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We extend the result in part I, 2003, of certain inequalities among the generalized power
means.

1. Introduction

Let Pn,r(x) be the generalized weighted means: Pn,r(x)= (
∑n

i=1 qix
r
i )

1/r , where Pn,0(x) de-
notes the limit of Pn,r(x) as r → 0+, x = (x1,x2, . . . ,xn) and qi > 0 (1 ≤ i ≤ n) are positive
real numbers with

∑n
i=1 qi = 1. In this paper, we let q =minqi and always assume n≥ 2,

0≤ x1 < x2 < ··· < xn.
We defineAn(x)= Pn,1(x),Gn(x)= Pn,0(x),Hn(x)= Pn,−1(x), and we will write Pn,r for

Pn,r(x), An for An(x), and similarly for other means when there is no risk of confusion.
For mutually distinct numbers r, s, t and any real numbers α, β, we define

∆r,s,t,α,β =
∣∣∣∣P

α
n,r −Pα

n,t

P
β
n,r −P

β
n,s

∣∣∣∣, (1.1)

where we interpret P0
n,r − P0

n,s as lnPn,r − lnPn,s. When α = β, we define ∆r,s,t,α to
be ∆r,s,t,α,α. We also define ∆r,s,t to be ∆r,s,t,1.

Bounds for ∆r,s,t,α,β have been studied by many mathematicians. For the case α �= β, we
refer the reader to the articles [2, 5, 10] for the detailed discussions. In the case α= β and
r > s > t, we seek the bound

fr,s,t,α(q)≥ ∆r,s,t,α, (1.2)

and the bound

∆r,s,t,α ≥ gr,s,t,α(q), (1.3)

where fr,s,t,α(q) is a decreasing function of q and gr,s,t,α(q) is an increasing function of q.
For r=1, s=0, α=0, t =−1, in (1.2) and (1.3), we can take f1,0,t,0(q)= 1/q,g1,0,t,0(q)=

1/(1− q). When qi = 1/n, 1 ≤ i ≤ n, these are the well-known Sierpiński’s inequalities
[12] (see [6] for a refinement of this). If we further require t, α > 0, then consideration of
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the case n= 2, x1 → 0, x2 = 1 leads to the choice fr,s,t,α = Cr,s,t((1− q)α), gr,s,t,α = Cr,s,t(qα),
where

Cr,s,t(x)= 1− x1/t−1/r

1− x1/s−1/r
, t > 0; Cr,s,0(x)= 1

1− x1/s−1/r
. (1.4)

We will show in Lemma 2.1 that Cr,s,t(x) is an increasing function of x (0 < x < 1), so the
above choice for f , g is plausible. From now on, we will assume f , g to be so chosen.

Note when t > 0, the limiting case α→ 0 in (1.2) leads to Liapunov’s inequality (see [8,
page 27]):

∆r,s,t,0 = lnPn,r − lnPn,t

lnPn,r − lnPn,s
≤ s(r− t)

t(r− s)
=: C(r,s, t). (1.5)

From this (or by letting q→ 0 when α= 1), one easily deduces the following result of Hsu
[9] (see also [1]): ∆r,s,t ≤ C(r,s, t), r > s > t > 0.

For n = 2 and r > s > t ≥ 0, ∆r,s,t,α → (r − t)/(r − s) as x2 → x1. Therefore, the two in-
equalities (1.2) and (1.3) cannot hold simultaneously in general. Now for any set {a,b,c}
with a, b, c mutually distinct and nonnegative, we let r =max{a,b,c}, t =min{a,b,c},
s= {a,b,c}\{r, t}. By saying (1.2) (resp. (1.3)) holds for the set {a,b,c}, α > 0, we mean
(1.2) (resp. (1.3)) holds for r > s > t ≥ 0, α > 0.

In the case α = 1, a result of Diananda (see [3, 4]) (see also [1, 11]) shows that (1.2)
and (1.3) hold for {1,1/2,0} and his result has recently been extended by the author [7]
to the cases {r,1,0} and {r,1,1/2} with r ∈ (0,∞). It is the goal of this paper to further
extend the results in [7].

2. Lemmas

Lemma 2.1. For 0 < x < 1, 0 ≤ t < s < r, Cr,s,t(x) is a strictly increasing function of x. In
particular, for 0 < q ≤ 1/2, Cr,s,t(1− q)≥ Cr,s,t(q).

Proof. We may assume t > 0. Note Cr,s,t(x) = C1,s/r,t/r(x1/r), thus it suffices to prove the
lemma for C1,r,s with 1 > r > s > 0. By the Cauchy mean value theorem,

1/s− 1
1/r− 1

· 1− x1/r−1

1− x1/s−1
= η1/r−1/s < x1/r−1/s (2.1)

for some x < η < 1 and this implies C′1,r,s(x) > 0 which completes the proof. �

Lemma 2.2. For 1/2 < r < 1, C1,r,1−r(1/2) > r/(1− r).

Proof. By setting x = r/(1− r) > 1, it suffices to show f (x) > 0 for x > 1, where f (x)= 1−
2−x − x(1− 2−1/x). Now f ′′(x)= (ln2)22−xx−3(2x−1/x − x3) and let g(x)= (x− 1/x) ln2−
3lnx. Note g′(x) has one root in (1,∞) and g(1) = 0, it follows that g(x), hence f ′′(x),
has only one root x0 in (1,∞). Note when f ′′(x) > 0 for x > x0, this together with the
observation that f (1)= 0, f ′(1)= ln2− 1/2 > 0, limx→∞ f (x)= 1− ln2 > 0 shows f (x) >
0 for x > 1. �

Lemma 2.3. Let 0 < q ≤ 1/2. For 0 < s < r < 1, r + s≥ 1, C1,r,s(1− q) > (1− s)/(1− r). For
0≤ s < 1 < r, Cr,1,s(1− q) > (r− s)/(r− 1) and for 1 < s < r, Cr,s,1(1− q) > (r− 1)/(r− s).
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Proof. We will give a proof for the case 1 > r > s > 0, r + s≥ 1 here and the proofs for the
other cases are similar. We note first that in this case 1/2 < r < 1. By Lemma 2.1, it suffices
to prove C1,r,s(1/2) > (1− s)/(1− r). Consider

f (s)= (1− r)
(

1−
(

1
2

)1/s−1)
− (1− s)

(
1−

(
1
2

)1/r−1)
. (2.2)

We have f (r)= 0 and Lemma 2.2 implies f (1− r) > 0. Now f ′(r)= 21−1/rg(1/r), where
g(x)=− ln2(x2− x) + 2x−1− 1 with 1 < x < 2. One checks easily g(1)= g′(1)= 0, g′′(x) <
0 which implies g(x) < 0. Hence, f ′(r) < 0, this combined with the observation that

f ′′(s)= (1− r) ln2
(

1
2

)1/s−1 (2s− ln2)
s4

(2.3)

has at most one root and f ′′(r) > 0, f (1− r) > 0, f (r)= 0 imply that f (s) > 0 for 1− r ≤
s < r. �

3. The main theorems

Theorem 3.1. Let α = 1. Inequality (1.2) holds for the set {1,r,s}, with 1, r, s mutually
distinct and r > s≥ 0, r + s≥ 1. The equality holds if and only if n= 2, x1 = 0, q1 = q.

Proof. The case s= 0 was treated in [7], so we may assume s > 0 here. We will give a proof
for the case 1 > r > s > 0 here and the proofs for the other cases are similar. Define

Dn(x)= An−Pn,r −C(1− q)
(
An−Pn,s

)
, C(x)= 1− x1/r−1

1− x1/s−1
. (3.1)

By Lemma 2.3, we need to show Dn ≥ 0 and we have

1
qn

∂Dn

∂xn
= 1−P1−r

n,r x
r−1
n −C(1− q)

(
1−P1−s

n,s x
s−1
n

)
. (3.2)

By a change of variables: xi/xn→ xi, 1≤ i≤ n, we may assume 0≤ x1 < x2 < ··· < xn =
1 in (3.2) and rewrite it as

gn
(
x1, . . . ,xn−1

)
:= 1−P1−r

n,r −C(1− q)
(
1−P1−s

n,s

)
. (3.3)

We want to show gn ≥ 0. Let a = (a1, . . . ,an−1) ∈ [0,1]n−1 be the point in which the
absolute minimum of gn is reached. We may assume a1 ≤ a2 ≤ ··· ≤ an−1. If ai = ai+1 for
some 1 ≤ i ≤ n− 2 or an−1 = 1, by combing ai with ai+1 and qi with qi+1, or an−1 with
1 and qn−1 with qn, it follows from Lemma 2.1 that we can reduce the determination of
the absolute minimum of gn to that of gn−1 with different weights. Thus without loss of
generality, we may assume a1 < a2 < ··· < an−1 < 1.

If a is a boundary point of [0,1]n−1, then a1 = 0, and we can regard gn as a function of
a2, . . . ,an−1, then we obtain

∇gn
(
a2, . . . ,an−1

)= 0. (3.4)
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Otherwise a1 > 0, a is an interior point of [0,1]n−1 and

∇gn
(
a1, . . . ,an−1

)= 0. (3.5)

In either case a2, . . . ,an−1 solve the equation

(r− 1)P1−2r
n,r xr−1 +C(1− q)(1− s)P1−2s

n,s xs−1 = 0. (3.6)

The above equation has at most one root (regarding Pn,r , Pn,s as constants), so we only
need to show gn ≥ 0 for the case n= 3 with 0= a1 < a2 = x < a3 = 1 in (3.3). In this case
we regard g3 as a function of x and we get

1
q2
g′3(x)= P1−2r

3,r xr−1h(x), (3.7)

where

h(x)= r− 1 + (1− s)C(1− q)
(
q2x

s/2 + q3x
−s/2)(1−2s)/s(

q2x
r/2 + q3x

−r/2)(2r−1)/r
. (3.8)

If q2 = 0 (note q3 > 0), then

h(x)= r− 1 + (1− s)C(1− q)q1/s−1/r
3 xs−r . (3.9)

One easily checks that in this case h(x) has exactly one root in (0,1). Now assume q2 > 0,
then

h′(x)= (1− s)C(1− q)P1−3s
3,s Pr−1

3,r x−(r+s+2)/2p(x), (3.10)

where

p(x)= (r− s)
(
q2

2x
r+s− q2

3

)
+ (r + s− 1)q2q3

(
xr − xs

)
. (3.11)

Now

p′(x)= xs−1((r2− s2)q2
2x

r + (r + s− 1)q2q3
(
rxr−s− s

))
:= xs−1q(x). (3.12)

If r + s≥ 1, then q′(x) > 0 which implies there can be at most one root for p′(x)= 0.
Since p(0) < 0 and limx→∞ p(x) = +∞, we conclude that p(x), hence h′(x), has at most
one root. Since h(1) < 0 by Lemma 2.3 and limx→0+ h(x)= +∞, this implies h(x) has ex-
actly one root in (0,1).

Thus g′3(x) has only one root x0 in (0,1). Since g′3(1) < 0, g3(x) takes its maximum
value at x0. Thus g3(x)≥min{g3(0),g3(1)} = 0.
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Thus we have shown gn ≥ 0, hence ∂Dn/∂xn ≥ 0 with equality holding if and only if
n= 1 or n= 2, x1 = 0, q1 = q. By letting xn tend to xn−1, we have Dn ≥Dn−1 (with weights
q1, . . . ,qn−2,qn−1 + qn). Since C is an increasing function of q, it follows by induction that
Dn > Dn−1 > ··· > D2 = 0 when x1 = 0, q1 = q in D2. Else Dn > Dn−1 > ··· > D1 = 0. Since
we assume n≥ 2 in this paper, this completes the proof. �

The relations between (1.2) and (1.5) seem to suggest that if (1.2) holds for r > s >
t ≥ 0, α > 0, then (1.2) also holds for r > s > t ≥ 0, kα with k < 1 and if (1.3) holds for
r > s > t ≥ 0, α > 0, then (1.3) also holds for r > s > t ≥ 0, kα with k > 1. We do not know
the answer in general but for a special case, we have the following.

Theorem 3.2. Let r > s > 0. If (1.2) holds for {r,s,0}, α > 0, then it also holds for {r,s,0}, kα
with k > 1. If (1.3) holds for {r,s,0}, α > 0, then it also holds for {r,s,0}, kα with 0 < k < 1.

Proof. We will only prove the first assertion here and the second can be proved similarly.
By the assumption, we have

Pα
n,r −Gα

n ≥
1

1− (qα)1/s−1/r

(
Pα
n,r −Pα

n,s

)
. (3.13)

We write the above as

Pα
n,s ≥

(
qα
)1/s−1/r

Pα
n,r +

(
1− (qα)1/s−1/r)

Gα
n. (3.14)

We now need to show for k > 1,

Pkα
n,s ≥

(
qkα
)1/s−1/r

Pkα
n,r +

(
1− (qkα)1/s−1/r)

Gkα
n . (3.15)

Note by (3.14), via setting w = (qkα)1/s−1/r , x =Gn/Pn,r , it suffices to show

f (x)=:
(
w+ (1−w)xk

)1/k −w1/k − (1−w1/k)x ≤ 0, (3.16)

for 0≤w, x ≤ 1. Note

f ′(x)= (1−w)
(
wx−k + (1−w)

)1/k−1− (1−w1/k), (3.17)

thus f ′(x) can have at most one root in (0,1), note also f (0) = f (1) = 0 and f ′(1) > 0,
we then conclude f (x)≤ 0 for 0≤ x ≤ 1 and this completes the proof. �
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