A NONCOMMUTATIVE GENERALIZATION OF AUSLANDER'S LAST THEOREM

EDGAR E. ENOCHS, OVERTOUN M. G. JENDA, AND J. A. LÓPEZ-RAMOS

Received 26 July 2004

We show that every finitely generated left *R*-module in the Auslander class over an *n*-perfect ring *R* having a dualizing module and admitting a Matlis dualizing module has a Gorenstein projective cover.

In 1966 [1], Auslander introduced a class of finitely generated modules having a certain complete resolution by projective modules. Then using these modules, he defined the G-dimension (G ostensibly for Gorenstein) of finitely generated modules. It seems appropriate then to call the modules of G-dimension 0 the Gorenstein projective modules. In [4], Gorenstein projective modules (whether finitely generated or not) were defined. In the same paper, the dual notion of a Gorenstein projective module was defined and so a relative theory of Gorenstein modules was initiated (cf. [2, 5] and references therein). In [12], Grothendieck introduced the notion of a dualizing complex. A dualizing module for *R* is one whose deleted injective resolution is a dualizing complex. Then a local Noetherian ring R is Gorenstein if and only if R is itself a dualizing module for R. In this case, Auslander announced the result that over such a ring, every finitely generated module has a finitely generated Gorenstein projective cover (or equivalently, a minimal maximal Cohen-Macaulay approximation). In [9], this result was generalized to the situation where R is a local Cohen-Macaulay ring having a dualizing module. More recently, in [13], Jørgensen has shown the existence of Gorenstein projective precovers for every module over a commutative Noetherian ring with a dualizing complex. Using Christensen [3], we here introduce the notion of a dualizing bimodule associated with a pair of Noetherian rings (but not necessarily commutative ones). In [6], it was shown that in this situation, every module in the Auslander class defined by the pair of rings admits a Gorenstein projective precover. Now we give examples where the dualizing bimodule has a double structure over the same noncommutative Noetherian ring and that in this case, if the ring also admits a Matlis dualizing module, (cf. [8] or [10]), we particularize the result to the existence of a stronger approximation, that is, every finitely generated module in the Auslander class has a finitely generated Gorenstein projective cover.

Given a class of *R*-modules \mathcal{F} , an \mathcal{F} -precover of a left *R*-module *M* is a morphism $F \xrightarrow{\varphi} M$ with $F \in \mathcal{F}$ and such that if $F' \xrightarrow{f} M$ is a morphism with $F' \in \mathcal{F}$, then there is

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:9 (2005) 1473–1480 DOI: 10.1155/IJMMS.2005.1473

1474 A generalization of Auslander's last theorem

a morphism $F' \xrightarrow{g} F$ such that $\varphi g = f$. If whenever F = F' and $f = \varphi$, then g is always an automorphism, and we say that $F \xrightarrow{\varphi} M$ is an \mathcal{F} -cover. \mathcal{F} -preenvelopes and \mathcal{F} -envelopes are defined dually.

A left *R*-module *M* is said to be Gorenstein projective if there is an exact sequence

$$\cdots \longrightarrow P_1 \longrightarrow P_0 \longrightarrow P^0 \longrightarrow P^1 \longrightarrow \cdots$$
 (1)

of projective left *R*-modules which remains exact whenever $\text{Hom}_R(-,P)$ is applied to it for every projective module *P* and such that $M = \text{Ker}(P^0 \rightarrow P^1)$. Gorenstein injectives are defined dually (cf. [5]).

Definition 1 [6, Definition 2.1]. Let *R* be a right and left Noetherian ringand let $_RV_R$ be an R - R-bimodule such that $End(_RV) = R$ and $End(V_R) = R$. Then *V* is said to be a dualizing module if it satisfies the following three conditions:

- (i) $id(_RV) \le r$ and $id(V_R) \le r$ for some integer r,
- (ii) $\operatorname{Ext}_{R}^{i}(_{R}V,_{R}V) = \operatorname{Ext}_{R}^{i}(V_{R},V_{R}) = 0$ for all $i \ge 1$,
- (iii) $_RV$ and V_R are finitely generated.

The preceding definition is given in [6] for a bimodule ${}_{S}V_{R}$, where *S* and *R* are left and right Noetherian rings, respectively, but through this paper, we will consider the case S = R.

Examples. If *R* is a Cohen-Macaulay local ring of Krull dimension *d* admitting a dualizing module Ω (see [7]), then Ω is a dualizing module in this sense.

If *R* is an *n*-Gorenstein ring (cf. [5, Definition 9.1.9]), then $_RR_R$ is a dualizing module.

Let $R = \bigoplus_{g \in G} R_g$ be a strongly graded ring over a finite group *G*, right and left Noetherian and let $_{R_e} V_{R_e}$ be a dualizing module (for R_e , $e \in G$ is the neutral element in *G*). Then $W = R \otimes_{R_e} V \otimes_{R_e} R$ is a dualizing module (for *R*).

Let *R* be right and left Noetherian and let $_RV_R$ be a dualizing module. Then $_{R[[x]]}V[[x]]_{R[[x]]}$ is a dualizing module.

In [11], the authors defined Auslander and Bass classes of modules over a Cohen-Macaulay ring admitting a dualizing module. We now use the bimodule V to introduce the corresponding classes in a noncommutative setting.

Definition 2. Let *R* be right and left Noetherian and let $_{R}V_{R}$ be a dualizing module. Define the left Auslander class $\mathcal{A}^{l}(R)$ (relative to *V*) as those left *R*-modules *M* such that $\operatorname{Tor}_{i}^{R}(V,M) = 0$ and $\operatorname{Ext}_{R}^{i}(V,V \otimes_{R} M) = 0$ for all $i \geq 1$ and such that the natural morphism $M \to \operatorname{Hom}_{R}(V,V \otimes_{R} M)$ is an isomorphism. The right Auslander class $\mathcal{A}^{r}(R)$ is the class of right *R*-modules *M* such that $\operatorname{Tor}_{i}^{R}(M,V) = 0$ and $\operatorname{Ext}_{R}^{i}(V,M \otimes_{R} V) = 0$ for all $i \geq 1$ and such that the natural morphism $M \to \operatorname{Hom}_{R}(V,M \otimes_{R} V) = 0$ for all $i \geq 1$ and such that the natural morphism $M \to \operatorname{Hom}_{R}(V,M \otimes_{R} V)$ is an isomorphism.

The left Bass class $\mathfrak{B}^{l}(R)$ (relative to V) is defined as those left R-modules N such that $\operatorname{Ext}_{R}^{i}(V,N) = 0$ and $\operatorname{Tor}_{i}^{R}(V,\operatorname{Hom}_{R}(V,N)) = 0$ for all $i \ge 1$ and such that the natural morphism $V \otimes_{R} \operatorname{Hom}_{R}(V,N) \to N$ is an isomorphism. The right Bass class $\mathfrak{B}^{r}(R)$ is defined as those right R-modules N such that $\operatorname{Ext}_{R}^{i}(V,N) = 0$ and $\operatorname{Tor}_{i}^{R}(\operatorname{Hom}_{R}(V,N),V) = 0$ for all $i \ge 1$ and such that the natural morphism Hom_R $(V,N) \otimes_{R} V \to N$ is an isomorphism.

We recall the following definition from [8].

Definition 3. A ring *R* has a Matlis dualizing module if there is an (R,R)-bimodule *E* such that $_RE$ and E_R are both injective cogenerators and such that the canonical maps $R \rightarrow \text{Hom}_R(_RE_R, _RE_R)$ and $R \rightarrow \text{Hom}_R(E_R, E_R)$ are both bijections. *E* will be called a Matlis dualizing module for *R*.

Several examples of Matlis dualizing modules are given in [8]. We now give some additional examples.

Examples. If *R* is left and right Noetherian having a Matlis dualizing module *E*, then $E[x^{-1}]$ is a Matlis dualizing module for R[[x]].

If *R* is a strongly graded ring over a finite group, right and left Noetherian, and $_{R_e}E_{R_e}$ is a dualizing module (for R_e), then $W = R \otimes_{R_e} E \otimes_{R_e} R$ is a dualizing module (for *R*).

In what follows, *R* will always be a right and left Noetherian ring and if *E* is a Matlis dualizing module for *R*, we will denote $M^{\vee} = \text{Hom}_R(M, E)$ for $M \in R$ -Mod or $M \in \text{Mod-}R$.

PROPOSITION 4. Let *R* be a ring and let *V* and *E* be a dualizing module and a Matlis dualizing module for *R*, respectively. If $M \in R$ -Mod is finitely generated, then $M \in \mathcal{A}^l(R)$ if and only if $M^{\vee} \in \mathfrak{B}^r(R)$.

Proof. Suppose that $M \in \mathcal{A}^{l}(R)$. Since $\operatorname{Tor}_{i}^{R}(V, M) = 0$, then

$$\operatorname{Ext}_{R}^{i}\left(V, M^{\vee}\right) \cong \left(\operatorname{Tor}_{i}^{R}(V, M)\right)^{\vee} = 0 \quad \forall i \ge 1.$$

$$(2)$$

On the other hand, $(\operatorname{Tor}_{i}^{R}(\operatorname{Hom}_{R}(V, M^{\vee}), V))^{\vee} \cong \operatorname{Ext}_{R}^{i}(V, (\operatorname{Hom}_{R}(V, M^{\vee}))^{\vee})$. But $(\operatorname{Hom}_{R}(V, M^{\vee}))^{\vee} = \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(V, \operatorname{Hom}_{R}(M, E)), E) \cong \operatorname{Hom}_{R}(\operatorname{Hom}_{R}(V \otimes_{R} M, E), E) \cong (V \otimes_{R} M)^{\vee \nu}$ and since $V \otimes_{R} M$ is finitely generated, $(V \otimes_{R} M)^{\vee \vee} \cong V \otimes_{R} M$ (cf. [8]), and so we get that

$$\operatorname{Ext}_{R}^{i}\left(V,\left(\operatorname{Hom}_{R}\left(V,M^{\vee}\right)\right)^{\vee}\right) \cong \operatorname{Ext}_{R}^{i}\left(V,V\otimes_{R}M\right) = 0 \quad \forall i \ge 1.$$
(3)

Therefore, $\operatorname{Tor}_i(\operatorname{Hom}_R(V, M^{\vee}), V) = 0$ for all $i \ge 1$.

Finally, by hypothesis $M \cong \operatorname{Hom}_R(V, V \otimes_R M)$ and so $\operatorname{Hom}_R(V, V \otimes_R M)^{\vee} \cong M^{\vee}$ is an isomorphism. We also know that $\operatorname{Hom}_R(V, M^{\vee}) \otimes_R V \cong (V \otimes_R M)^{\vee} \otimes_R V$. Therefore, we only have to show that $(V \otimes_R M)^{\vee} \otimes_R V \to \operatorname{Hom}_R(V, V \otimes_R M)^{\vee}$ is an isomorphism to get that $\operatorname{Hom}_R(V, M^{\vee}) \otimes_R V \cong M^{\vee}$.

The functors $(V \otimes_R M)^{\vee} \otimes_R -$ and $\operatorname{Hom}_R(-, V \otimes_R M)^{\vee}$ are both right exact and the natural morphism

$$\left(V \otimes_{R} M\right)^{\vee} \otimes_{R} R^{n} \longrightarrow \operatorname{Hom}_{R}\left(R^{n}, V \otimes_{R} M\right)^{\vee}$$

$$(4)$$

is an isomorphism, and so the morphism is also an isomorphism for finitely generated modules, in particular for V.

Conversely, let now $N = M^{\vee}$ and suppose that $N \in \mathfrak{B}^{r}(R)$. Since M is finitely generated, we get that $N^{\vee} \cong M$. Now $\operatorname{Tor}_{i}^{R}(V, M)^{\vee} \cong \operatorname{Ext}_{R}^{i}(V, M^{\vee}) = \operatorname{Ext}_{R}^{i}(V, N) = 0$ for all $i \ge 1$ and so $\operatorname{Tor}_{i}^{R}(V, M) = 0$ for all $i \ge 1$.

Moreover, $\operatorname{Tor}_{i}^{R}(\operatorname{Hom}_{R}(V, N), V) = 0$ for all $i \ge 1$ and so

$$0 = \operatorname{Tor}_{i}^{R} (\operatorname{Hom}_{R}(V, N), V)^{\vee} \cong \operatorname{Ext}_{R}^{i} (V, \operatorname{Hom}_{R}(V, N)^{\vee}).$$
(5)

1476 A generalization of Auslander's last theorem

But $\operatorname{Hom}_R(V, N)^{\vee} = \operatorname{Hom}_R(V, M^{\vee})^{\vee} \cong (V \otimes_R M)^{\vee \vee} \cong V \otimes_R M$, and therefore $\operatorname{Ext}_R^i(V, V \otimes_R M) = 0$ for all $i \ge 1$. It only remains to show that $M \to \operatorname{Hom}_R(V, V \otimes_R M)$ is an isomorphism.

Since $N^{\vee} \in \mathfrak{B}^r(R)$, then $\operatorname{Hom}_R(V, N) \otimes_R V \to N$ is an isomorphism, and therefore

$$N^{\vee} \cong (\operatorname{Hom}_{R}(V, N) \otimes_{R} V)^{\vee} \cong \operatorname{Hom}_{R}(V, \operatorname{Hom}_{R}(V, N)^{\vee}).$$
(6)

Then consider the natural transformation

$$-\otimes_R \operatorname{Hom}_R(N, E) \longrightarrow \operatorname{Hom}_R(\operatorname{Hom}_R(-, N), E).$$
(7)

 \square

This gives an isomorphism for \mathbb{R}^n and since both functors are right exact, it follows that $V \otimes_{\mathbb{R}} \operatorname{Hom}_{\mathbb{R}}(N, E) \cong \operatorname{Hom}_{\mathbb{R}}(\operatorname{Hom}_{\mathbb{R}}(V, N), E)$ and so

$$M = N^{\vee} \longrightarrow \operatorname{Hom}_{R}(V, \operatorname{Hom}_{R}(V, N)^{\vee}) \cong \operatorname{Hom}_{R}(V, V \otimes_{R} M)$$
(8)

is an isomorphism.

We now recall from [6] that a ring *R* is said to be *left (right) n-perfect* if every left (right) flat *R*-module has projective dimension less than or equal to *n*.

Left perfect rings, commutative Noetherian rings of finite Krull dimension, the universal enveloping algebra $\mathcal{U}(g)$ of a Lie algebra of dimension *n*, and *n*-Gorenstein rings are all examples of left *n*-perfect rings. Also, if *R* is left *n*-perfect, then R[x], R[[x]], the crossed product $R * \mathcal{U}(g)$, and the Weyl algebra $A_k(R)$ are left *k*-perfect for some *k* (cf. [6]).

PROPOSITION 5. Let R be a right and left n-perfect ring, let V and E be a dualizing module of finite left and right injective dimension r and a Matlis dualizing module for R, respectively, and let $G \in R$ -Mod be finitely generated. Then G is Gorenstein projective if and only if G^{\vee} is Gorenstein injective.

Proof. If G is Gorenstein projective, by [5, Proposition 10.2.6], there exists an exact sequence

$$0 \longrightarrow G \longrightarrow P_{r+n} \longrightarrow \cdots \longrightarrow P_0 \longrightarrow M \longrightarrow 0, \tag{9}$$

where every P_i is a finitely generated projective. Now since G and P_i , i = 0, ..., r + n, are in $\mathcal{A}^l(R)$ by [6, Proposition 2.3], then $M \in \mathcal{A}^l(R)$ by [6, Proposition 2.7]. Now, P_i^{\vee} is injective for every i = 0, ..., r + n and by the preceding proposition $M^{\vee} \in \mathcal{B}^r(R)$, so by [6, Theorem 2.11], G^{\vee} is Gorenstein injective.

Conversely, let G^{\vee} be Gorenstein injective. Since *G* is finitely generated, there exists a flat preenvelope $G \to F$ which factors via a finitely generated free module R^k , so we can assume that *F* is finitely generated free. But then, since $R^{\vee} = E$, we get that $E^n \to G^{\vee}$ is an injective precover, and so the injective cover of G^{\vee} is Artinian. Then there is an exact sequence in Mod-*R*,

$$0 \longrightarrow N \longrightarrow E_{r-1} \longrightarrow \cdots \longrightarrow E_0 \longrightarrow G^{\vee} \longrightarrow 0, \tag{10}$$

where every E_i is Artinian and injective. Then $N \in \mathcal{B}^r(R)$ since G^{\vee} and so are E_i , i = 0, ..., r - 1. In this way, we see that

$$0 \longrightarrow G^{\vee \vee} = G \longrightarrow E_0^{\vee} \longrightarrow \cdots \longrightarrow E_{r-1}^{\vee} \longrightarrow N^{\vee} \longrightarrow 0$$
(11)

is exact with $N^{\vee} \in \mathcal{A}^{l}(R)$ and E_{i}^{\vee} is projective for every i = 0, ..., r - 1 and therefore by [6, Theorem 2.14], *G* is Gorenstein projective.

The following result appears in [6] but we include a proof here for completeness.

THEOREM 6. Let *R* be a left *n*-perfect ring and $_RV_R$ a dualizing module for *R* such that $id(_RV), id(V_R) \leq r$. If $M \in \mathcal{A}^l(R)$, then it has a Gorenstein projective precover $G \xrightarrow{\varphi} M \to 0$ such that $pd(Ker(\varphi)) \leq r - 1$.

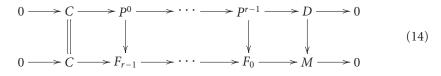
Proof. Let $0 \to C \to F_{r-1} \to \cdots \to F_0 \to M \to 0$ be a (partial) projective resolution of M. Then, by [6, Lemma 2.12], C is Gorenstein projective. Now let

$$\cdots P_1 \longrightarrow P_0 \longrightarrow P^0 \longrightarrow P^1 \longrightarrow \cdots$$
 (12)

be an exact sequence of projective modules such that $C = \text{Ker}(P^0 \rightarrow P^1)$ and it remains exact whenever $\text{Hom}_R(-,P)$ is applied for every projective *P*. We consider

$$0 \longrightarrow P^0 \longrightarrow \cdots \longrightarrow P^{r-1} \longrightarrow D \longrightarrow 0 \tag{13}$$

exact. Then we have a commutative diagram:



The associated complex to this diagram (i.e., the mapping complex)

$$0 \longrightarrow C \longrightarrow C \oplus P^0 \longrightarrow \cdots \longrightarrow F_0 \oplus D \longrightarrow M \longrightarrow 0$$
(15)

is exact and has as a subcomplex the exact sequence $0 \rightarrow C \rightarrow C \rightarrow 0$. Then quotient complex

$$0 \longrightarrow P^0 \longrightarrow \cdots \longrightarrow F_0 \oplus D \longrightarrow M \longrightarrow 0 \tag{16}$$

is exact and all of its terms are projective except perhaps $F_0 \oplus D$. Now if $0 \to L \to F_0 \oplus D \to M \to 0$ is exact with $pd(L) < \infty$, then $pd(L) \le r - 1$. Since $F_0 \oplus D$ is Gorenstein projective and $Ext_R^1(X,L) = 0$ for every Gorenstein projective X, it follows that $F_0 \oplus D \to M$ is the desired precover.

Given a class \mathscr{C} of *R*-modules, we let ${}^{\perp}C$ be the class of *R*-modules *F* such that $\operatorname{Ext}^{1}_{R}(F, C) = 0$ for every $C \in \mathscr{C}$. We let C^{\perp} be the class of *R*-modules *F* such that $\operatorname{Ext}^{1}_{R}(C,F) = 0$ for every $C \in \mathscr{C}$. A pair of classes of *R*-modules $(\mathscr{F}, \mathscr{C})$ is called a *cotorsion theory* if $\mathscr{F}^{\perp} = \mathscr{C}$ and ${}^{\perp}\mathscr{C} = \mathscr{F}$. A cotorsion theory is said to be *complete* if for every *R*-module *M*,

1478 A generalization of Auslander's last theorem

there is an exact sequence $0 \to M \to C \to F \to 0$ such that $C \in \mathscr{C}$ and $F \in \mathscr{F}$, or equivalently if there is an exact sequence $0 \to C \to F \to M \to 0$ such that $C \in \mathscr{C}$ and $F \in \mathscr{F}$, which is equivalent to say that every *R*-module has a special \mathscr{F} -precover and a special \mathscr{C} -preenvelope (cf. [5]). A cotorsion theory is said to be *perfect* if every *R*-module has an \mathscr{F} -cover and a \mathscr{C} -envelope.

Now since *R* is left Noetherian, then Hom(-,-) is left balanced by Inj × Inj on *R*-Mod × *R*-Mod, and therefore we can compute left derived functors of $\text{Hom}_R(-,-)$ using left injective resolutions in the second variable constructed with injective covers or right injective resolutions in the first one (cf. [5, Example 8.3.5]). We will denote them by $\text{Ext}_i(-,-)$ $i \ge 0$ and $\overline{\text{Ext}}^0(M,N)$, and $\overline{\text{Ext}}_0(M,N)$ will denote the cokernel and the kernel of the natural morphism

$$\operatorname{Ext}_{0}^{R}(M,N) \longrightarrow \operatorname{Hom}_{R}(M,N).$$
 (17)

THEOREM 7. Let *R* be a right *n*-perfect ring and let $_{R}V_{R}$ be a dualizing module for *R* such that $id(_{R}V), id(V_{R}) \leq r$. If \mathcal{L} and GorInj denote the classes of right *R*-modules of finite injective dimension and Gorenstein injective, then (\mathcal{L} , GorInj) is a perfect cotorsion theory of $\mathcal{B}^{r}(R)$.

Proof. Suppose that $L \in \mathfrak{B}^r(R) \cap {}^{\perp}$ GorInj. Then $\operatorname{Ext}^1_R(L,G) = 0$ for every *G* Gorenstein injective. Now if *G* is Gorenstein injective, then there exists an exact sequence $0 \to G' \to E_0 \to G \to 0$ with E_0 injective and *G'* Gorenstein injective. By [5, Theorem 8.2.7], $\operatorname{Ext}^R_0(L, G) \cong \operatorname{Ext}^1_R(L,G') = 0$ for every Gorenstein injective *G*. Analogously, $\operatorname{Ext}^R_1(L,G) \cong \operatorname{Ext}^R_0(L, G') = 0$ and by induction, $\operatorname{Ext}^R_i(L,G) = 0$ for all $i \ge 1$ and for every Gorenstein injective *G*.

Now let $0 \to L \to E^0 \to \cdots \to E^{r+n} \to C \to 0$ be a (partial) injective resolution of *L*. By [6, Lemma 2.9], *C* is Gorenstein injective and so $\text{Ext}_{n+r}^R(L, G) = 0$ by the above. Therefore

$$\operatorname{Hom}_{R}\left(E^{r+n+1},C\right) \longrightarrow \operatorname{Hom}_{R}\left(E^{r+n},C\right) \longrightarrow \operatorname{Hom}_{R}\left(E^{r+n-1},C\right)$$
(18)

is exact and so *C* is a direct summand of E^{r+n} which shows that $id(L) < \infty$. If $L \in \mathcal{L}$, then it is immediate that $Ext_R^1(L, G) = 0$ for every Gorenstein injective *G*.

Suppose now that $G \in \mathcal{B}^r(R) \cap L^{\perp}$. Then by [6, Theorem 2.11], *G* is Gorenstein injective. If *G* is Gorenstein injective, then it is immediate that $G \in \mathcal{L}^{\perp}$.

Therefore (\mathscr{L} ,GorInj) is a cotorsion theory. By [6, Theorem 2.16], it is complete. Finally, since *R* is right Noetherian, \mathscr{L} is closed under direct limits and so by [5, Theorem 7.2.6], (\mathscr{L} ,GorInj) is perfect.

THEOREM 8. Let R be a left and right n-perfect ring admitting a Matlis dualizing module and let $_{R}V_{R}$ be a dualizing module for R such that $id(_{R}V)$, $id(V_{R}) \leq r$. If $M \in \mathcal{A}^{l}(R)$ is finitely generated, then M has a Gorenstein projective cover $G \xrightarrow{\varphi} M$ such that G is finitely generated and $pd(Ker(\varphi)) \leq r - 1$.

Proof. By Theorem 6, there is an exact sequence $0 \to L \to G \to M \to 0$ with *G* Gorenstein projective and $pd(L) \le r - 1$, which can be supposed finitely generated. Then if $0 \to M^{\vee} \to G^{\vee} \to L^{\vee} \to 0$ is exact with G^{\vee} Gorenstein injective by Proposition 5 and $id(L^{\vee}) < \infty$, therefore

$$\operatorname{Hom}_{R}(G^{\vee}, N) \longrightarrow \operatorname{Hom}_{R}(M^{\vee}, N) \longrightarrow \operatorname{Ext}_{R}^{1}(L^{\vee}, N) = 0$$
(19)

is exact for every Gorenstein injective N, which gives that $M^{\vee} \to G^{\vee}$ is a Gorenstein injective preenvelope. By the preceding theorem, M^{\vee} has a Gorenstein injective envelope $\varphi: M^{\vee} \to C$, which is a summand of G^{\vee} and so C is artinian. But $\operatorname{Coker}(\varphi)$ is also a direct summand of L^{\vee} and so $\operatorname{id}(\operatorname{Coker}(\varphi)) \leq r - 1$. Then $\operatorname{pd}((\operatorname{Coker}(\varphi))^{\vee}) < \infty$ and therefore we have an exact sequence

$$0 \longrightarrow \left(\operatorname{Coker}(\varphi)\right)^{\vee} \longrightarrow C^{\vee} \xrightarrow{\varphi^{\vee}} M \longrightarrow 0, \tag{20}$$

where C^{\vee} is Gorenstein projective by Proposition 5 and $pd((Coker(\varphi))^{\vee}) \le r - 1$. Since $pd((Coker(\varphi))^{\vee}) < \infty$, it follows that $C^{\vee} \xrightarrow{\varphi^{\vee}} M$ is a Gorenstein projective precover. Finally, $C^{\vee} \xrightarrow{\varphi^{\vee}} M$ is the desired cover since C^{\vee} and M are reflexive.

COROLLARY 9. Let R and M be as in the previous theorem and let $G \to M$ be a Gorenstein projective cover. Then $pd(M) < \infty$ if and only if $G \to M$ is a projective cover.

Proof. Suppose that $pd(M) < \infty$. Then $pd(C) < \infty$ and let

$$0 \longrightarrow P_k \longrightarrow \cdots \longrightarrow P_0 \longrightarrow G \longrightarrow 0 \tag{21}$$

be a projective resolution of *G*. Since $\text{Ext}_R^1(C, P) = 0$ for every projective *P*, it follows that the sequence splits and so *G* is projective. The converse is immediate.

COROLLARY 10. Let R and V be as in the previous theorem and let $M \in \mathcal{A}^{l}(R)$ be finitely generated. Then the minimal Gorenstein projective resolution of M is of the form

$$0 \longrightarrow P_k \longrightarrow \cdots \longrightarrow P_1 \longrightarrow G_0 \longrightarrow M \longrightarrow 0, \tag{22}$$

where P_i is projective for every i = 1, ..., k and $k \le r$.

Proof. By [6, Corollary 2.13], $M \in \mathcal{A}^r(R)$ if and only if there is an exact sequence

$$0 \longrightarrow G_k \longrightarrow \cdots \longrightarrow G_0 \longrightarrow M \longrightarrow 0, \tag{23}$$

where every G_i , i = 0, ..., k, is Gorenstein projective and $k \le r$. Now the result follows from the preceding corollary.

Acknowledgment

The third author was supported by BFM2002-02717 Grant and Junta de Andalucía FQM 0211.

References

- [1] M. Auslander, Anneaux de Gorenstein, et torsion en algèbre commutative, Séminaire d'Algèbre Commutative dirigé par Pierre Samuel, 1966/1967. Texte rédigé, d'après des exposés de Maurice Auslander, Marquerite Mangeney, Christian Peskine et Lucien Szpiro. École Normale Supérieure de Jeunes Filles, Secrétariat mathématique, Paris, 1967 (French).
- [2] L. W. Christensen, *Gorenstein Dimensions*, Lecture Notes in Mathematics, vol. 1747, Springer, Berlin, 2000.

- _, Semi-dualizing complexes and their Auslander categories, Trans. Amer. Math. Soc. 353 [3] (2001), no. 5, 1839-1883.
- [4] E. E. Enochs and O. M. G. Jenda, Gorenstein injective and projective modules, Math. Z. 220 (1995), no. 4, 611-633.
- [5] _, Relative Homological Algebra, De Gruyter Expositions in Mathematics, vol. 30, Walter de Gruyter, Berlin, 2000.
- E. E. Enochs, O. M. G. Jenda, and J. A. López-Ramos, Dualizing modules and n-perfect rings, [6] Proc. Edinb. Math. Soc. (2) 48 (2005), no. 1, 75-90.
- E. E. Enochs, O. M. G. Jenda, and J. Z. Xu, Foxby duality and Gorenstein injective and projective [7] modules, Trans. Amer. Math. Soc. 348 (1996), no. 8, 3223-3234.
- _, Lifting group representations to maximal Cohen-Macaulay representations, J. Algebra [8] 188 (1997), no. 1, 58-68.
- _____, A generalization of Auslander's last theorem, Algebr. Represent. Theory 2 (1999), no. 3, [9] 259-268.
- [10] E. E. Enochs, J. A. López-Ramos, and B. Torrecillas, On Matlis dualizing modules, Int. J. Math. Math. Sci. 30 (2002), no. 11, 659-665.
- H.-B. Foxby, Gorenstein dimensions over Cohen-Macaulay rings, Proc. International Conference [11] on Commutative Algebras (W. Bruns, ed.), Universitat Osnabrück, Osnabrück, 1994, pp. 59-63.
- [12] R. Hartshorne, Local Cohomology, Lecture Notes in Mathematics, no. 41, Springer, Berlin, 1967, a seminar given by A. Grothendieck, Harvard University, 1961.
- P. Jørgensen, The Gorenstein projective modules are precovering, preprint. [13]

Edgar E. Enochs: Department of Mathematics, College of Arts and Sciences, University of Kentucky, Lexington, KY 40506-0027, USA

E-mail address: enochs@ms.uky.edu

Overtoun M. G. Jenda: Department of Mathematics and Statistics, College of Sciences and Mathematics, Auburn University, AL 36849-5310, USA

E-mail address: jendaov@auburn.edu

J. A. López-Ramos: Departamento de Álgebra y Análisis, Facultad de Ciencias Experimentales, Matemático, Universidad de Almería, 04120 Almería, Spain

E-mail address: jlopez@ual.es