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M. Antonowicz and A. P. Fordy (1988) introduced the second-order polynomial eigen-
value problem Lφ = (∂2 +

∑n
i=1 viλ

i)φ = αφ (∂ = ∂/∂x, α = constant) and discussed its
multi-Hamiltonian structures. For n= 1 and n= 2, the associated finite-dimensional in-
tegrable Hamiltonian systems (FDIHS) have been discussed by Xu and Mu (1990) using
the nonlinearization method and Bargmann constraints. In this paper, we consider the
general case, that is, n is arbitrary, provide the constrained Hamiltonian systems associ-
ated with the above-mentioned second-order polynomial ergenvalue problem, and prove
them to be completely integrable.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

In classical mechanics one describes the equation of motion by Hamiltonian systems of
the form [2]

dqj

dt
= ∂H

∂pj

dpj

dt
=−∂H

∂qj
( j = 1, . . . ,n), (1.1)

where q = (q1, . . . ,qn)∈Rn, p = (p1, . . . , pn)∈Rn, and H =H(q, p) is a smooth function
on an open domain Ω of R2n.

It is customary to introduce the “Poisson bracket” {F,G} for two functions F,G ∈
C1(Ω) by [7]

{F,G} =
n∑

j=1

(
∂F

∂qj

∂G

∂pj
− ∂F

∂pj

∂G

∂qj

)

= 〈Fq,Gp
〉− 〈Fp,Gq

〉
. (1.2)

F, G are called in involution if {F,G} = 0.
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2 A finite-dimensional integrable system

Using a notation borrowed from differential geometry we associate with (1.1) the “vec-
tor field” or first-order differential operator

XH =
n∑

j=1

(

Hpj

∂

∂qj
−Hqj

∂

∂pj

)

. (1.3)

Definition 1.1. A nonconstant function F ∈ C′(Ω) is called an integral of XH if

XHF = {F,H} = 0. (1.4)

Definition 1.2. A Hamiltonian vector field XH in Ω⊂R2n is called “integrable” if it pos-
sesses n integrals Fj ∈ C1(Ω) satisfying the following conditions

(i) {Fj ,H} = 0,
(ii) {Fj ,Fk} = 0,

(iii) the gradients dFj are linearly independent in Ω.

The first condition expresses that the Fj are integrals; the second one means that any
two such integrals commute. The third condition is a requirement for nondegeneracy,
which we will have to relax frequently.

Since Cao introduced the nonlinearization method to search for finite-dimensional
completely integrable Hamiltonian systems [3–6] associated with soliton equations, nu-
merous such systems have been obtained by many mathematicians [8–12, 14, 15].

In this paper, we consider the integrable systems associated with the polynomial eigen-
value problem

Lφ= (∂2 +
n∑

i=1

viλ
i)φ = αφ(∂= ∂/∂x, α= constant). (1.5)

When n= 1, denote v1 by v, (1.5) becomes

φxx + λvφ= αφ. (1.6)

Equation (1.6) is associated with the Harry-Dym (HD) equation

vt =
(

1
2
√
v

)

xxx

+

(
2α√
v

)

x

. (1.7)

Remark 1.3. Actually, spectral problem (1.6) generates the Camassa-Holm (CH) equation
in its negative-order hierarchy, whereas it produces the HD equation (1.7) in its positive-
order hierarchy [9]. Both hierarchies are integrable. When n = 2, v1 = u, v2 = v, (1.5)
becomes

φxx +
(
λu+ λ2v

)
φ= αφ. (1.8)
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Equation (1.8) is associated with the following coupled Harry-Dym (CHD) equation:

ut =
(

1
2
√
v

)

xxx

− 2α

(
1√
v

)

x

,

vt = 2u
1√
v

+ux
1√
v
.

(1.9)

We have already obtained the integrable Hamiltonian systems associated with Harry-
Dym and coupled Harry-Dym equations [13]. For general positive integer n, the associ-
ated integrable system is given in this paper. In the next section, we give the Hamiltonian
system associated with the polynomial eigenvalue problem, and in Section 3, we obtain
the involutive integrals and prove they are linearly independent.

2. The Hamiltonian system

Consider the evolution equation

φtm =−
1
2
B(m)
x φ+B(m)φx, (2.1)

where

B(m) =
m−1∑

j=0

bjλ
m− j , b− j = 0 ( j = 1,2, . . .). (2.2)

From the solvability condition of (1.5) and (2.1), the hierarchy of evolution equations of
potentials v = (v1, . . . ,vn)T can be written as

vi =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ··· 0 J0
... · · J1

0 · · ...
J0 J1 ··· Jn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎡

⎢
⎢
⎢
⎢
⎢
⎣

bm−n
bm−n−1

...
bm−1

⎤

⎥
⎥
⎥
⎥
⎥
⎦
. (2.3)

Also, from the solvability condition, it is found that bk satisfies

J0bj + J1bj+1 + ···+ Jnbj+n = 0, (2.4)

or

K
(
bj ,bj+1, . . . ,bj+n−1

)T = J
(
bj+1,bj+2, . . . ,bj+n

)T
, (2.5)

or

KGj = JGj+1, (2.6)
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where

K =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ··· 0 J0
... · · J1

0 · · ...
J0 J1 ··· Jn−1

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎦

, J =

⎡

⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

0 ··· 0 J0 0
... · · J1 0

0 · · ...
...

J0 J1 ··· Jn−2 0
0 0 ··· 0 −Jn

⎤

⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

(2.7)

are the Lenard pair of operators

Gj =
(
bj ,bj+1, . . . ,bj+n−1

)
,

J0 = 1
2
∂3− 2α∂, Ji = vi∂+ ∂vi (i= 1,2, . . . ,n).

(2.8)

It is evident that if φ is a solution of (1.5), then

n∑

i=0

λiJiφ
2 = 0. (2.9)

Rewrite it as

n∑

i=0

λiJiP = 0. (2.10)

Letting P =∑∞
j=0Pjλ− j ; we find that Pj satisfies the same relationship (2.4) as bj does.

Multiplying both sides of (2.10) by P and integrating it once, we get

PxxP− 1
2
P2
x − 2αP2 + 2

n∑

i=1

λiviP
2 = C(λ). (2.11)

Set P0 = V−1/2
n ,C(λ) = λn. By substituting P =∑∞

j=0Pjλ− j into (2.11), we find that Pj =
bj ,

bk+nb
−1
0 =−1

4

k∑

j=0

bjxxbk− j +
1
8

k∑

j=0

bjxbk− j,x +
α

2

k∑

j=0

bjbk− j

− 1
2

n−1∑

i=0

k+i∑

j=0

bjbk+i− j − 1
2
vn

k+n−1∑

j=1

bjbk+n− j (k = 1,2, . . .).

(2.12)

Proposition 2.1. Let λj be an eigenvalue of (1.5) and φj an eigenfunction corresponding
to λj . Then

gradλj =
(
δλj

δv1
, . . . ,

δλj

δv1

)T

= (λjφ
2
j ,λ

2
j φ

2
j , . . . ,λ

n
j φ

2
j

)T
,

K gradλj = λjJ gradλj .

(2.13)
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Define the Lenard sequence recursively: G0 = (b0, . . . ,bn−1)T , KGj−1 = JGj ( j = 1,
2, . . .), Xj = JGj ( j = 0,1,2, . . .) are the CHD vector fields.

Let

G0 =
N∑

j=1

gradλj . (2.14)

Then

bj =
〈
Λ j+1φ,φ

〉
( j = 0,1,2, . . . ,n− 1), (2.15)

where 〈·,·〉 is the standard inner-product in RN , Λ= diag(λ1, . . . ,λN ).
From (2.4), (2.14), and (2.15), we have

k−1∑

j=0

Jn− j
〈
Λk− jφ,φ

〉= 0 (k = 1,2, . . . ,n), (2.16)

which yields

vn−k =
〈
Λφ,φ

〉−1
∂−1〈Λφ,φ

〉[
Jn
〈
Λkφ,φ

〉
+ ···+ Jn−k+2

〈
Λ2φ,φ

〉]
. (2.17)

By making use of the recursion formula of vk, we have the following proposition.

Proposition 2.2. The constraint between the potentials and the eigenfunctions (1.5) is of
the form

vn =
〈
Λφ,φ

〉−2
, (2.18)

vn−k =
k∑

j=1

aj
〈
Λφ,φ

〉−( j+2) ∑

l1+···+l j=k− j

〈
Λl1+2φ,φ

〉···〈Λl j+2φ,φ
〉

(k = 1,2, . . . ,n− 1),

(2.19)

where aj = (−1) j( j + 1), a0 = 1, and φj , λj satisfy (1.5).

We now consider the following system instead of (1.5):

φjxx +
n∑

i=1

viλ
i
jφj = αφj ( j = 1,2, . . . ,N), (2.20)

where λj 	= λk when j 	= k. Let

q = (q1,q2, . . . ,qN
)T = (φ1,φ2, . . . ,φN

)T
; (2.21)

then (2.20) can be condensed as

qxx +
n∑

i=1

viΛ
iq = αq. (2.22)
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By using the identity

k∑

i=1

〈
Λk− jq,q

〉 i∑

j=1

ajγi, j =
k∑

i=1

aj

k− j∑

i=0

〈
Λiq,q

〉
γk−i, j (2.23)

and substituting (2.18), (2.19) into (2.22), we get

px = αq−
n−1∑

i=0

aj
〈
Λq,q

〉i+2 ·
∑

l1+···+li+1

〈
Λl1+2q,q

〉···〈Λli+2q,q
〉
Λli+1+2q,

qx = p,

(2.24)

which can be written in canonical Hamiltonian system

qx = ∂H0

∂p
, px =−∂H0

∂q
, (2.25)

where p = (p1, . . . , pN )T = (q1x, . . . ,qNx)T ,

H0 = 1
2
〈p, p〉− α

2
〈q,q〉+

1
2

n−2∑

i=0

bi〈Λq,q〉−(i+2) ·
∑

l1+···+li+1=n−2−i

〈
Λl1+2q,q

〉···〈Λli+1+2q,q
〉

bi = ai
i+ 1

= (−1)i, i= 0,1, . . . .

(2.26)

3. Involutivity and integrability

Consider the constraint of (2.12)

Fn+k =
[
bk+n

b0
+

1
4

k∑

j=0

bjxxb
k− j − 1

8

k∑

j=0

bjxbk− j,x

+
1
2

n−1∑

i=1

vi

k+i∑

j=0

bjbk+i− j − α

2

k∑

j=0

b
k− j
j +

1
2
vn

k+n−1∑

j=1

bjbk+n− j

]∣
∣
∣
∣
∣
A

,

(3.1)

where subscript A means to substitute bj = 〈Λ j+1q,q〉 into (2.12). So

Fn+k = 1
2

k−1∑

j=0

〈
Λ j+1q, px

〉〈
Λk− j−1q,q

〉
+

1
2

k∑

j=0

〈
Λ j+1p, p

〉〈
Λk− j+1q,q

〉

+
1
2

〈
Λk+1q, px

〉〈Λq,q〉− 1
2

〈
Λ j+1q, p

〉〈
Λk− j+1p,q

〉

− α

2

k∑

j=0

〈
Λ j+1q,q

〉〈
Λk− j+1q,q

〉
+

1
2

n−1∑

i=0

vi

k+i∑

j=0

〈
Λ j+1q,q

〉〈
Λk+i− j+1q,q

〉

+
1
2
vn

k+n−1∑

j=1

〈
Λ j+1q, p

〉〈
Λk+i− j+1q,q

〉
+ 〈Λq,q〉−1〈Λk+n+1q,q

〉
.

(3.2)
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Through direct calculations from (2.18), (2.19), and (2.24), we have

Fn+k = 1
2

n−1∑

i=0

bi〈Λq,q〉−(i+1) ·
∑

l1+···+li+1=n−1−i

〈
Λl1+2q,q

〉···〈Λli+2q,q
〉〈
Λii+1+k+2q,q

〉

+
1
2

k∑

j=0

[〈
Λ j+1p, p

〉〈
Λk− j+1q,q

〉− 〈Λ j+1q,q
〉〈
Λk− j+1p,q

〉]
, k = 1,2, . . . .

(3.3)

Set

Gk = 1
2

k∑

j=0

[〈
Λ j+1p, p

〉〈
Λ j+1q,q

〉− 〈Λ j+1q, p
〉〈
Λk− j+1p,q

〉]
,

Qk = Fk+n−Gk.

(3.4)

It is known (see Cao [3]) that Gk are in involution. Using the identity

l∑

i=0

〈
Λl+k+ j−i p, p

〉〈
Λiq,q

〉
+

k∑

i=0

〈
Λi p, p

〉〈
Λl+k+ j−iq,q

〉

=
l+k+ j∑

i=0

〈
Λl+k+ j−i p, p

〉〈
Λiq,q

〉−
l+ j−1∑

i=l+1

〈
Λl+k+ j−i p, p

〉〈
Λiq,q

〉
,

(3.5)

we can show by straightforward calculations that

{
Qk,Gl

}
+
{
Gk,Ql

}
+
{
Qk,Ql

}= 0. (3.6)

So

{
Fk+n,Fl+n

}= 0. (3.7)

Since all λk are distinct, the Vandermonde determinant of λ1,λ2, . . . ,λN is not zero. Then
it is easy to see that

gradFn+k =
(
∂Fn+k

∂q1
, . . . ,

∂Fn+k

∂qN
,
∂Fn+k

∂p1
, . . . ,

∂Fn+k

∂pN

)

, k = 1,2, . . . , (3.8)

are functionally independent. So we have the following proposition.

Proposition 3.1. The Hamiltonian system (R2N ,dp∧ dq,H0) is completely integrable in
the sense of Liouville.

Consider the systems obtained from (2.1)

φjtm =−
1
2
R(m)
x φj +R(m)φjx ( j = 1,2, . . . ,N). (3.9)
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Substituting b− j = 〈Λ j+1q,q〉 ( j = 1,2, . . .) into it, we have

qtm =
m−1∑

j=0

[〈
Λ j+1q,q

〉
Λm− j p− 〈Λ j+1q, p

〉
Λm− jq

]
,

ptm =
∂

∂x
qtm =

m−1∑

j=0

[〈
Λ j+1q, p

〉
Λm− j p− 〈Λ j+1p, p

〉
Λm− jq

]

+
m−1∑

j=0

[〈
Λ j+1q,q

〉
Λm− j px −

〈
Λ j+1q, px

〉
Λm− jq

]
.

(3.10)

Through direct calculation from (2.24), (3.10) can be written in canonical Hamilton-
ian system

qtm =
∂Fn+m−1

∂p
, ptm =−

∂Fn+m−1

∂q
. (3.11)

Proposition 3.2. The Hamiltonian systems in the last equation are completely integrable
in the sense of Liouville, and if (p,q) satisfies (2.25) and (3.11), then v given by (2.18) and
(2.19) is a solution of CHD equation.

Proof. Since Fk are in involution, the systems (3.11) (m = 1,2, . . .) are completely inte-
grable. Observe that (2.3) is deduced from the solvability condition of (2.22) and (3.9);
(2.25) and (3.11) are obtained by substituting (2.18) and (2.19) into (2.22) and (3.9),
respectively. It is easy to see that if (q, p) satisfies both (2.25) and (3.11), then v given by
(2.18) and (2.19) is a solution of CHD equation. �
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