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Let R be a ring and M a left R-module. M which satisfies DCC on essential submodules
is GCH, and M which satisfies ACC on small submodules is WH. If M[X] is GCH R[X]-
module, then M is GCH R-module. Examples show that a GCH module need not be
co-Hopfian and a WH module need not be Hopfian.

1. Introduction and preliminaries

In this paper, all rings are associative with identity and all modules are unital left modules
unless otherwise specified.

Let R be a ring and M a module. N ≤M will mean N is a submodule of M. A sub-
module E of M is called essential in M (notation E ≤e M) if E∩A �= 0 for any nonzero
submodule A of M. Dually, a submodule S of M is called small in M (notation S�M)
if M �= S+T for any proper submodule T of M. M is said to be Hopfian (co-Hopfian)
in case any surjective (injective) homomorphism is automatically an isomorphism. M is
called generalized Hopfian (GH) if any of its surjective endomorphisms has a small ker-
nel. M is called weakly co-Hopfian if any injective endomorphism of M is essential. In
this paper, we introduce the concepts of GCH modules and WH modules. It is shown
that (1) a module M which satisfies DCC on essential submodules is GCH and a module
M which satisfies ACC on small submodules is WH; (2) if M[X] is GCH R[X]-module,
then M is GCH R-module. Examples show that a GCH module need not be co-Hopfian
and a WH module need not be Hopfian. The notions which are not explained here will
be found in [4].

Lemma 1.1 (see [6, 17.3(2)]). Let K , L, and M be modules. Then two monomorphisms
f : K → L, g : L→M are essential if and only if g f is essential.

Lemma 1.2 (see [6, 19.3(1)]). Let K , L, and M be modules. Then two epimorphisms f :
K → L, g : L→M are small if and only if g f is small.

Lemma 1.3 (see [2, Proposition 5.20]). Suppose that K1 ≤M1 ≤M, K2 ≤M2 ≤M, and
M =M1⊕M2. Then K1⊕K2 ≤e M1⊕M2 if and only if K1 ≤e M1 and K2 ≤e M2.
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2. Modules whose essential injective endomorphisms are isomorphic

Let M be a module. M is said to be a generalized co-Hopfian module (GCH module) if
any essential injective endomorphism of M is isomorphic.

Proposition 2.1. Suppose that M satisfies the condition that N is GCH for every proper
essential submodule. Then M itself is GCH.

Proof. Suppose on the contrary that M is not GCH, then there exists an essential injective
homorphism g : M→M which is not an isomorphism. Let N = Img. Then N �=M and g
induces an isomorphism ḡ : M→N . Then ḡ|N : N →N is an essential injective morphism
which is not an isomorphism. This is a contradiction since N is a GCH module. �

Proposition 2.2. Let M be a GCH module and K be a direct summand of M. Then K is
GCH.

Proof. Let M = K ⊕K ′ and let f : K → K be an essential injection of K . f induces an
injective endomorphism of M, that is, f ⊕ 1K ′ : M →M with ( f ⊕ 1K ′)(k + k′) = f (k) +
k′. Since Im( f ⊕ 1K ′) = Im f ⊕ K ′ ≤e K ⊕ K ′ =M by Lemma 1.3, f ⊕ 1K ′ is essential.
Since M is GCH, f ⊕ 1K ′ is isomorphic, and hence f is an isomorphism, as required. �

Proposition 2.3. Let M =M1 ⊕M2 and let M1, M2 be invariant submodules under any
injection of M. Then M is GCH if and only if M1, M2 are GCH.

Proof. “If” part is clear by Proposition 2.2.
“Only if” part. Let f : M→M be an essential injection. Then f |Mi : Mi→Mi is essen-

tial injection. By assumption, f |Mi is isomorphic. Thus, f (M)= f (M1 +M2)= f (M1) +
f (M2)=M1 +M2 =M, and hence f is surjective, as desired. �

It is easy to know that a module M is co-Hopfian if and only if M is both a weakly
co-Hopfian module and a GCH module. In [2], Haghany and Vedadi proved that if DCC
holds on nonessential submodules of M, then M is weakly co-Hopfian. We also know that
Artinian modules are co-Hopfian modules. Thus it is natural that we consider a module
with DCC on essential submodules.

Theorem 2.4. Let M be a module with DCC on essential submodules. Then M is GCH.

Proof. Let f : M →M be an essential injection of M. Then, ··· ≤ Im f 2 ≤ Im f is a de-
scending chain on essential submodules of M by Lemma 1.1. Since M satisfies DCC on
essential submodules, there exists n such that Im f n = Im f n+1. For any m ∈M, since
f n(m) ∈ Im f n+1, there exists m1 ∈M such that f n(m) = f n+1(m1). Since f is injective,
m= f (m1). Thus f is surjective, as required. �

Lemma 2.5. A quasicontinuous module M is continuous if and only if it is a GCH module.

A continuous module is a quasicontinuous module, but a quasicontinuous module
need not be a continuous module. Thus the following result gives a sufficient condition
such that a quasicontinuous module is a continuous module.

Corollary 2.6. Let M be a module with DCC on essential submodules. Then M is quasi-
continuous if and only if M is continuous.
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Proof. It follows from Theorem 2.4 and Lemma 2.5. �

Proposition 2.7. Let P be a property of modules preserved under isomorphism. If a module
M has the property P and satisfies DCC on essential submodules with property P, then M is
GCH.

Proof. Suppose that M is not GCH. Then there exists a proper essential submodule N1

of M with N1 	M. Thus N1 is not GCH and enjoys P. We have a proper essential sub-
module N2 of N1 with N2 	 N1. Clearly, N2 is not GCH and satisfies P. Repeating, we
obtain a strictly descending chain N1 > N2 > ··· of proper essential submodules each
with property P, a contradiction. �

Corollary 2.8. If M has DCC on its non-GCH submodules, then M is GCH.

Proof. Suppose not, and let P be the property of being non-GCH. Applying Proposition
2.7, we arrive at a contradiction. Thus M must be GCH. �

Example 2.9. A semisimple module M is weakly co-Hopfian if and only if any homoge-
neous component of M is finitely generated (see [2, Corollary 1.12]). Thus a semisimple
module need not be a weakly co-Hopfian module, and hence it is not a co-Hopfian mod-
ule. However, any semisimple module is GCH.

Let M be a module. The elements of M[X] are formal sums of the form a0 + a1X +
···+ akXk with k an integer greater than or equal to 0 and ai ∈M. We denote this sum
by Σk

i=1aiX
i (a0X0 is to be understood as the element a0 ∈M). Addition is defined by

adding the corresponding coefficients. The R[X]-module structure is given by

(
Σk
i=0λiX

i
) · (Σz

j=0ajX
j
)= Σk+z

µ=0cµX
µ, (2.1)

where cµ = Σi+ j=µλiaj , for any λi ∈ R, aj ∈M.

Lemma 2.10 (see [5, Lemma 1.7]). Let N ≤M. Then N is essential in M as an R-module if
and only if N[X] is essential in M[X] as an R[X]-module.

Theorem 2.11. Let M be a module. If M[X] is GCH R[X]-module, then M is GCH R-
module.

Proof. Let f : M→M be an essential injective endomorphism ofM. Then f [X] : M[X]→
M[X] with f [X](ΣmiXi) = Σ f (miXi) is an injective endomorphism of M[X]. Next, we
will show that Im f [X] ≤e M[X]. It is easy to verify that Im f [X] = (Im f )[X]. Since
Im f ≤e M, Im f [X]≤e M[X] by Lemma 2.10. Thus f [X] is isomorphic by assumption.
The surjectivity of f follows by that of f [X]. This completes the proof. �

3. Modules whose small surjective endomorphisms are isomorphic

Let M be a module. M is said to be a weakly Hopfian module (WH module) if any small
surjection of M is isomorphic.

Theorem 3.1. Let M be a module. If M satisfies the condition that M/N is WH for every
small submodule, 0 �=N ≤M. Then M itself is WH.
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Proof. Suppose on the contrary that M is not WH. Then there exists a small surjection f
of M which is not an isomorphism. Let N = Ker f . Then 0 �=N and f induces an isomor-
phism f̄ : M/N →M. If η : M →M/N denotes the canonical quotient morphism, then
η f̄ : M/N →M/N is a small surjection which is not an isomorphism. This is a contradic-
tion. �

Proposition 3.2. Let M be a torsion-free module. Then M is WH.

Proof. Let f : M→M be any small surjection. Let 0 �= x ∈M \Ker f , then−x ∈M \Ker f .
For any r ∈ R, f (xr) = f (x)r. Since x ∈ Ker f , f (x) �= 0. By assumption, f (x)r �= 0 and
hence xr ∈M \Ker f . Thus, (M \Ker f )∪{0} is a submodule of M. Since (M \Ker f )∪
{0}+ Ker f =M and f is a small surjection, (M \Ker f )∪{0} =M and so Ker f = 0, as
required. �

Proposition 3.3. Let M be WH and K is a direct summand of M. Then K is WH.

Proof. Since K is a direct summand of M, there exists K ′ ≤M such that M = K ⊕K ′.
Let f : K → K be a surjection with Ker f � K , then f induces a small surjection f ⊕ 1K ′ :
M →M with ( f ⊕ 1K ′)(k + k′) = f (k) + k′ by Lemma 1.2. Since M is WH, f ⊕ 1K ′ is
isomorphic and hence f is an isomorphism, as desired. �

Proposition 3.4. Let M =M1 ⊕M2 and let M1, M2 be invariant submodules under any
surjection of M. Then M is WH if and only if M1, M2 are WH.

Proof. “If” part is clear by Proposition 3.3.
“Only if” part. Let f : M →M be a small epimorphism, then f |Mi : Mi →Mi is a

small surjection. By assumption, f |Mi is isomorphic. Let f (m1 +m2) = 0, then f (m1) +
f (m2)= 0 and so m1 =m2 = 0. Thus f is injective. This completes the proof. �

We know that Noetherian modules are Hopfian modules. It is also easy to know that a
module M is Hopfian if and only if M is both a generalized Hopfian module and a WH
module. In [1], Ghorbani and Haghany proved that if ACC holds on nonsmall submod-
ules of M, then M is generalized Hopfian. Thus it is natural that we consider the following
result.

Theorem 3.5. Let M be a module with ACC on small submodules. Then M is WH.

Proof. Let f : M →M be a small surjection of M. Then Ker f ≤ Ker f 2 ≤ Ker f 3 ≤ ···
is an ascending chain on small submodule of M by Lemma 1.2. Since M satisfies ACC
on small submodules, there exists a positive number n such that Ker f n = Ker f n+1. Next,
we will prove that Ker f = 0. Let x ∈ Ker f , then f (x) = 0. Since f is surjective, there
exists y1 ∈M such that f (y1) = x. Since f is surjective, there exists y2 ∈M such that
f (y2)= y1. Repeating the process, we obtain yn−1 ∈M with f (yn)= yn−1. Thus f (y1)=
f 2(y2)= ··· = f n(yn)= x. Since x ∈ Ker f , f (x)= f ( f n(yn))= 0, that is, f n+1(yn)= 0.
So yn ∈ Ker f n+1 = Ker f n. Consequently, f n(yn)= 0 and hence x = 0, as required. �

Lemma 3.6. A quasidiscrete module M is discrete if and only if M is a WH module.

Proof. The necessity of the condition is obvious. Conversely, let f : M→N be an epimor-
phism, with kernel K , onto the direct summand N of M. As M is quasidiscrete, there is
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a decomposition M = A⊕B with A ≤ K and B∩K � B. Now, N 	M/K = K +B/K 	
B/(B∩K). Theorem 4.24 in [4] yields N 	 B, let g : N → B be an isomorphism. Then,

M = A⊕B −→ A⊕N −→ A⊕B =M (3.1)

is an epimorphism with the small kernel B∩K , where 1⊕ f |B : M → A⊕N and 1⊕ g :
A⊕N → A⊕B =M. By assumption, it is an isomorphism, that is, B∩K = 0. ThenK = A
is a direct summand of M and f splits. This completes the proof. �

A discrete module is a quasidiscrete module, but a quasidiscrete module need not
be a discrete module. Thus the following result gives a sufficient condition such that a
quasidiscrete module is a discrete module.

Corollary 3.7. LetM be a module with ACC on small submodules. ThenM is quasidiscrete
if and only if M is discrete.

Proof. It follows from Theorem 3.5 and Lemma 3.6. �

Proposition 3.8. Let P be a property of modules preserved under isomorphism. If a module
M has the property P and satisfies ACC on nonzero small submodules N such that M/N has
the property P, then M is WH.

Proof. Suppose that M is not WH. Then there exists a submodule N1 with N1 �= 0 and
M/N1 	M. Thus M/N1 is not WH but satisfies P. Hence, there exists a submodule N2 ≤
N1 with N1 �= N2 and M/N2 	M/N1. So we get 0 < N1 < N2 with M/Ni 	M for i = 1,2.
Repeating the process yields a chain of submodules of the type that contradicts our hy-
pothesis. �

Corollary 3.9. If M is GCH and satisfies ACC on small submodules N such that M/N is
GCH, then M is WH.

Proof. It follows by Proposition 3.8. �

Remark 3.10. Following Proposition 2.7, if a module M is WH and has DCC on essential
WH submodules, then M is GCH.

Corollary 3.11. If M has ACC on its nonzero small submodules N such that M/N is not
WH, then M is WH.

Proof. Let P be the property of being WH, and suppose that M is not WH. By Proposition
3.8, M must be WH. This contradiction proves that M is WH. �

Example 3.12. Let M be a torsion-free Abelian group of finite rank such that End(M)
is a principal ideal domain and let B = ⊕nM, where n is an integer. Then the kernel of
endomorphism of B is a direct summand which, again, is a direct sum of copies of M. It
is clear to see that M is WH, but it need not be Hopfian.

Example 3.13. If R is a semisimple Artinian ring, then a module M is Hopfian if and only
if M has finite length (see [3]). Note that a vector space V over a field F is Hopfian if and
only if it is finite dimensional. Thus an infinite-dimensional vector space is WH, but it is
not Hopfian.
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Let R be a ring and � a class of R-modules, we will say that � is socle fine whenever for
any M,N ∈�, we have Soc(M)	 Soc(N) if and only if M 	N .

Theorem 3.14. For any ring R, the following statements are equivalent.
(1) R is semisimple.
(2) The class of all GCH modules is socle fine.
(3) The class of all WH modules is socle fine.

Proof. It is easy to prove that quasiprojective (quasiinjective) and semisimple modules
are GCH(WH) modules. If R is semisimple, then the class of all R-modules is socle fine
and hence (1) implies (2) and (3).

(2)⇒(1) Since R and Soc(R) are quasiprojective and Soc(R) = Soc(Soc(R)), we have
R	 Soc(R) by (2). Thus R is semisimple.

(3)⇒(1) Since Soc(E(R)) = Soc(R) = Soc(Soc(R)) and both of E(R) and Soc(R) are
quasiinjective, we have E(R)	 Soc(R) is semisimple, and so is R. �
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