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We show that every finitely generated left R-module in the Auslander class over an n-
perfect ring R having a dualizing module and admitting a Matlis dualizing module has a
Gorenstein projective cover.

In 1966 [1], Auslander introduced a class of finitely generated modules having a certain
complete resolution by projective modules. Then using these modules, he defined the
G-dimension (G ostensibly for Gorenstein) of finitely generated modules. It seems ap-
propriate then to call the modules of G-dimension 0 the Gorenstein projective modules.
In [4], Gorenstein projective modules (whether finitely generated or not) were defined.
In the same paper, the dual notion of a Gorenstein projective module was defined and so
a relative theory of Gorenstein modules was initiated (cf. [2, 5] and references therein).
In [12], Grothendieck introduced the notion of a dualizing complex. A dualizing mod-
ule for R is one whose deleted injective resolution is a dualizing complex. Then a local
Noetherian ring R is Gorenstein if and only if R is itself a dualizing module for R. In
this case, Auslander announced the result that over such a ring, every finitely generated
module has a finitely generated Gorenstein projective cover (or equivalently, a minimal
maximal Cohen-Macaulay approximation). In [9], this result was generalized to the situ-
ation where R is a local Cohen-Macaulay ring having a dualizing module. More recently,
in [13], Jorgensen has shown the existence of Gorenstein projective precovers for ev-
ery module over a commutative Noetherian ring with a dualizing complex. Using Chris-
tensen [3], we here introduce the notion of a dualizing bimodule associated with a pair
of Noetherian rings (but not necessarily commutative ones). In [6], it was shown that in
this situation, every module in the Auslander class defined by the pair of rings admits a
Gorenstein projective precover. Now we give examples where the dualizing bimodule has
a double structure over the same noncommutative Noetherian ring and that in this case,
if the ring also admits a Matlis dualizing module, (cf. [8] or [10]), we particularize the re-
sult to the existence of a stronger approximation, that is, every finitely generated module
in the Auslander class has a finitely generated Gorenstein projective cover.

Given a class of R-modules &, an F-precover of a left R-module M is a morphism

F % M with F € F and such that if ' 2 M is a morphism with F" € %, then there is
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a morphism F’ % F such that ¢g = f.If whenever F = F" and f = ¢, then g is always an

automorphism, and we say that F Y. M is an F-cover. F-preenvelopes and F-envelopes
are defined dually.
A left R-module M is said to be Gorenstein projective if there is an exact sequence

+— P —Py— P’ —pl — ... (1)

of projective left R-modules which remains exact whenever Homg(—,P) is applied to it
for every projective module P and such that M = Ker(P? — P!). Gorenstein injectives are
defined dually (cf. [5]).

Definition 1 [6, Definition 2.1]. Let R be a right and left Noetherian ringand let  Vx be
an R — R-bimodule such that End(xV) = R and End(VR) = R. Then V is said to be a
dualizing module if it satisfies the following three conditions:
(1) id(rV) =< r and id(VRr) < r for some integer r,
(ii) Exty(rV,rV) = Exth(Vg, Vz) = 0 forall i > 1,
(iii) rV and Vp are finitely generated.

The preceding definition is given in [6] for a bimodule sV, where S and R are left
and right Noetherian rings, respectively, but through this paper, we will consider the case
S=R

Examples. If R is a Cohen-Macaulay local ring of Krull dimension 4 admitting a dualizing
module Q (see [7]), then Q is a dualizing module in this sense.

If R is an n-Gorenstein ring (cf. [5, Definition 9.1.9]), then grRg is a dualizing module.

Let R = ®4c6R, be a strongly graded ring over a finite group G, right and left Noether-
ian and let g, Vg, be a dualizing module (for R,, e € G is the neutral element in G). Then
W = R®p, V ®p, Ris a dualizing module (for R).

Let R be right and left Noetherian and let xVz be a dualizing module. Then
R[] VI[x]]Rr[[x] 1s @ dualizing module.

In [11], the authors defined Auslander and Bass classes of modules over a Cohen-
Macaulay ring admitting a dualizing module. We now use the bimodule V' to introduce
the corresponding classes in a noncommutative setting.

Definition 2. Let R be right and left Noetherian and let  V be a dualizing module. De-
fine the left Auslander class 9!(R) (relative to V) as those left R-modules M such that
Torf(V,M) =0 and Ext}é(V, V ®@r M) =0 for all i > 1 and such that the natural mor-
phism M — Homg(V,V ®g M) is an isomorphism. The right Auslander class «"(R) is
the class of right R-modules M such that Torf(M, V) =0 and Exth(V,M ®; V) = 0 for
all i = 1 and such that the natural morphism M — Hompg(V,M ®z V) is an isomorphism.

The left Bass class B!(R) (relative to V) is defined as those left R-modules N such that
EthQ( V,N) =0and Torf(V, Homg(V,N)) =0 foralli > 1 and such that the natural mor-
phism V @ Homg(V,N) — N is an isomorphism. The right Bass class B"(R) is defined
as those right R-modules N such that Exth(V,N) = 0 and Torfz(HomR(V,N), V) =0 for
all i > 1 and such that the natural morphism Homgz(V,N) ®g V' — N is an isomorphism.

We recall the following definition from [8].
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Definition 3. A ring R has a Matlis dualizing module if there is an (R,R)-bimodule E
such that gE and Eg are both injective cogenerators and such that the canonical maps
R — Homg(rER, rEr) and R — Homg(ER, Er) are both bijections. E will be called a Matlis
dualizing module for R.

Several examples of Matlis dualizing modules are given in [8]. We now give some ad-
ditional examples.

Examples. If R is left and right Noetherian having a Matlis dualizing module E, then
E[x7!] is a Matlis dualizing module for R[[x]].

If R is a strongly graded ring over a finite group, right and left Noetherian, and g, Ex,
is a dualizing module (for R,), then W = R ®y, E ®p, R is a dualizing module (for R).

In what follows, R will always be a right and left Noetherian ring and if E is a Matlis du-
alizing module for R, we will denote M = Homg(M, E) for M € R-Mod or M € Mod-R.

PropoOSITION 4. Let R be a ring and let V and E be a dualizing module and a Matlis dual-
izing module for R, respectively. If M € R-Mod is finitely generated, then M € !(R) if and
only if MV € B"(R).

Proof. Suppose that M € sd'(R). Since Torf(V,M ) = 0, then
Exth (V,M") = (TorX(V,M))" =0 Vi=>1. (2)

On the other hand, (Torfz(HomR(V,MV),V))v = Exth(V,(Homg(V,M"))"). But
(Hompg(V,M"))¥ = Homg(Homg(V,Homg(M,E)),E) = Homg(Homg(V ®r M,E),
E) = (V ®rM)" and since V ®g M is finitely generated, (V g M)"¥ =V @r M (cf. [8]),
and so we get that

Exth (V, (Homg (V,M"))") = Exth (V,VerM) =0 Vix=1. (3)

Therefore, Tor;(Homg(V,M"),V)=0foralli> 1.

Finally, by hypothesis M = Homgz(V,V ®@r M) and so Homg(V,V g M) = MY is an
isomorphism. We also know that Homg(V,M") @r V = (V @r M)" ®r V. Therefore, we
only have to show that (V ®@g M)" ®r V — Homg(V,V @ M)" is an isomorphism to get
that Homg(V,MY)®r V = M".

The functors (V ®@g M)Y ®g — and Homg(—,V ®g M)" are both right exact and the
natural morphism

(VerM) ®gR" — Homg (R",V @x M) " (4)

is an isomorphism, and so the morphism is also an isomorphism for finitely generated
modules, in particular for V.

Conversely, let now N = MY and suppose that N € %B"(R). Since M is finitely gen-
erated, we get that NY = M. Now Torf(V,M)V = EXtE(V,MV) = Ext}'z(V,N) = ( for all
i > 1and so TorX(V,M) = 0 forall i > 1.

Moreover, Torf(HomR(V,N), V)=0foralli>1andso

0 = TorR (Homg(V,N), V)" = Exth (V,Homg(V,N)"). (5)
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But Homg(V,N)¥ = Homg(V,M")¥ = (V ®@g M)"V = V @z M, and therefore Exth(V,
V e@r M) =0 for all i > 1. It only remains to show that M — Homg(V,V ®r M) is an
isomorphism.

Since NV € %B"(R), then Homg(V,N) ®r V — N is an isomorphism, and therefore

NY = (Homg(V,N) ®z V)" = Homg (V,Homg(V,N)"). (6)
Then consider the natural transformation
— ®g Homg (N, E) — Homg (Homg(—,N),E). (7)

This gives an isomorphism for R" and since both functors are right exact, it follows that
V ®gr Homg(N, E) = Homg(Homg(V,N),E) and so

M =N — Homg (V,Homg(V,N)") = Hompg (V,V ®z M) (8)

is an isomorphism. U

We now recall from [6] that a ring R is said to be left (right) n-perfect if every left (right)
flat R-module has projective dimension less than or equal to n.

Left perfect rings, commutative Noetherian rings of finite Krull dimension, the uni-
versal enveloping algebra AU (g) of a Lie algebra of dimension #, and n-Gorenstein rings
are all examples of left n-perfect rings. Also, if R is left n-perfect, then R[x], R[[x]], the
crossed product R * U(g), and the Weyl algebra Ax(R) are left k-perfect for some k (cf.
[6]).

ProposiTION 5. Let R be a right and left n-perfect ring, let V and E be a dualizing module
of finite left and right injective dimension r and a Matlis dualizing module for R, respectively,
and let G € R-Mod be finitely generated. Then G is Gorenstein projective if and only if GV is
Gorenstein injective.

Proof. 1If G is Gorenstein projective, by [5, Proposition 10.2.6], there exists an exact se-
quence

0— G—Pry—+++— Pg— M —0, (9)

where every P; is a finitely generated projective. Now since G and P;, i = 0,...,r + n, are
in A'(R) by [6, Proposition 2.3], then M € s!(R) by [6, Proposition 2.7]. Now, P;’ is
injective for every i = 0,...,7 + n and by the preceding proposition M € AB"(R), so by [6,
Theorem 2.11], G is Gorenstein injective.

Conversely, let GV be Gorenstein injective. Since G is finitely generated, there exists a
flat preenvelope G — F which factors via a finitely generated free module R¥, so we can
assume that F is finitely generated free. But then, since RY = E, we get that E" — G" is
an injective precover, and so the injective cover of GV is Artinian. Then there is an exact
sequence in Mod-R,

0—N—E_—: -+ —E—G' —0, (10)
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where every E; is Artinian and injective. Then N € %W"(R) since GV and so are E;, i =
0,...,7 — 1. In this way, we see that

0— G =G—E — - —E/, — N’ —0 (an

is exact with NV € ##(R) and E} is projective for every i = 0,...,7 — 1 and therefore by
[6, Theorem 2.14], G is Gorenstein projective. O

The following result appears in [6] but we include a proof here for completeness.

THEOREM 6. Let R be a left n-perfect ring and rVr a dualizing module for R such that
id(rV),id(VR) < r. If M € A (R), then it has a Gorenstein projective precover G SM-o0
such that pd(Ker(¢)) <r —1.

Proof. Let0 -~ C — F,_; — - -+ — Fy — M — 0 be a (partial) projective resolution of M.
Then, by [6, Lemma 2.12], C is Gorenstein projective. Now let

-..Pp—Py—P"— Pl — ... (12)

be an exact sequence of projective modules such that C = Ker(P° — P!) and it remains
exact whenever Homg(—,P) is applied for every projective P. We consider

0—P — ... — P 1 —D—0 (13)

exact. Then we have a commutative diagram:

0 C PO T pr-1 D 0
l | a
0 C F,_; T Fy M 0

The associated complex to this diagram (i.e., the mapping complex)
0—C—CoP'—.--- —~Fe&D—M—0 (15)

is exact and has as a subcomplex the exact sequence 0 — C — C — 0. Then quotient com-
plex

0—P — ... ~FpeD—M—0 (16)

is exact and all of its terms are projective except perhaps Fy @ D. Nowif0 - L — Fy® D —
M — 0 is exact with pd(L) < co, then pd(L) < r — 1. Since Fy @ D is Gorenstein projective
and Ext}a (X,L) = 0 for every Gorenstein projective X, it follows that Fy @ D — M is the
desired precover. O

Given a class 6 of R-modules, we let + C be the class of R-modules F such that Ext}g(F ,
C) = 0 for every C € 6. We let C* be the class of R-modules F such that Exty(C,F) = 0
for every C € €. A pair of classes of R-modules (%,€) is called a cotorsion theory if
Ft =% and +€ = F. A cotorsion theory is said to be complete if for every R-module M,
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there is an exact sequence 0 -~ M — C — F — 0 such that C € € and F € ¥, or equiv-
alently if there is an exact sequence 0 — C — F — M — 0 such that C € € and F € &,
which is equivalent to say that every R-module has a special F-precover and a special
“6-preenvelope (cf. [5]). A cotorsion theory is said to be perfect if every R-module has an
% -cover and a ¢-envelope.

Now since R is left Noetherian, then Hom(—, —) is left balanced by Inj X Inj on R-
Mod X R-Mod, and therefore we can compute left derived functors of Homg(—, —) using
left injective resolutions in the second variable constructed with injective covers or right
injective resolutions in the first one (cf. [5, Example 8.3.5]). We will denote them by
Ext;(—,—) i > 0and Ext (M,N), and Exto(M, N) will denote the cokernel and the kernel
of the natural morphism

Ext&(M,N) — Homg(M,N). (17)

THEOREM 7. Let R be a right n-perfect ring and let g Vi be a dualizing module for R such that
id(rV),id(VR) < r. If £ and Gorlnj denote the classes of right R-modules of finite injective
dimension and Gorenstein injective, then (£, Gorlnj) is a perfect cotorsion theory of B"(R).

Proof. Suppose that L € %"(R) N * Gorlnj. Then Ext(L,G) = 0 for every G Gorenstein
injective. Now if G is Gorenstein injective, then there exists an exact sequence 0 — G' —
Ey — G — 0 with Ej injective and G" Gorenstein injective. By [5, Theorem 8.2.7], E—xt%(L,
G) = Exty(L,G') = 0 for every Gorenstein injective G. Analogously, Ext}(L,G) = E—th(L,
G') = 0 and by induction, Ext? (L, G) = 0 for all i > 1 and for every Gorenstein injective G.

Now let0 - L — E® — - - - — E™" — C — 0 be a (partial) injective resolution of L. By
[6, Lemma 2.9], C is Gorenstein injective and so Ext, (L, G) = 0 by the above. Therefore

Homp (E™*"*!,C) — Homg (E™*",C) — Homg (E™™""1,C) (18)

is exact and so C is a direct summand of E"*" which shows that id(L) < o. If L € &, then
it is immediate that Exty(L,G) = 0 for every Gorenstein injective G.

Suppose now that G € B"(R) N L*. Then by [6, Theorem 2.11], G is Gorenstein injec-
tive. If G is Gorenstein injective, then it is immediate that G € $*.

Therefore (£, Gorlnj) is a cotorsion theory. By [6, Theorem 2.16], it is complete. Fi-
nally, since R is right Noetherian, & is closed under direct limits and so by [5, Theorem
7.2.6], (£, Gorlnj) is perfect. O

THEOREM 8. Let R be a left and right n-perfect ring admitting a Matlis dualizing module and
let RV be a dualizing module for R such that id(rV),id(Vy) < r. If M € S'(R) is finitely
generated, then M has a Gorenstein projective cover G Y. M such that G is finitely generated
and pd(Ker(¢)) <r - 1.

Proof. By Theorem 6, there is an exact sequence 0 — L — G — M — 0 with G Goren-
stein projective and pd(L) < r — 1, which can be supposed finitely generated. Then if 0 —
MY — GY — LY — 0 is exact with G¥ Gorenstein injective by Proposition 5 and id(L") <
oo, therefore

Homg (GY,N) — Hompg (M",N) — Exty (LY,N) =0 (19)
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is exact for every Gorenstein injective N, which gives that MY — G is a Gorenstein in-
jective preenvelope. By the preceding theorem, M" has a Gorenstein injective envelope
¢ : MY — C, which is a summand of G¥ and so C is artinian. But Coker(¢) is also a direct
summand of LY and so id(Coker(¢)) < r — 1. Then pd((Coker(¢))") < co and therefore
we have an exact sequence

0— (Coker((p))v —CY L M — 0, (20)

where C" is Gorenstein projective by Proposition 5 and pd((Coker(¢))*) < r — 1. Since
pd ((Coker(g))") < o, it follows that C¥ ?. M is a Gorenstein projective precover. Finally,

@Y . . . .
CY % M is the desired cover since C¥ and M are reflexive. O

CoROLLARY 9. Let R and M be as in the previous theorem and let G — M be a Gorenstein
projective cover. Then pd(M) < o if and only if G — M is a projective cover.

Proof. Suppose that pd(M) < co. Then pd(C) < o0 and let
0—Pi—+—Py— G—0 (21)

be a projective resolution of G. Since Exty(C,P) = 0 for every projective P, it follows that
the sequence splits and so G is projective. The converse is immediate. O

CoROLLARY 10. Let R and V be as in the previous theorem and let M € A'(R) be finitely
generated. Then the minimal Gorenstein projective resolution of M is of the form

0—P— -+ — P, — Gy — M — 0, (22)

where P; is projective for everyi=1,...,k and k <.

Proof. By [6, Corollary 2.13], M € s"(R) if and only if there is an exact sequence

0—Gy— - —Gy— M—0, (23)
where every Gj, i = 0,...,k, is Gorenstein projective and k < r. Now the result follows
from the preceding corollary. O
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