HomR(V ,N)∨

)
. (5)
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But HomR(V ,N)∨ = HomR(V ,M∨)∨ ∼= (V ⊗R M)∨∨ ∼= V ⊗R M, and therefore ExtiR(V ,
V ⊗R M) = 0 for all i ≥ 1. It only remains to show that M → HomR(V ,V ⊗R M) is an
isomorphism.

Since N∨ ∈�r(R), then HomR(V ,N)⊗R V →N is an isomorphism, and therefore

N∨ ∼= (HomR(V ,N)⊗R V
)∨ ∼=HomR

(
V ,HomR(V ,N)∨

)
. (6)

Then consider the natural transformation

−⊗R HomR(N ,E)−→HomR
(

HomR(−,N),E
)
. (7)

This gives an isomorphism for Rn and since both functors are right exact, it follows that
V ⊗R HomR(N ,E)∼=HomR(HomR(V ,N),E) and so

M =N∨ −→HomR
(
V ,HomR(V ,N)∨

)∼=HomR
(
V ,V ⊗R M

)
(8)

is an isomorphism. �

We now recall from [6] that a ring R is said to be left (right) n-perfect if every left (right)
flat R-module has projective dimension less than or equal to n.

Left perfect rings, commutative Noetherian rings of finite Krull dimension, the uni-
versal enveloping algebra �(g) of a Lie algebra of dimension n, and n-Gorenstein rings
are all examples of left n-perfect rings. Also, if R is left n-perfect, then R[x], R[[x]], the
crossed product R∗�(g), and the Weyl algebra Ak(R) are left k-perfect for some k (cf.
[6]).

Proposition 5. Let R be a right and left n-perfect ring, let V and E be a dualizing module
of finite left and right injective dimension r and a Matlis dualizing module for R, respectively,
and let G∈ R-Mod be finitely generated. Then G is Gorenstein projective if and only if G∨ is
Gorenstein injective.

Proof. If G is Gorenstein projective, by [5, Proposition 10.2.6], there exists an exact se-
quence

0−→G−→ Pr+n −→ ··· −→ P0 −→M −→ 0, (9)

where every Pi is a finitely generated projective. Now since G and Pi, i = 0, . . . ,r + n, are
in �l(R) by [6, Proposition 2.3], then M ∈�l(R) by [6, Proposition 2.7]. Now, P∨i is
injective for every i= 0, . . . ,r +n and by the preceding proposition M∨ ∈�r(R), so by [6,
Theorem 2.11], G∨ is Gorenstein injective.

Conversely, let G∨ be Gorenstein injective. Since G is finitely generated, there exists a
flat preenvelope G→ F which factors via a finitely generated free module Rk, so we can
assume that F is finitely generated free. But then, since R∨ = E, we get that En → G∨ is
an injective precover, and so the injective cover of G∨ is Artinian. Then there is an exact
sequence in Mod-R,

0−→N −→ Er−1 −→ ··· −→ E0 −→G∨ −→ 0, (10)
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where every Ei is Artinian and injective. Then N ∈�r(R) since G∨ and so are Ei, i =
0, . . . ,r− 1. In this way, we see that

0−→G∨∨ =G−→ E∨0 −→ ··· −→ E∨r−1 −→N∨ −→ 0 (11)

is exact with N∨ ∈�l(R) and E∨i is projective for every i = 0, . . . ,r − 1 and therefore by
[6, Theorem 2.14], G is Gorenstein projective. �

The following result appears in [6] but we include a proof here for completeness.

Theorem 6. Let R be a left n-perfect ring and RVR a dualizing module for R such that

id(RV), id(VR)≤ r. If M ∈�l(R), then it has a Gorenstein projective precover G
ϕ→M → 0

such that pd(Ker(ϕ))≤ r− 1.

Proof. Let 0→ C→ Fr−1 → ··· → F0 →M → 0 be a (partial) projective resolution of M.
Then, by [6, Lemma 2.12], C is Gorenstein projective. Now let

···P1 −→ P0 −→ P0 −→ P1 −→ ··· (12)

be an exact sequence of projective modules such that C = Ker(P0 → P1) and it remains
exact whenever HomR(−,P) is applied for every projective P. We consider

0−→ P0 −→ ··· −→ Pr−1 −→D −→ 0 (13)

exact. Then we have a commutative diagram:

0 C P0 ··· Pr−1 D 0

0 C Fr−1 ··· F0 M 0

(14)

The associated complex to this diagram (i.e., the mapping complex)

0−→ C −→ C⊕P0 −→ ··· −→ F0⊕D −→M −→ 0 (15)

is exact and has as a subcomplex the exact sequence 0→ C→ C→ 0. Then quotient com-
plex

0−→ P0 −→ ··· −→ F0⊕D −→M −→ 0 (16)

is exact and all of its terms are projective except perhaps F0⊕D. Now if 0→ L→ F0⊕D→
M→ 0 is exact with pd(L) <∞, then pd(L)≤ r− 1. Since F0⊕D is Gorenstein projective
and Ext1

R(X ,L) = 0 for every Gorenstein projective X , it follows that F0 ⊕D→M is the
desired precover. �

Given a class � of R-modules, we let ⊥C be the class of R-modules F such that Ext1
R(F,

C) = 0 for every C ∈�. We let C⊥ be the class of R-modules F such that Ext1
R(C,F) = 0

for every C ∈ �. A pair of classes of R-modules (�,�) is called a cotorsion theory if
�⊥ =� and ⊥�=�. A cotorsion theory is said to be complete if for every R-module M,
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there is an exact sequence 0→M → C → F → 0 such that C ∈ � and F ∈�, or equiv-
alently if there is an exact sequence 0→ C → F →M → 0 such that C ∈ � and F ∈ �,
which is equivalent to say that every R-module has a special �-precover and a special
�-preenvelope (cf. [5]). A cotorsion theory is said to be perfect if every R-module has an
�-cover and a �-envelope.

Now since R is left Noetherian, then Hom(−,−) is left balanced by Inj × Inj on R-
Mod× R-Mod, and therefore we can compute left derived functors of HomR(−,−) using
left injective resolutions in the second variable constructed with injective covers or right
injective resolutions in the first one (cf. [5, Example 8.3.5]). We will denote them by

Exti(−,−) i≥ 0 and Ext
0
(M,N), and Ext0(M,N) will denote the cokernel and the kernel

of the natural morphism

ExtR0 (M,N)−→HomR(M,N). (17)

Theorem 7. Let R be a right n-perfect ring and let RVR be a dualizing module for R such that
id(RV), id(VR)≤ r. If � and GorInj denote the classes of right R-modules of finite injective
dimension and Gorenstein injective, then (�,GorInj) is a perfect cotorsion theory of �r(R).

Proof. Suppose that L ∈�r(R)∩ ⊥GorInj. Then Ext1
R(L,G) = 0 for every G Gorenstein

injective. Now if G is Gorenstein injective, then there exists an exact sequence 0→ G′ →
E0 →G→ 0 with E0 injective and G′ Gorenstein injective. By [5, Theorem 8.2.7], Ext

0
R(L,

G)∼= Ext1
R(L,G′)= 0 for every Gorenstein injective G. Analogously, ExtR1 (L,G)∼= Ext

R
0 (L,

G′)= 0 and by induction, ExtRi (L,G)= 0 for all i≥ 1 and for every Gorenstein injective G.
Now let 0→ L→ E0 → ··· → Er+n → C→ 0 be a (partial) injective resolution of L. By

[6, Lemma 2.9], C is Gorenstein injective and so ExtRn+r(L,G)= 0 by the above. Therefore

HomR
(
Er+n+1,C

)−→HomR
(
Er+n,C

)−→HomR
(
Er+n−1,C

)
(18)

is exact and so C is a direct summand of Er+n which shows that id(L) <∞. If L∈�, then
it is immediate that Ext1

R(L,G)= 0 for every Gorenstein injective G.
Suppose now that G∈�r(R)∩L⊥. Then by [6, Theorem 2.11], G is Gorenstein injec-

tive. If G is Gorenstein injective, then it is immediate that G∈�⊥.
Therefore (�,GorInj) is a cotorsion theory. By [6, Theorem 2.16], it is complete. Fi-

nally, since R is right Noetherian, � is closed under direct limits and so by [5, Theorem
7.2.6], (�,GorInj) is perfect. �

Theorem 8. Let R be a left and right n-perfect ring admitting a Matlis dualizing module and
let RVR be a dualizing module for R such that id(RV), id(VR) ≤ r. If M ∈�l(R) is finitely

generated, then M has a Gorenstein projective cover G
ϕ→M such that G is finitely generated

and pd(Ker(ϕ))≤ r− 1.

Proof. By Theorem 6, there is an exact sequence 0 → L→ G→M → 0 with G Goren-
stein projective and pd(L)≤ r− 1, which can be supposed finitely generated. Then if 0→
M∨ → G∨ → L∨ → 0 is exact with G∨ Gorenstein injective by Proposition 5 and id(L∨) <
∞, therefore

HomR
(
G∨,N

)−→HomR
(
M∨,N

)−→ Ext1
R

(
L∨,N

)= 0 (19)
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is exact for every Gorenstein injective N , which gives that M∨ → G∨ is a Gorenstein in-
jective preenvelope. By the preceding theorem, M∨ has a Gorenstein injective envelope
ϕ : M∨ → C, which is a summand of G∨ and so C is artinian. But Coker(ϕ) is also a direct
summand of L∨ and so id(Coker(ϕ))≤ r − 1. Then pd((Coker(ϕ))∨) <∞ and therefore
we have an exact sequence

0−→ (Coker(ϕ)
)∨ −→ C∨

ϕ∨−→M −→ 0, (20)

where C∨ is Gorenstein projective by Proposition 5 and pd((Coker(ϕ))∨) ≤ r − 1. Since

pd((Coker(ϕ))∨) <∞, it follows that C∨
ϕ∨→M is a Gorenstein projective precover. Finally,

C∨
ϕ∨→M is the desired cover since C∨ and M are reflexive. �

Corollary 9. Let R and M be as in the previous theorem and let G→M be a Gorenstein
projective cover. Then pd(M) <∞ if and only if G→M is a projective cover.

Proof. Suppose that pd(M) <∞. Then pd(C) <∞ and let

0−→ Pk −→ ··· −→ P0 −→G−→ 0 (21)

be a projective resolution of G. Since Ext1
R(C,P)= 0 for every projective P, it follows that

the sequence splits and so G is projective. The converse is immediate. �

Corollary 10. Let R and V be as in the previous theorem and let M ∈�l(R) be finitely
generated. Then the minimal Gorenstein projective resolution of M is of the form

0−→ Pk −→ ··· −→ P1 −→G0 −→M −→ 0, (22)

where Pi is projective for every i= 1, . . . ,k and k ≤ r.

Proof. By [6, Corollary 2.13], M ∈�r(R) if and only if there is an exact sequence

0−→Gk −→ ··· −→G0 −→M −→ 0, (23)

where every Gi, i = 0, . . . ,k, is Gorenstein projective and k ≤ r. Now the result follows
from the preceding corollary. �
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