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We present a method for solving the two-dimensional equation of transfer. The method
can be extended easily to the general linear transport problem. The used technique allows
us to reduce the two-dimensional equation to a system of one-dimensional equations.
The idea of using the spectral method for searching for solutions to the multidimensional
transport problems leads us to a solution for all values of the independant variables, the
proposed method reduces the solution of the multidimensional problems into a set of
one-dimensional ones that have well-established deterministic solutions. The procedure
is based on the development of the angular flux in truncated series of Chebyshev poly-
nomials which will permit us to transform the two-dimensional problem into a set of
one-dimensional problems.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.
1. Introduction

The neutron transport equation is a linearized version of the Boltzmann equation with
wide applications in physics, geophysics, and astrophysics. The neutron transport equa-
tion models the transport of neutral particles in a scattering, fission, and absorption
events with no self-interactions [11]. It is used in radiation shielding and reactor core
calculations, as well as in radiative transfer of stellar and planetary atmospheres and it
also describes dispersion of light, the passage of y-rays through dispersive media, and so
forth.

The resolution of problems dealing with transport phenomena is the subject of sev-
eral works, especially in the context of transfer multidimensional problems based on
analytical and numerical approaches. One can refer, for example, to Fourier transform
(3, 4, 10, 13, 18, 22, 24] and many others using the Laplace transform [8, 9].

Chebyshev spectral methods for radiative transfer problems are also studied, for exam-
ple, by Kim and Ishimaru in [19], by Kim and Moscoso in [20], by Asadzadeh and Kadem
in [2], and by Kadem in [15-17]. For more detailed study on Chebyshev spectral method
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2 Analytical solutions for the neutron transport

and also approximations by the spectral methods, we refer the reader to monographs by
Boyd [6] and Bernardi and Maday [5].

The neutron transport problem was studied analytically by, for example, [12, 23]. The
stationary monoenergetic transport of neutrons in a domain Q) surrounded by vacuum
can be represented by the following integrodifferential equation. Given a source S and the
coefficients « and o, find the angular flux f such that for y € S,

p - Vu(x,u) +J o(x,p,m)ux,n)dn +S(x,u), forxeQ,
& (1.1)
u(x,u) =0, forxel_={xel=0Q:u-n(x)<0},

where o is the transfer kernel (collision function), « is the total cross-section, $? = {y €
R?:|ul = 1}, n(x) is the outward unit normal to T at x €[, and - V = Zley,-(a/ax,-),
i=1,2,3.

There also exist analogues of (1.1) in different geometries. We have, for example, the
following case.

Slab geometry x € (0,a), y € (-=1,1),a >0,

1
y?(x,y) + a(x, ) u(x,p) = J o () u(x, n)dn + S(x, 1),
X -1

(1.2)
u(x,u) =0, foru>0, wu(a,u)=0, foru<o.
Two-dimensional geometry: x € QC R, y€S= (u CR*: |ul = 1),
e Vu(x,u) + a(x,wu(x,p) = L o (x,u,n)ux,1)dn + S(x, 1), (13)
1.3

u(x,u) =0, forxe I‘,:.
Cylindrical domain with functions being constant in the x3-direction:

x€ECr=QXR, QCR,ueD=(ueR :|ul<1),

- Vu(x,p) + a(x)u(x,p) = JD ulx,n) (1= 1712) "o, usm)dn + S(x, 1), (1.4)
u(x,u) =0, forxe L.

A variety of numerical methods for the neutron transport equation have been pro-
posed in the literature. In general, these methods are based on using quadrature formu-
las for the discretization of the angular variable (discrete-ordinates method), any other
classical method, such as the doubling method can be used, and finite element or finite
difference methods for the discretization of the spatial variable. Most of the previous the-
oretical convergence analysis of such numerical methods is concerned with the slab case
(L.2).

In this paper, based on analytical procedures, we use the spectral method [14] to de-
compose the two-dimensional problem into a set of one-dimensional problems that can
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be solved by many methods, among others, we mention the discrete-ordinates method
[11, 21]. The method is based on the expansion of the flux in a truncated series of Cheby-
shev polynomials [1].

Truncating and replacing this expansion into the transport equation, it is then ex-
pected that the coefficients of the expansion must satisfy one-dimensional transport equa-
tions, the convergence is then studied.

2. The two-dimensional spectral solution
Consider the following problem:

Tf(r,¥)=Kf(r,¥)+S(r,¥), (r,¥)eQ=RXD,

2.1
f(r,¥)=0 for(r,¥)el_, 2.1)

where R =]0,a]x]0,b], D = {¥ € R, [|¥[, < 1}, T ¥ {(r,¥) € 9RX D, ¥ - n(r) < 0},
and n(r) designates the normal outside vector at dR in r. We suppose furthermore that
for x =0, f(0,y,—u,n) = @1(y;,1); and for y = 0, f(x,0,—u,1) = &(x;u,7). Here the
functions g1 (y,u,7) and g (x, u, 1) describing some incidental flux are specified.

The operator of collision K is defined by K f (1, ¥) = fb (W, W) f(r,¥")d¥’, where 9
is a positive bounded kernel.

The operator of transport T is defined by Tf(r,¥) =¥ - Vf(r,¥) + 0 f(r,¥) with
D(T) % {feLP(Q), ¥ -VfeLr(Q), f(r,¥) =00onT_, 1< p<+}.S denotes a pos-
itive term source, o denotes the total effective section supposed to be constant, and f
represents the flux of neutrons to be determined.

In the considered geometry, one has ¥ - V f(r,¥) = u(df/ox) + n(df/dy), r = (x,y),
and ¥ = (u,1), (2.1) spells then

0 0
u=—f 6y, un) +n=—1f 0 y,un) +0f(xy,u,1n)
ox oy 2.2)

1
= ﬂ_l9s(.u,11;/4’,ﬂ’)f(x,y;u'aﬂ’)du’dﬂ’ +8(r, %)

for 0<x <a,and —1 < y < 1. Here f(x,y,4,%) is the flux of neutrons in the direction

defined by p € [-1,1] and 7 € [—1,1]; 4 and #, respectively, denote the cosine and the

sine of the polar angle.
We seek a solution of (2.2) subject to the boundary conditions of the form

O, y;5—pwn) =g (ysp1),

fla,y;—pm) =0 (2.3)
forO<pu=<1,-1<n<1,and

F,05u,—1) = @26 u,1),
J e bspn) =0

for—-1<u<l,-1<ny=<1l,and0<b< 1.

(2.4)
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We first expand the flux f(x, y;u,7) via a truncated series of Chebyshev polynomials
in the y variable:

I

G ysun) = fitxwm) Tily). (2.5)
i=0

We then determine the components f;(x,u,#), for i = 1,...,1I, to define the flux given
by (2.5).

For the first component fy(x, , 1), we substitute (2.5) into the boundary conditions at
y =0and y = b, given by (2.4), to find

I
Solo,psn) = g (x4,

filx,u,m), —1l<u<l, —-1<py<l,

I

e (2.6)
Jolx,p,m) = —2 Ti(b)ﬁ(x,y,q), -l<pu<l, -1<y<1,0<b<1,
2Ty (b)

where 0 < x < g, —1 <y < 1, and assuming that T;(0) and T;(b) are different from zero

We now substitute (2.5) into (2.2), multiply the resulting equation by Tx(y)/,/1 — y?,
and integrate in the y variable in the interval (—1,1) with k = 1

) =1,...,1, to get the following
one-dimensional transport problems:

a 1 4 4 4 4 4 4
yafk(x,y,n) +0ofr(x,p,n) = H_ISS(y,n;y ) filsu' s )du' dn’ + Gi (o p, 1)
(2.7)
with
1
Gl pon) = Skt um) =1 > A¥ file,un)

1 bl bl b) (2.8)
i=k+1
where

2— 5k0 1 d 71 y
A = j 4 (y)dy, (2.9)
! T 1 d)/ ll _

T,
Sk, 1) = kOJ oyt )—ED)

de, (2.10)
-y

The components fi(x;u,7) satisfy the following boundary conditions at x = 0, and at
x=a

and where ko denotes the Kronecker delta

0, —py) = 2Ok J a0

)2
™ V12 (2.11)
ﬁ(a)_#)n) =
forO<py<landO0=<ny<1.
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In addition, by taking into account the summation term in (2.8), one can see that
one can resolve the one-dimensional transfer problem given by (2.7)—(2.10) to define the
components fi(x,u,¢) for k =1,...,1, in this decreasing order to avoid the coupling of
the equations; once this is done, the flux of neutrons is completely determined by (2.5).

3. Specific application of the method

Consider the three-dimensional neutron transport equation written as

d 0 0

9 1 _ .2 2 e
yax‘{’(x,y,e)+ 1-up (coseay‘l’(x,pt,e)+s1n982‘1’(x,[4,9))+at\P(x,y,9) .
1

1 2
:J J o0 — w0 (x,p, 0 )0 d +S(x,1,),
-1J0

where we assume that the spatial variable x :=(x, y,z) varies in the cubic domain Q :=
(o, y,2): =1 <x,y,z<1},and Y(x, u,0) := ¥(x, y,2,4,0) is the angular flux in the di-
rection defined by y € [-1,1] and 6 € [0,27].

We seek for a solution of (3.1) satisfying the following boundary conditions.

For the boundary terms in x, for 0 < 8 < 27,

fl(y>zyl/l)9): x:_l, 0<//l§1,
Y(x==1,y,z,4,0) = (3.2)
0, x=1,-1=<u<0.

For the boundary terms in y and for -1 < pu <1,

_fz(x)z>,u)9)) y = _1, 0< COSG < 1,

Y(x,y =+1,z,u4,0) = (3.3)
0, y=1,-1<cosf<0.

Finally, for the boundary terms in z, for -1 <y <1,

f3(x>)’,ll>9)> Z:_1,0S9<ﬂ,

Y(x,y,z=+1,u,0) = (3.4)
0, z=1,n7<0<2m

Here we assume that fi(y,z,4,9), f2(x,z,u,¢), and f3(x, y,u,¢) are given functions.
Expanding the angular flux ¥(x, y,z,4,¢) in a truncated series of Chebyshev polyno-
mials T;(y) and R;(z) leads to

1 7
Y(x,y,2,10) = > > W i(xu0) Ti(y)R;(2). (3.5)

i=0 j=0
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Inserting (3.5) into (3.1), multiplying the resulting expressions by (T;(y)/4/1 — ¥?) X
(Rj(2)//1 —z?), and integrating over y and z, we obtain I X ] one-dimensional trans-
port problems, namely,

oY,
7 axﬁ (%> @) + 0:Wa (%, 14 §)

(3.6)
1
= JJ—I Os (Au,’(p, - [4"/5)\1’043 (x).u,)ﬁb’)d(p,d‘bl, + Ga,ﬂ (X;#)(p);

where

G, (1) =S, (%4 $) — /1 — 22

I ] (3.7)
X [cos¢> z AW j(x,p, ) +sing Z Bf‘l’i,ﬁ(x,y,gb)},

a=i+1 B=j+1

with

2— 5a )(2-6 Ty T.()T,
Sup(opir ) = ( 0 8.0) J’ﬂ (.H) ()’) 8(2) S(x, 3,2t $)dzdy,

Wime i -2)
2 = a0 J’ d Ti(y)
Af = Ta dy,
i - ld)/( () it
p_2- 5ﬁoj d Tj(2)
B =— 2B =%
(3.8)
The corresponding discrete-ordinates equation [11] is then
0¥,
Um axﬁ (X,‘le, ¢m) + O-t\Poc,ﬁ (x:[lrm ¢m)
(3.9)

I
Mz

wn\lj(x,ﬁ (x:,urm ¢m) + Ga,/g (x;,urm ¢m)

=
I
—

and we also expand W, g(x, 4m, $rn) in a truncated series of Chebyshev polynomials, that is,

W o (X, s i) = Z (3.10)
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bringing (3.10) in (3.9) to get

(3.11)
= éwn [ki) Cil o) i) qim_) :;(Hm) ] + Gy (%5 s 1)
with
G (55 s 1m)
=5,y () =142
(x, ¢m) Tk(#m)]‘

[cosqﬁ z Af §M+sm¢ Z B; %
N B=j+1 k=0 V1=,
(3.12)

Multiplying (3.11) by Ti(¢) and integrating over y,, € [—1,1], we find

o ! Tk([um)Tl(.um) o ! Tk(ﬂm)Tl(.um)

ZoCk(x%)Jlim dym+0t%Ck(x,¢m)J17m Apim

- SRS " Tic(pm) T (pim) ! .

—Zow go k(x %)L =) dﬂm+f_1Ga,ﬁ(x,ﬂm,nm)Tz(#m)dﬂm
(3.13)

with
1
,[,1 Ga,/s (x;Hm>’7m) T; (‘“m)dﬂm

J S x #ma¢m)Tl(ﬂm)d#m_cos¢m\ll_:um Z Af
i=a+1

><§:Ck(x,¢>m)J’1 Tk(#M)TZ(‘um) App + singa /1 — y2, Z Bﬁ
k=0 y1- j=p+1

J'1 Tx (tm) Ty (pm) bty

M
X > Ck(
go * Nzt
(3.14)
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where

A% = 2- 6"‘°ﬂldy Ta(y) \/ﬂ 1(tm) dy dpm,

(3.15)
Bl = 2- 5/30 J J ( )
1 dz Tl(ym)dzdym
by using the properties of Chebyshev polynomials to (3.14) to get
1
J_l G (565 s Hom) T1 (hom) At
! m
- _ _.2
= J_lsa,ﬂ (s o> @) Tt (phm ) At [2 o 1 I"mck(x’ﬁbm)] (3.16)
I J
X[ Z A cosd, + Z B§;Sin¢m:|a
i=atl j=p+1
then (3.9) becomes
aC M I J 5
Zzm _ — 2 [ — - sl
Um Ep + |:0t mgowll [um(i_%lA, cosy, ‘%131 sm(/)m)]Cm
= (3.17)

1
T
= 5 | S ot ) i)

After written in vector and matrix notation and regrouping the coefficients C,, together
in (3.11), we can derive the following differential equation:

where D,, = (1/4m)By and E,,, = (l/ym)Am with

1
Ami= o5 L S (s s $m) T1 () At
; (3.19)
|:O't z \ll_.um( Z A cos ¢ — Z B?Sin¢m>:|’
i=at1 j=p+1

the solution of differential equation for the vector C,, is thus constructed as follows:
Cnl) = e PXCu(0) = [ I (61 (3.20)
0

(3.20) depends on vector C,,(0). Having established an analytical formulation for the ex-
ponential appearing in (3.20), the unknown components of vector C,,(0) for the bound-
ary problem (3.1) can be readily obtained applying the boundary conditions (3.2), (3.3),
and (3.4).
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To derive an analytical formulation for the exponential of matrix D, appearing in
(3.20), we use the Sumudu transform method [15].

4. Study of the spectral approximation

Now we expand

N)
Yapn (%, ¢m) = >, C cos (mem), (4.1)

m=0

where C) is the approximation to the coefficient C,, by the consideration of the trun-
cated series Wy g -

From spectral analysis, we know that when a function is infinitely smooth and all its
derivatives exist, then the coefficients appearing in its sine or cosine series go to zero faster
than 1/n. Moreover, if the function and all its derivatives are periodic, then the decay is
faster than any power of 1/n.

However, as indicated by Canuto et al. [7], in practice this decay cannot be observed
before enough coefficients that represent the essential structures of the function are con-
sidered.

In the calculation, one can test the convergence of the cosine truncated series defined
in (4.1) by evaluating

- [ | Wye1 (k) = ¥n (k)| } - (4.2)
k

¥ (k)

where € is the required precision. In general, the few first coefficients of the series are
enough to generate the angular flux.
If N is the chosen value, we can write

CM =0 Vn>N. (4.3)

Combining therefore (4.3) and (3.20), we will now describe the necessary algorithm to
obtain all the cosine coefficients Cip'.
Step0. N=0;forn=N =0,
o (x) = e By (0) - J e B9 4y (x)dx, (4.4)
0

with
1
Ag:= TILISM (2, p0> Po) T1 (po) Ao (4.5)

which is well known, and thus C((,O)(x) is completely determined. To finish the step, we
apply (4.1) to obtain the first approximation to the angular flux, that is, V.
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Step1. N =1;forn=0,

Gy (x) = e 4 "By (0) - J e B9 4, (x)dx, (4.6)
0
with
T 1
A= Ll Sus (11, ¢1) Ti (p1) dns (4.7)
forn=1
CV) = A 1B (0) - | e B A (), (4.8)
0
with
T 1
A= ,[71 Sup (X001, 01) Tr (p1) dpar. (4.9)

Bringing the approximated solution for C(()O) obtained at Step 0 inside (4.8) and iter-
ating with (4.4), we obtain immediately the approximated coefficients C(()l)and Cil). To
finish the step, we evaluate through (4.1) the new approximation ¥, and perform the
precision condition defined in (4.2). If (4.2) is verified, the calculation is stopped; if not,
we go to Step 1 and do likewise until the convergence condition in (4.2) is fulfilled.

With the above algorithm, we only need knowledge of the operator e 4 5% (the prob-
lem was solved previously by using the Sumudu transform [15]).

5. Conclusion

An adaptation of the method to study and to prove convergence of the spectral solution
in the framework of the analytical solution may be possible. Just some preliminary results
were obtained. In this context we study a quadrature approximation of weighted integrals
for a class of functions relevant to our purpose problem and derive some quadrature error
estimate. Our attention is now focused in this direction.
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