ON AN INEQUALITY OF DIANANDA. PART II.

PENG GAO

Received 31 October 2004 and in revised form 17 March 2005

We extend the result in part I, 2003, of certain inequalities among the generalized power means.

1. Introduction

Let $P_{n,r}(\mathbf{x})$ be the generalized weighted means: $P_{n,r}(\mathbf{x}) = (\sum_{i=1}^{n} q_i x_i^r)^{1/r}$, where $P_{n,0}(\mathbf{x})$ denotes the limit of $P_{n,r}(\mathbf{x})$ as $r \to 0^+$, $\mathbf{x} = (x_1, x_2, \dots, x_n)$ and $q_i > 0$ ($1 \le i \le n$) are positive real numbers with $\sum_{i=1}^{n} q_i = 1$. In this paper, we let $q = \min q_i$ and always assume $n \ge 2$, $0 \le x_1 < x_2 < \dots < x_n$.

We define $A_n(\mathbf{x}) = P_{n,1}(\mathbf{x})$, $G_n(\mathbf{x}) = P_{n,0}(\mathbf{x})$, $H_n(\mathbf{x}) = P_{n,-1}(\mathbf{x})$, and we will write $P_{n,r}$ for $P_{n,r}(\mathbf{x})$, A_n for $A_n(\mathbf{x})$, and similarly for other means when there is no risk of confusion.

For mutually distinct numbers *r*, *s*, *t* and any real numbers α , β , we define

$$\Delta_{r,s,t,\alpha,\beta} = \left| \frac{P_{n,r}^{\alpha} - P_{n,t}^{\alpha}}{P_{n,r}^{\beta} - P_{n,s}^{\beta}} \right|,\tag{1.1}$$

where we interpret $P_{n,r}^0 - P_{n,s}^0$ as $\ln P_{n,r} - \ln P_{n,s}$. When $\alpha = \beta$, we define $\Delta_{r,s,t,\alpha}$ to be $\Delta_{r,s,t,\alpha,\alpha}$. We also define $\Delta_{r,s,t}$ to be $\Delta_{r,s,t,1}$.

Bounds for $\Delta_{r,s,t,\alpha,\beta}$ have been studied by many mathematicians. For the case $\alpha \neq \beta$, we refer the reader to the articles [2, 5, 10] for the detailed discussions. In the case $\alpha = \beta$ and r > s > t, we seek the bound

$$f_{r,s,t,\alpha}(q) \ge \Delta_{r,s,t,\alpha},\tag{1.2}$$

and the bound

$$\Delta_{r,s,t,\alpha} \ge g_{r,s,t,\alpha}(q),\tag{1.3}$$

where $f_{r,s,t,\alpha}(q)$ is a decreasing function of q and $g_{r,s,t,\alpha}(q)$ is an increasing function of q.

For r = 1, s = 0, $\alpha = 0$, t = -1, in (1.2) and (1.3), we can take $f_{1,0,t,0}(q) = 1/q, g_{1,0,t,0}(q) = 1/(1-q)$. When $q_i = 1/n$, $1 \le i \le n$, these are the well-known Sierpiński's inequalities [12] (see [6] for a refinement of this). If we further require t, $\alpha > 0$, then consideration of

Copyright © 2005 Hindawi Publishing Corporation

International Journal of Mathematics and Mathematical Sciences 2005:9 (2005) 1381–1386 DOI: 10.1155/IJMMS.2005.1381

1382 On an inequality of Diananda. Part II.

the case $n = 2, x_1 \rightarrow 0, x_2 = 1$ leads to the choice $f_{r,s,t,\alpha} = C_{r,s,t}((1-q)^{\alpha}), g_{r,s,t,\alpha} = C_{r,s,t}(q^{\alpha})$, where

$$C_{r,s,t}(x) = \frac{1 - x^{1/t - 1/r}}{1 - x^{1/s - 1/r}}, \quad t > 0; \qquad C_{r,s,0}(x) = \frac{1}{1 - x^{1/s - 1/r}}.$$
 (1.4)

We will show in Lemma 2.1 that $C_{r,s,t}(x)$ is an increasing function of x (0 < x < 1), so the above choice for f, g is plausible. From now on, we will assume f, g to be so chosen.

Note when t > 0, the limiting case $\alpha \to 0$ in (1.2) leads to Liapunov's inequality (see [8, page 27]):

$$\Delta_{r,s,t,0} = \frac{\ln P_{n,r} - \ln P_{n,t}}{\ln P_{n,r} - \ln P_{n,s}} \le \frac{s(r-t)}{t(r-s)} =: C(r,s,t).$$
(1.5)

From this (or by letting $q \to 0$ when $\alpha = 1$), one easily deduces the following result of Hsu [9] (see also [1]): $\Delta_{r,s,t} \le C(r,s,t), r > s > t > 0$.

For n = 2 and $r > s > t \ge 0$, $\Delta_{r,s,t,\alpha} \to (r - t)/(r - s)$ as $x_2 \to x_1$. Therefore, the two inequalities (1.2) and (1.3) cannot hold simultaneously in general. Now for any set $\{a,b,c\}$ with a, b, c mutually distinct and nonnegative, we let $r = \max\{a, b, c\}, t = \min\{a, b, c\}, s = \{a, b, c\} \setminus \{r, t\}$. By saying (1.2) (resp. (1.3)) holds for the set $\{a, b, c\}, \alpha > 0$, we mean (1.2) (resp. (1.3)) holds for $r > s > t \ge 0, \alpha > 0$.

In the case $\alpha = 1$, a result of Diananda (see [3, 4]) (see also [1, 11]) shows that (1.2) and (1.3) hold for $\{1, 1/2, 0\}$ and his result has recently been extended by the author [7] to the cases $\{r, 1, 0\}$ and $\{r, 1, 1/2\}$ with $r \in (0, \infty)$. It is the goal of this paper to further extend the results in [7].

2. Lemmas

LEMMA 2.1. For 0 < x < 1, $0 \le t < s < r$, $C_{r,s,t}(x)$ is a strictly increasing function of x. In particular, for $0 < q \le 1/2$, $C_{r,s,t}(1-q) \ge C_{r,s,t}(q)$.

Proof. We may assume t > 0. Note $C_{r,s,t}(x) = C_{1,s/r,t/r}(x^{1/r})$, thus it suffices to prove the lemma for $C_{1,r,s}$ with 1 > r > s > 0. By the Cauchy mean value theorem,

$$\frac{1/s-1}{1/r-1} \cdot \frac{1-x^{1/r-1}}{1-x^{1/s-1}} = \eta^{1/r-1/s} < x^{1/r-1/s}$$
(2.1)

for some $x < \eta < 1$ and this implies $C'_{1,r,s}(x) > 0$ which completes the proof.

LEMMA 2.2. For 1/2 < r < 1, $C_{1,r,1-r}(1/2) > r/(1-r)$.

Proof. By setting x = r/(1-r) > 1, it suffices to show f(x) > 0 for x > 1, where $f(x) = 1 - 2^{-x} - x(1 - 2^{-1/x})$. Now $f''(x) = (\ln 2)^2 2^{-x} x^{-3} (2^{x-1/x} - x^3)$ and let $g(x) = (x - 1/x) \ln 2 - 3 \ln x$. Note g'(x) has one root in $(1, \infty)$ and g(1) = 0, it follows that g(x), hence f''(x), has only one root x_0 in $(1, \infty)$. Note when f''(x) > 0 for $x > x_0$, this together with the observation that f(1) = 0, $f'(1) = \ln 2 - 1/2 > 0$, $\lim_{x \to \infty} f(x) = 1 - \ln 2 > 0$ shows f(x) > 0 for x > 1.

LEMMA 2.3. Let $0 < q \le 1/2$. For 0 < s < r < 1, $r + s \ge 1$, $C_{1,r,s}(1-q) > (1-s)/(1-r)$. For $0 \le s < 1 < r$, $C_{r,1,s}(1-q) > (r-s)/(r-1)$ and for 1 < s < r, $C_{r,s,1}(1-q) > (r-1)/(r-s)$.

Proof. We will give a proof for the case 1 > r > s > 0, $r + s \ge 1$ here and the proofs for the other cases are similar. We note first that in this case 1/2 < r < 1. By Lemma 2.1, it suffices to prove $C_{1,r,s}(1/2) > (1 - s)/(1 - r)$. Consider

$$f(s) = (1-r)\left(1 - \left(\frac{1}{2}\right)^{1/s-1}\right) - (1-s)\left(1 - \left(\frac{1}{2}\right)^{1/r-1}\right).$$
(2.2)

We have f(r) = 0 and Lemma 2.2 implies f(1-r) > 0. Now $f'(r) = 2^{1-1/r}g(1/r)$, where $g(x) = -\ln 2(x^2 - x) + 2^{x-1} - 1$ with 1 < x < 2. One checks easily g(1) = g'(1) = 0, g''(x) < 0 which implies g(x) < 0. Hence, f'(r) < 0, this combined with the observation that

$$f''(s) = (1-r)\ln 2\left(\frac{1}{2}\right)^{1/s-1}\frac{(2s-\ln 2)}{s^4}$$
(2.3)

has at most one root and f''(r) > 0, f(1-r) > 0, f(r) = 0 imply that f(s) > 0 for $1-r \le s < r$.

3. The main theorems

THEOREM 3.1. Let $\alpha = 1$. Inequality (1.2) holds for the set $\{1, r, s\}$, with 1, r, s mutually distinct and $r > s \ge 0$, $r + s \ge 1$. The equality holds if and only if n = 2, $x_1 = 0$, $q_1 = q$.

Proof. The case s = 0 was treated in [7], so we may assume s > 0 here. We will give a proof for the case 1 > r > s > 0 here and the proofs for the other cases are similar. Define

$$D_n(\mathbf{x}) = A_n - P_{n,r} - C(1-q) (A_n - P_{n,s}), \quad C(x) = \frac{1 - x^{1/r - 1}}{1 - x^{1/s - 1}}.$$
 (3.1)

By Lemma 2.3, we need to show $D_n \ge 0$ and we have

$$\frac{1}{q_n}\frac{\partial D_n}{\partial x_n} = 1 - P_{n,r}^{1-r}x_n^{r-1} - C(1-q)\left(1 - P_{n,s}^{1-s}x_n^{s-1}\right).$$
(3.2)

By a change of variables: $x_i/x_n \rightarrow x_i$, $1 \le i \le n$, we may assume $0 \le x_1 < x_2 < \cdots < x_n = 1$ in (3.2) and rewrite it as

$$g_n(x_1,\ldots,x_{n-1}) := 1 - P_{n,r}^{1-r} - C(1-q)(1-P_{n,s}^{1-s}).$$
(3.3)

We want to show $g_n \ge 0$. Let $\mathbf{a} = (a_1, \dots, a_{n-1}) \in [0, 1]^{n-1}$ be the point in which the absolute minimum of g_n is reached. We may assume $a_1 \le a_2 \le \dots \le a_{n-1}$. If $a_i = a_{i+1}$ for some $1 \le i \le n-2$ or $a_{n-1} = 1$, by combing a_i with a_{i+1} and q_i with q_{i+1} , or a_{n-1} with 1 and q_{n-1} with q_n , it follows from Lemma 2.1 that we can reduce the determination of the absolute minimum of g_n to that of g_{n-1} with different weights. Thus without loss of generality, we may assume $a_1 < a_2 < \dots < a_{n-1} < 1$.

If **a** is a boundary point of $[0,1]^{n-1}$, then $a_1 = 0$, and we can regard g_n as a function of a_2, \ldots, a_{n-1} , then we obtain

$$\nabla g_n(a_2,\ldots,a_{n-1}) = 0.$$
 (3.4)

1384 On an inequality of Diananda. Part II.

Otherwise $a_1 > 0$, **a** is an interior point of $[0, 1]^{n-1}$ and

$$\nabla g_n(a_1,\ldots,a_{n-1}) = 0.$$
 (3.5)

In either case a_2, \ldots, a_{n-1} solve the equation

$$(r-1)P_{n,r}^{1-2r}x^{r-1} + C(1-q)(1-s)P_{n,s}^{1-2s}x^{s-1} = 0.$$
(3.6)

The above equation has at most one root (regarding $P_{n,r}$, $P_{n,s}$ as constants), so we only need to show $g_n \ge 0$ for the case n = 3 with $0 = a_1 < a_2 = x < a_3 = 1$ in (3.3). In this case we regard g_3 as a function of x and we get

$$\frac{1}{q_2}g'_3(x) = P_{3,r}^{1-2r}x^{r-1}h(x), \qquad (3.7)$$

where

$$h(x) = r - 1 + (1 - s)C(1 - q)(q_2 x^{s/2} + q_3 x^{-s/2})^{(1 - 2s)/s} (q_2 x^{r/2} + q_3 x^{-r/2})^{(2r - 1)/r}.$$
 (3.8)

If $q_2 = 0$ (note $q_3 > 0$), then

$$h(x) = r - 1 + (1 - s)C(1 - q)q_3^{1/s - 1/r}x^{s - r}.$$
(3.9)

One easily checks that in this case h(x) has exactly one root in (0,1). Now assume $q_2 > 0$, then

$$h'(x) = (1-s)C(1-q)P_{3,s}^{1-3s}P_{3,r}^{r-1}x^{-(r+s+2)/2}p(x),$$
(3.10)

where

$$p(x) = (r-s)(q_2^2 x^{r+s} - q_3^2) + (r+s-1)q_2 q_3(x^r - x^s).$$
(3.11)

Now

$$p'(x) = x^{s-1}((r^2 - s^2)q_2^2x^r + (r+s-1)q_2q_3(rx^{r-s} - s)) := x^{s-1}q(x).$$
(3.12)

If $r + s \ge 1$, then q'(x) > 0 which implies there can be at most one root for p'(x) = 0. Since p(0) < 0 and $\lim_{x\to\infty} p(x) = +\infty$, we conclude that p(x), hence h'(x), has at most one root. Since h(1) < 0 by Lemma 2.3 and $\lim_{x\to 0^+} h(x) = +\infty$, this implies h(x) has exactly one root in (0, 1).

Thus $g'_3(x)$ has only one root x_0 in (0,1). Since $g'_3(1) < 0$, $g_3(x)$ takes its maximum value at x_0 . Thus $g_3(x) \ge \min\{g_3(0), g_3(1)\} = 0$.

Thus we have shown $g_n \ge 0$, hence $\partial D_n / \partial x_n \ge 0$ with equality holding if and only if n = 1 or n = 2, $x_1 = 0$, $q_1 = q$. By letting x_n tend to x_{n-1} , we have $D_n \ge D_{n-1}$ (with weights $q_1, \ldots, q_{n-2}, q_{n-1} + q_n$). Since *C* is an increasing function of *q*, it follows by induction that $D_n > D_{n-1} > \cdots > D_2 = 0$ when $x_1 = 0$, $q_1 = q$ in D_2 . Else $D_n > D_{n-1} > \cdots > D_1 = 0$. Since we assume $n \ge 2$ in this paper, this completes the proof.

The relations between (1.2) and (1.5) seem to suggest that if (1.2) holds for $r > s > t \ge 0$, $\alpha > 0$, then (1.2) also holds for $r > s > t \ge 0$, $k\alpha$ with k < 1 and if (1.3) holds for $r > s > t \ge 0$, $\alpha > 0$, then (1.3) also holds for $r > s > t \ge 0$, $k\alpha$ with k > 1. We do not know the answer in general but for a special case, we have the following.

THEOREM 3.2. Let r > s > 0. If (1.2) holds for $\{r, s, 0\}$, $\alpha > 0$, then it also holds for $\{r, s, 0\}$, k α with k > 1. If (1.3) holds for $\{r, s, 0\}$, $\alpha > 0$, then it also holds for $\{r, s, 0\}$, k α with 0 < k < 1.

Proof. We will only prove the first assertion here and the second can be proved similarly. By the assumption, we have

$$P_{n,r}^{\alpha} - G_n^{\alpha} \ge \frac{1}{1 - (q^{\alpha})^{1/s - 1/r}} (P_{n,r}^{\alpha} - P_{n,s}^{\alpha}).$$
(3.13)

We write the above as

$$P_{n,s}^{\alpha} \ge (q^{\alpha})^{1/s - 1/r} P_{n,r}^{\alpha} + (1 - (q^{\alpha})^{1/s - 1/r}) G_n^{\alpha}.$$
(3.14)

We now need to show for k > 1,

$$P_{n,s}^{k\alpha} \ge (q^{k\alpha})^{1/s - 1/r} P_{n,r}^{k\alpha} + (1 - (q^{k\alpha})^{1/s - 1/r}) G_n^{k\alpha}.$$
(3.15)

Note by (3.14), via setting $w = (q^{k\alpha})^{1/s-1/r}$, $x = G_n/P_{n,r}$, it suffices to show

$$f(x) =: (w + (1 - w)x^k)^{1/k} - w^{1/k} - (1 - w^{1/k})x \le 0,$$
(3.16)

for $0 \le w, x \le 1$. Note

$$f'(x) = (1 - w) \left(w x^{-k} + (1 - w) \right)^{1/k - 1} - \left(1 - w^{1/k} \right), \tag{3.17}$$

thus f'(x) can have at most one root in (0,1), note also f(0) = f(1) = 0 and f'(1) > 0, we then conclude $f(x) \le 0$ for $0 \le x \le 1$ and this completes the proof.

Acknowledgment

The author is grateful to the referees for their valuable comments and suggestions.

1386 On an inequality of Diananda. Part II.

References

- [1] P. S. Bullen, D. S. Mitrinović, and P. M. Vasić, *Means and Their Inequalities*, Mathematics and Its Applications (East European Series), vol. 31, D. Reidel Publishing, Dordrecht, 1988.
- [2] D. I. Cartwright and M. J. Field, A refinement of the arithmetic mean-geometric mean inequality, Proc. Amer. Math. Soc. 71 (1978), no. 1, 36–38.
- [3] P. H. Diananda, On some inequalities of H. Kober, Proc. Cambridge Philos. Soc. 59 (1963), 341–346.
- [4] _____, "On some inequalities of H. Kober": Addendum, Proc. Cambridge Philos. Soc. 59 (1963), 837–839.
- P. Gao, Certain bounds for the difference of means, JIPAM. J. Inequal. Pure Appl. Math. 4 (2003), no. 4, article 76, 10 pp.
- [6] _____, Ky Fan inequality and bounds for differences of means, Int. J. Math. Math. Sci. 2003 (2003), no. 16, 995–1002.
- [7] _____, On an inequality of Diananda, Int. J. Math. Math. Sci. 2003 (2003), no. 32, 2061– 2068.
- [8] G. H. Hardy, J. E. Littlewood, and G. Pólya, *Inequalities*, Cambridge University Press, Cambridge, 1952.
- [9] L. C. Hsu, *Questions 1843,1844*, Math. Student 23 (1955), 121.
- [10] A. McD. Mercer, Some new inequalities involving elementary mean values, J. Math. Anal. Appl. 229 (1999), no. 2, 677–681.
- [11] D. S. Mitrinović, J. E. Pečarić, and A. M. Fink, *Classical and new inequalities in analysis*, Mathematics and Its Applications (East European Series), vol. 61, Kluwer Academic, Dordrecht, 1993.
- W. Sierpiński, On an inequality for arithmetic, geometric and harmonic means, Warsch. Sitzungsber. 2 (1909), 354–358 (Polish).

Peng Gao: Department of Mathematics, University of Michigan, Ann Arbor, MI 48109, USA *E-mail address*: penggao@umich.edu