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We discuss a class of nonlinear models based on mixtures-of-experts of regressions of ex-
ponential family time series models, where the covariates include functions of lags of the
dependent variable as well as external covariates. The discussion covers results on model
identifiability, stochastic stability, parameter estimation via maximum likelihood estima-
tion, and model selection via standard information criteria. Applications using real and
simulated data are presented to illustrate how mixtures-of-experts of time series models
can be employed both for data description, where the usual mixture structure based on
an unobserved latent variable may be particularly important, as well as for prediction,
where only the mixtures-of-experts flexibility matters.

Copyright © 2006 A. X. Carvalho and M. A. Tanner. This is an open access article dis-
tributed under the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original work is prop-
erly cited.

1. Introduction

The last three decades have experienced a great deal of research on nonlinear regression
models, as described in [23]. Among the several models proposed in the literature, we can
find an important class denoted as mixtures-of-experts (ME), and its extension, denoted
as hierarchical mixtures-of-experts (HME). Since the publication of the original papers
by Jacobs et al. [26, 33], these two classes of models have been used in many different
areas to account for nonlinearities, and other complexities in the data. In these models,
the dependent variable yt ∈� ⊂� is assumed to have the following conditional density
specification:

f
(
yt | xt,θ

)=
J∑

j=1

gj
(
xt;γ

)
π
(
yt;η

(
αj + x′t β j

)
,ϕj
)
, (1.1)

where xt ∈ X ⊂ �s is a vector of covariates, and π(yt;η(αj + x′t β j),ϕj) is a generalized
linear model [38] with mean η(αj + x′t β j) and dispersion parameter ϕj . The specification
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2 Mixtures-of-experts of time series models

in (1.1) describes a mixture model, with J components, where the weights gj(xt;γ) ∈
(0,1) are also functions of the covariate vector xt.

Because of its great flexibility, simple construction, and good modeling properties,
ME started to be commonly used in models for nonlinear time series data. Let yt be
a univariate stochastic process observed at time epoch t, t = 1, . . . ,T , and let It−1 be the
available information set at time t− 1. In the time series ME construction, the conditional
density of yt given It−1 is assumed to have the form in (1.1), where xt may include lags of
transformations of the observed response yt, as well as lags of external predictors.

An application of ME to signal processing in a noninvasive glucose monitoring sys-
tem is presented in [35]. Reference [22] applies ME to gender and ethnic classification of
human faces. Reference [37] presents the use of ME to uncover subpopulation structure
for both biomarker trajectories and the probability of disease outcome in highly unbal-
anced longitudinal data. Reference [27] presents an application of ME in modeling hourly
measurements of rain rates. Reference [18] studies local mixtures-of-factor models, with
mixture probabilities varying in the input space. Reference [48] employs a model based
on combinations of local linear principal components projections, with estimation per-
formed via maximum likelihood. In [52], the authors apply ME, what they called “gated
experts,” to forecast stock returns. Reference [54] studies mixtures of two experts, referred
to as “logistic mixture autoregressive models.” Finally, [57] treats mixtures of autoregres-
sive experts, what they call “mixtures of local autoregressive models,” or MixAR models,
where the covariate vector xt contains only lags of yt.

The stochastic underlying process represented by (1.1), in a time series context, can
be interpreted as follows: imagine there exist J autoregressive processes π(yj,t;η(αj +
x′t β j),ϕj), all belonging to one specific parametric family π(·;·,·), and, conditional on
the past information It−1, each component j generates a response yj,t, j = 1, . . . , J . Addi-
tionally, imagine there is a multinomial random variable It ∈ {1,2, . . . , J}, independent of
yj,t, where each value j has a probability gj(xt;γ)∈ (0,1), and if It = k, the value yt = yk,t

is observed. Based on the law of iterated expectations, we conclude that (1.1) is the con-
ditional density for yt, given It−1.

In general, the probabilities gj(xt;γ) are assumed to have a logistic form:

gj
(
xt;γ

)= exp
(
υj +u′jxt

)

∑J
k=1 exp

(
υk +u′kxt

) , (1.2)

where υj and uj ∈�s, j ∈ {1, . . . , J}, are unknown parameters. In order to avoid identifi-
cation problems, we assume that

υJ = 0, uJ =
[

0 ··· 0
]′
. (1.3)

The mixed components π(yt;η(αj + x′t β j),ϕj) are referred to as experts and the prob-
abilities (or weights) gj(xt;γ) ∈ (0,1) are called gating functions or simply gates. The
grand vector of gating parameters is the list of all the individual gating parameters γ =
(υ1,u′1,υ2,u′2, . . . ,υJ−1,u′J−1)′.
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Several properties for ME and HME were initially proved by Jiang and Tanner [28–
31]. They treated consistency and asymptotic normality of the maximum likelihood es-
timator, conditions for parameter identifiability, and approximations properties, for ex-
ponential family experts. Nonetheless, although these results are quite general, they do
not apply directly to time series data. The authors assumed independent observations yt,
t = 1, . . . ,T , and a compact covariate space X.

In a series of papers, Carvalho and Tanner [8–11] extended most of the maximum
likelihood estimation results proved by Jiang and Tanner to time series applications. Be-
sides, [7, 10] presented parameter conditions to guarantee stochastic stability of the ME
construction. In these papers, the authors also treated exponential family distributions,
focusing on normal, Poisson, gamma, and binomial autoregressive processes.

By using mixtures of regressions of one of these four distributions, it is possible to treat
a great variety of time series problems. Mixtures of binomial experts can be used to model
discrete time series with response yt bounded by some value ν (see, e.g., [51]), whereas
mixtures of Poisson experts can be used to model unbounded discrete time series. For
continuous responses, we can use mixtures of normal experts for observations assuming
values on the whole real line, and mixtures of gamma experts for strictly positive time
series. For unbounded count data, mixtures of Poisson experts present an advantage over
several models in the literature since the proposed mixture construction allows for both
positive and negative autocorrelations, while most of the existing count data models al-
low only for positive autocorrelation (see, e.g., [3, 32]). Besides, most of count time series
models have likelihood functions that are difficult to write explicitly, and computational
intensive approaches have to be used. This problem does not happen in the ME con-
text and standard maximization algorithms can be employed for parameter estimation
(see, e.g., [34]).

The ME models bear some similarity to other nonlinear models in the literature. We
can mention, for example, the threshold autoregressive (TAR) models introduced by [49],
where a threshold variable controls the switching between different autoregressive mod-
els. Another example is the Bayesian-treed model introduced by [12], where the input
space is split in several subregions and a different regression model is fitted in each subre-
gion. In both approaches, after the partition of the covariate space, a different regression
curve is fitted in each subregion.

In this paper, we present a survey of the main ideas and results involved in the usage
of the ME class of models for time series data. The discussion combines analytical results,
simulation illustration, and real applications examples. In Section 2, we provide a more
formal definition of ME of time series, with exponential family distributions. Section 3
discusses the probabilistic behavior, focusing on stochastic stability and moment exis-
tence, for ME time series models. Section 4 discusses parameter estimation (or model
training) using maximum likelihood. In Section 5, Monte Carlo simulations provide ev-
idence to support the BIC in selecting the number J of mixed components. In Section 6,
several examples using real and simulated data illustrate how ME can be employed both
for data description, where the underlying latent variable It may be particularly impor-
tant, as well as for prediction. Final comments and suggestions for future research are
presented in Section 7.
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2. Mixtures-of-experts of time series models

In the models discussed here in this paper, the observed stochastic process yt∈�⊂� has
the conditional distribution, given the available information set It−1, following the con-
ditional density specification in (1.1), where the vector of covariates xt includes functions
of lags of yt. This formulation follows the specification proposed by [36] for time se-
ries based on generalized linear models. The vector xt at time t has the form {ζ(yt−1), . . . ,
ζ(yt−p),wt−1, . . . ,wt−q}, wherewt is a vector of external covariates, ζ(·) is a transformation
of the response yt, and p and q correspond to the maximum lags. Because the covariate
vector is known at time t− 1 (xt ∈ It−1), hereinafter we will use the notation xt−1 instead
of xt for the conditioning vector of predictors.

We assume that the densities π(yt;η(αj + x′t−1βj),ϕj), j = 1, . . . , J , belong to the same
family, but the parameters (αj ,β′j ,ϕj) are different for different j’s. The gate functions
gj(xt−1;γ) are assumed to have a logistic form in (1.2). The grand vector of gating param-
eters is the list of all the individual gating parameters γ = (υ1,u′1,υ2,u′2, . . . ,υJ−1,u′J−1)′.

Examples of ME of exponential family distributions can be based on the experts π(y;
η,ϕ).

Poisson distribution with logarithmic link function. η(αj + x′t−1βj)= exp(αj + x′t−1βj), yt ∈
�= {0,1,2,3, . . .}, ϕj = 1 (known dispersion parameters), and

π(y;η,ϕ)= e−η

y!
ηy. (2.1)

Normal distribution with identity link function. η(αj + x′t−1βj) = αj + x′t−1βj , ϕj = σ2
j ∈

(0,+∞), yt ∈�=�, and

π(y;η,ϕ)= (2πσ2)−1/2
exp

{
− (y−η)2

2σ2

}
. (2.2)

Gamma distribution with logarithmic link function. η(αj + x′t−1βj) = exp(αj + x′t−1βj),
yt ∈�= (0,+∞), ϕj = γj ∈ (0,+∞), and

π(y;η,ϕ)= (γ/η)γ yγ−1

Γ(γ)
exp

(
− yγ

η

)
. (2.3)

Binomial distribution (ν trials) with logistic link function. yt ∈ � = {0, . . . ,ν}, ϕj = 1
(known dispersion parameters), η(αj + x′t−1βj)= ν{eαj+x′t−1βj /(1 + eαj+x′t−1βj )}, and

π(y;η,ϕ)=
(

ν
y

)(
η

ν

)y(
1− η

ν

)ν−y
. (2.4)

For the Poisson case, we can use the transformation ζ(yt−k)= log(yt−k + 1), while for
the gamma case we can use ζ(yt−k) = log yt−k. These transformations allow for conve-
nient properties in terms of stochastic stability (see [10]) of the mixed process. For the
normal and gamma cases, the dispersion parameter is unknown and must be estimated
from the data.
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The grand vector of parameters for the whole model is θ ∈ Θ ⊂ �K , where θ is the
union of all the components θj = (αj ,β′j ,ϕj), j = {1, . . . , J}, and γ. The dimension of Θ is
K = J(2 + s) + (J − 1)(1 + s). For models with known dispersion parameters, θ has J fewer
elements. From the density in (1.1), the conditional expectation for the response yt is

μ
(
xt−1;θ

)= E
(
yt | xt−1

)=
J∑

j=1

gj
(
xt−1;γ

)
η
(
αj +β′jxt−1

)
, (2.5)

and higher moments can be obtained by similar expressions.
Identifiability of the models treated here can be obtained by following the steps in

[9, 30]. Because of the mixture structure, we have to impose some order constraints for
the experts parameters θj = (αj ,β′j ,ϕj), j = 1, . . . , J , that is, we assume θ1 ≺ θ2 ≺ ··· ≺ θJ
according to some order relation, so there is no invariance caused by the permutation of
expert indices. We can impose, for example, an order relation of the following form: if
αj < αk, then θj ≺ θk; if αj = αk and βj,1 < βk,1, then θj ≺ θk; if αj = αk, βj,1 = βk,1, and
βj,2 < βk,2, then θj ≺ θk, . . . , if αj = αk, βj,1 = βk,1, . . . ,βj,s = βk,s, and ϕj < ϕk, then θj ≺ θk,
for all j,k ∈ {1, . . . , J}. (As will be discussed in Section 4, parameter estimation can be
performed by using maximum likelihood methods. For maximizing the likelihood func-
tion, heuristic optimization methods, such as simulated annealing or genetic algorithms,
can be employed. In this case, the ordering relation can be imposed directly in the ob-
jective function, by using, e.g., the parameterization α1 = α, α2 = α+ eκ2 , . . . ,αJ = α+ eκJ ,
where the new parameters to be estimated are α,κ2, . . . ,κJ , instead of α1, . . . ,αJ . We opted
for a simpler approach, where we employ the EM algorithm to the unrestricted maxi-
mization problem. One could rearrange the parameter estimates after the EM solution
is obtained, so as to impose the ordering relation. However, in practical terms there is
no need to do so, and we decided just to use directly the estimated parameters.) Addi-
tionally, to guarantee identifiability of the gate parameters, we impose the initialization
constraint as presented in (1.3). Finally, given the dependence of the mean function of the
exponential family distributions on a vector of covariates xt−1, we need some additional
constraints on the marginal distribution of xt−1. Basically, the conditions are imposed so
that we do not allow for linear dependence among the elements of vector (1,x′t−1).

3. Probabilistic behavior

Stochastic stability properties of the ME of time series models can be studied based on
the general results for stochastic processes given in [17, 40]. These properties are spe-
cially important, for example, when treating the asymptotic behavior of the maximum
likelihood estimators for the model parameters. Especially for ME of autoregressive lin-
ear models, which is the case when each expert has a normal distribution, some results
are presented initially in [57], and extended in [7]. In a nutshell, these authors show that
stationarity of each autoregressive model individually guarantees stationarity and exis-
tence of moments for the ME structure. Nonetheless, for mixture models, with constant
gate functions (not depending on covariates), reference [54] shows that, even with not
all mixed experts being stationary, it is still possible to combine them in a mixture model
and obtain a stationary process in the end.
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Although stochastic stability for autoregressive linear models can be proved for experts
with an arbitrary number p of lags, extending these results to other exponential family
distributions is not trivial, since linearity plays a key role in going from one-lag models to
multiple-lag models (see [7]). The exception are stochastic processes with bounded sam-
ple spaces (e.g., mixtures of Bernoulli or binomial experts). For Poisson and gamma ex-
perts, reference [10] shows that, given some simple parameter restrictions on ME models,
where each expert has only one lag, stochastic stability holds and the resulting observed
process has a moment generating function, and therefore all moments exist.

3.1. Simulated time series. In this section, we present a simulated example to illustrate
the capability of mixtures-of-experts models to approximate the behavior of various time
series data. Although we do not present a more thorough discussion of the approximation
theory for the mixtures-of-experts, the example below, involving normal experts, gives an
idea about the flexibility implied by the proposed construction. The reader can refer to
[28, 29, 56] for related approximation results. For similar examples on simulated data
from ME of Poisson autoregressions, see [11].

We simulate a mixture of two Gaussian autoregressions
(1) yt = 3.0 + 0.5yt−1 + ε1,t,
(2) yt =−3.0 + 0.5yt−1 + ε2,t,

where ε1,t and ε2,t are normally distributed with mean 0 and unit variance. The gate
functions are

(1) g1(yt−1)= exp(0.9yt−1)/(1 + exp(0.9yt−1)),
(2) g2(yt−1)= 1− g1(yt−1).

The upper graph in Figure 3.1 presents the plot of 10 000 observations of the simulated
series. (In order to estimate the marginal density of {yt}, we simply used a kernel esti-
mator based on the generated time series. Given that the process {yt} is stationary and
all moments exist (Carvalho and Skoulakis [7]), we can use the generated series to esti-
mate nonparametrically the density for the marginal process. To have a better precision in
these estimates, we used 40 000 time points after the warm-up sample.) To guarantee that
the series reaches stationarity, we initially generated 100 000 warm-up data points. The
middle graph presents an estimate for the marginal density of {yt}. (Depending on the
parameter configuration, a warm-up sample of 100,000 observations may be excessive.
Nonetheless, given the speed of sample generation, we decided to use a large number to
guarantee that the series achieves stationarity.) Note the clear existence of two regimes in
the series, which is very similar to the behavior of hidden Markov processes. In fact, when
yt is close to 6.0 (the stationary mean for the first autoregression), the weight for the posi-
tive autoregression (first component) is close to one, as can be seen from the lower graph
in Figure 3.1, so that the series tends to keep following the first autoregression. Analo-
gously, when yt is close to −6.0, the weight g2(yt−1) is close to 1, and the series tends to
behave according to the second autoregression.

To have an idea about how different parameter values change the observed time series,
we simulated a model similar to the mixture of two experts above, using an autoregressive
coefficient of 0.6 instead of 0.5. The results are shown in Figure 3.2. Observe that, for
a higher autoregressive coefficient, the frequency for regime changes decreases. This is



A. X. Carvalho and M. A. Tanner 7

100009000800070006000500040003000200010000
�10

0

10

Plot of simulated yt

12.5107.552.50�2.5�5�7.5�10�12.5

0.05

0.1

0.15
Estimated density for yt

1086420�2�4�6�8�10

0.5

1
Weight for positive component versus covariate yt�1

Figure 3.1. Generated time series (a), density estimate for the observed series (b), and weight g1(yt−1)
for the positive mean autoregression (c) in the first example. The autoregressive coefficient for each
expert is assumed to be 0.5.

because when the autoregressive coefficient changes from 0.5 to 0.6, the stationary mean
for the first expert becomes 7.5 and the stationary mean for the second expert becomes
−7.5. Therefore, regime changes become less likely, because it becomes more difficult for
an observed yt to jump to regions in�where the weight for the other expert is sufficiently
high. Some additional experiments show that, for autoregressive coefficients closer to 1.0,
the probabilities of regime change are even lower.

4. Maximum likelihood estimation

Estimation of the parameter vector θ for the ME of time series models studied in this
paper can be performed by maximizing the partial likelihood function [53]. ( We are us-
ing the partial likelihood function because we are modeling only the conditional process
of yt given xt−1. We are not using the overall likelihood function, where we model the
stochastic process for both yt and xt−1 jointly.) From the density in expression (1.1), we
can write down the conditional likelihood function based on a sample {yt,x′t−1}Tt=1. If the
vector xt−1 contains functions of lags of the response variable yt, such that the maximum
lag order is p, we will require T + p observations so that our sample has an effective size
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Figure 3.2. Generated time series (a), density estimate for the observed series (b), and weight g1(yt−1)
for the positive mean autoregression (c) in the first example. The autoregressive coefficient for each
expert is assumed to be 0.6.

T . The likelihood function logLT(θ) to be maximized over Θ is given by

T∑

t=1

log

[ J∑

j=1

gj
(
xt−1;γ

)
π
(
yt;
(
αj + x′t−1βj

)
,ϕj
)
]

. (4.1)

Numerical optimization can be performed by applying the EM algorithm (see [25, 33]),
described in Section 4.1. (In this paper, we focus on the frequentist approach, employing
the maximum likelihood for parameter estimation. However, one can also use Bayesian
methods, which present various nice properties as discussed in Section 7.) In Section 4.2,
we discuss formal results for the asymptotic properties of the maximum likelihood esti-
mator.

4.1. The EM algorithm. For simple problems, where the parameter space is low-dimen-
sional, maximization of log-likelihood function in (4.1) can be performed directly by us-
ing some standard optimization algorithm, such as Newton-Raphson. However, in most
of the practical problems, the dimension of Θ is high enough so that the usual opti-
mization methods become very unstable. The alternative, commonly used in mixture of
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distribution models, is the EM algorithm, proposed by [15]. The use of the EM algo-
rithm for mixtures-of-experts models is thoroughly described in [25, 33], and that is the
procedure used here for estimation.

To initialize the EM algorithm, choose a starting value θ0 for the parameter vector
θ = (θ′1, . . . ,θ′J ,λ′)′. Then, obtain the sequence {θi} iterating between Step 1 (expectation
step) and Step 2 (maximization step), for i= 0,1,2, . . . .
Step 1. Construct

Qi(θ)=
T∑

t=1

J∑

j=1

hj,t
(
θi
)

logπ
(
yt | xt−1;θj

)
+

T∑

t=1

J∑

j=1

hj,t
(
θi
)

loggj
(
xt−1;λ

)
, (4.2)

where

hj,t(θ)= gj
(
xt−1;λ

)
π
(
yt | xt−1;θj

)

∑J
l=1

[
gl
(
xt−1;λ

)
π
(
yt | xt−1;θl

)] . (4.3)

Step 2. Find θi+1 = argmaxθ∈ΘQi(θ).
Note that, at each iteration i, maximization of Qi(θ) in (4.2) can be obtained by max-

imizing separately the J terms Qi
j , corresponding to parameters for each expert distribu-

tion individually,

Qi
j

(
θj
)=

T∑

t=1

hj,t
(
θi
)

logπ
(
yt | xt−1;θj

)
, (4.4)

and the term Qi
gates, corresponding to the parameter vector λ for the gating functions,

Qi
gates(λ)=

T∑

t=1

J∑

j=1

hj,t
(
θi
)

loggj
(
xt−1;λ

)=
T∑

t=1

J−1∑

j=1

hj,t
(
θi
)

log

[
ez

′
t−1ωj

∑J
k=1 1 + ez

′
t−1ωk

]

, (4.5)

where ωj = (vj ,u′j)′, λ = (ω′1,ω′2, . . . ,ω′J−1)′, and zt−1 = (1,x′t−1)′. We used the notation
π(yt | xt−1;θj)= π(yt;αj + x′t−1βj ,ϕ) so as to make explicit the dependence on the target
parameter θj .

Therefore, the EM algorithm in our case consists of calculating, at each iteration i, the
weights hj,t∈(0,1), j=1, . . . , J , t=1, . . . ,T , and then maximizing the functions Qi

1(θ1), . . . ,
Qi

J(θJ),Qi
gates(λ), to find the new value θi+1. Maximizing Qi

j(θj) can be seen as a weighted
maximum likelihood estimation, where each observation in the sample is weighted by
its corresponding gating function value. Maximizing Qi

gates(λ) corresponds to estimating

a multinomial logistic regression. The limit of the sequence {θi}, denoted by θ̂(θ0), is a
root of the first-order condition ∂θ logLT(θ)= 0 (see [47]).

When the log-likelihood function is multimodal, the limits θ̂(θ0) may not correspond
to the global maximum of the log-likelihood function, so we used multiple starting points
to initialize the algorithm. In this case, the point with maximum likelihood from multiple
points is an approximation to the global maximum, and the maximum likelihood estima-

tor θ̂ is approximately the root corresponding to the largest likelihood value LT(θ̂(θ0)).
Alternatively, one can resort to heuristic algorithms such as genetic algorithms [20, 41]
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and simulated annealing [50]. Besides, several methods which take advantage of the speci-
ficities of the mixtures structures in ME models are also available [46].

4.2. Asymptotic properties of the MLE. Given the simple structure of the likelihood
function for ME models, the main method for parameter estimation is via maximum
likelihood. By using the EM algorithm or any other global search heuristic method, max-
imizing the log-likelihood function is a rather simple task and does not involve maximiz-
ing simulated likelihoods. Therefore, it is expected that the MLE will present all the nice
asymptotic properties of regular parametric models, for example. In fact, that is exactly
what happens.

Carvalho and Tanner [9–11] present a series of very general results guaranteeing con-
sistency and asymptotic normality of the MLE for several different situations. In fact,
given stationarity and ergodicity of the conditioning series (predicting variables)
{xt−1}∞t=0 and some hypotheses about moment existence of {xt−1}∞t=0, both consistency
and asymptotic normality hold:

θ̂MLE
P−→ θ0,

√
T
[
θ̂MLE− θ0

] L−→N
(
0,I−1),

(4.6)

where I≡−E{∂θ∂θ′ log f (yt|xt−1;θ0)} is the Fisher information matrix and θ0 is the true
parameter value. By imposing the existence of a little higher moments, the same results
hold for nonstationary time series.

If we assume that there is a single parameter θ∗ that minimizes the Kullback-Leibler
pseudodistance, [9, 10] show that, under some regularity conditions on the true data
generating processes, consistency and asymptotic normality of the MLE still hold. In this
case, if one is interested in statistical inference, such as hypothesis testing or confidence

interval construction, the asymptotic covariance matrix of θ̂MLE is no longer the Fisher
information matrix, and some correction has to be done (see [8]).

More generally, one can show that if the Kullback-Leibler pseudodistance [6] achieves
a global minimum at all the elements of a nonempty set Ψ0, the maximum likelihood

estimator is consistent to Ψ0, in the sense that P{minθ∈Ψ0 | θ̂ − θ| < ε} → 1 as T →∞,
for any ε > 0. (see, e.g., [28]). The importance of this fact is that even if there is more
than one parameter θ∗ resulting in the best approximation for the true data generating
process, the maximum likelihood will provide a parameter estimate close to one of these
best approximation parameters, which is important for prediction purposes.

5. Selecting the number of experts

The selection of the correct number of experts has no easy answer. Basically, log-likeli-
hood ratio tests are not applicable in this case, as long as, under the null hypothesis of
fewer experts, the alternative hypothesis implies a nonidentified problem (see, e.g., [43]).
We will examine the use of information criteria such as BIC [45] or AIC [1, 2] in selecting
the right number of experts.
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In [55], BIC is used to select the number of experts for spatially adaptive nonparamet-
ric regression models. For well-behaved models, we know that the BIC is consistent for
model selection, since, with probability tending to one as the sample size goes to infinity,
the true model will be chosen because it has the largest BIC. However, when the model is
overidentified, the usual regularity conditions to support this result fail. Fortunately, [55]
presents some evidence that, even when we have overidentified models, the BIC may still
be consistent for model selection.

In this section, we present some results about the Monte Carlo simulations to evaluate
the performance of the Bayesian information criteria (BIC) and the Akaike information
criteria (AIC) in selecting the right number of mixed experts. We performed simulations
under true models composed by three experts and, for each generated data set, we esti-
mated mixtures-of-experts models with various number of mixed distributions. For each
simulated data set, we stored the BIC and the AIC values. We expect that one of the two
criteria (or both) will present the smallest value for the estimated model with the same
number of experts as the simulated true model. We performed simulations for normal
and binomial distributions. We report that simulations for other distributions presented
similar conclusions. For each true model, we generated 400 data sets, with T = 100 and
T = 200 observations. Each model includes an external covariate xt, which was generated
as an autoregressive process of order 1, with autoregressive coefficient equal to 0.5.

For the normal distribution, the expressions for the experts (yj,t) and for the gates
(gj(xt−1;γ)), assuming three experts in the true model, are

y1,t = 3.0 + 0.4yt−1 + 1.2xt−1 + ε1t, y2,t =−2.0 + 0.7yt−1− 1.1xt−1 + ε2t,

y3,t = 1.0− 0.6yt−1 + 0.5xt−1 + ε3t,
(5.1)

with gate functions

ξ1,t =−2.0− 0.3yt−1 + 0.4xt−1, ξ2,t =−1.1 + 0.1yt−1 + 0.1xt−1,

g1
(
xt−1;γ

)= exp
(
ξ1,t
)

1 + exp
(
ξ1,t
)

+ exp
(
ξ2,t
) , g2

(
xt−1;γ

)= exp
(
ξ2,t
)

1 + exp
(
ξ1,t
)

+ exp
(
ξ2,t
) ,

g3(xt−1;γ)= 1− g1t − g2t,
(5.2)

where ε1t ∼N(0,2.0), ε2t ∼N(0,1.5), and ε3t ∼N(0,1.5). The results for the normal dis-
tribution with three experts are presented in Table 5.1.

For the binomial case with three experts, the expressions for the experts yj,t’s and for
the gating functions are presented below. In all models, we considered 50 trials for the
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Table 5.1. Mixtures of 3 normal experts.

Selected number
of experts

T = 100

BIC AIC

Absolute Relative Absolute Relative

frequency frequency frequency frequency

2 0 0% 0 0%

3 365 91.25% 21 5.25%

4 35 8.75% 379 94.75%

Total 400 100.00% 400 100.00%

Selected number
of experts

T = 200

BIC AIC

Absolute Relative Absolute Relative

frequency frequency frequency frequency

2 0 0% 0 0%

3 391 97.75% 29 7.25%

4 9 2.25% 371 92.75%

Total 400 100.00% 400 100.00%

binomial random variables:

E
{
y1,t | yt−1,xt−1

}=
[

e4.0−0.5yt−1−0.2xt−1

1 + e4.0−0.5yt−1−0.2xt−1

]
,

E
{
y2,t | yt−1,xt−1

}=
[

e1.5−0.6yt−1−3.0xt−1

1 + e1.5−0.6yt−1−3.0xt−1

]
,

E
{
y3,t | yt−1,xt−1

}=
[

e1.0−0.5yt−1−0.1xt−1

1 + e1.0−0.5yt−1−0.1xt−1

]
,

(5.3)

with gate functions

ξ1,t =−1.5 + 0.2yt−1 + 0.4xt−1, ξ2,t = 1.5− 0.2yt−1− 1.2xt−1,

g1
(
xt−1;γ

)= exp
(
ξ1,t
)

1 + exp
(
ξ1,t
)

+ exp
(
ξ2,t
) , g2

(
xt−1;γ

)= exp
(
ξ2,t
)

1 + exp
(
ξ1,t
)

+ exp
(
ξ2,t
) ,

g3
(
xt−1;γ

)= 1− g1t − g2t .
(5.4)

The results for binomial experts are summarized in Table 5.2. As can be seen from the
tables, the BIC performed very well in selecting the correct number of mixed experts,
for the two distributions studied in the simulations. The AIC tends to pick more experts
than needed, especially in the normal case. Therefore, the use of the BIC seems to be very
appropriate for model selection in this case, and its performance tends to improve as the
sample size T increases. We replicated similar experiments with true models containing
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Table 5.2. Mixtures of 3 binomial experts.

Selected number
of experts

T = 100

BIC AIC

Absolute Relative Absolute Relative

frequency frequency frequency frequency

2 0 0% 0 0%

3 399 99.75% 291 72.75%

4 1 0.25% 109 27.25%

Total 400 100.00% 400 100.00%

Selected number
of experts

T = 200

BIC AIC

Absolute Relative Absolute Relative

frequency frequency frequency frequency

2 0 0% 0 0%

3 400 100.00% 288 72.00%

4 0 0% 112 28.00%

Total 400 100.00% 400 100.00%

one and two experts, and with other distributions (Poisson and gamma), and the conclu-
sions are basically the same. For some of these distributions, we also simulated samples
with 1 000 observations and noticed that the BIC still selected the true number of experts
for 100% of the samples, while the AIC continued to present a bias towards selecting a
higher number of experts. These results seem to suggest the consistency of the BIC for se-
lecting the number of components. This conclusion agrees, for example, with the results
presented in [14], where the authors show that the BIC is an almost surely consistent for
estimating the order of a Markov chain.

6. Applications

In this section, we present examples where ME are used to model different time series.
In the first example, we present an application of mixtures of binomial experts (for ap-
plications using ME of Poisson experts, see [10, 11]), where we are interested not only in
predicting the response variable, but also in presenting some plausible description of the
data-generating process, based on the stochastic underlying mixture structure behind the
mixtures-of-expert models. In these cases, the latent variable It, which determines which
regime (or expert) is observed, has a meaning and helps us interpret the results.

In example two, we are not interested in explaining the data anymore, but only in
using a flexible modeling structure, such as ME, so as to approximate and predict the
conditional density function of the observed process. In this case, the underlying latent
variable It has no meaning, but only the functional form for the density in (1.1). For the
simulated time series, clearly the data-generating process does not follow a ME model.
However, as we will discuss in these examples, we are still able to reasonably approximate
the conditional process.
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Figure 6.1. Mixture of 2 binomial experts.

6.1. Number of buying customers. In this example, we consider the problem of mod-
eling the buying behavior of a list of regular customers in a supermarket. Basically, we
have 20 months of scanner data, and we selected a list of 3 497 regular customers who
bought one of 8 brands of canned tuna at least once. By regular customers, we mean the
customers that appeared in the store during the 20 months. Therefore, we have a bino-
mial time series, where the response variable yt (see upper-left graph in Figure 6.1) is
the number of customers buying one of the 8 brands on week t. The number of trials
ν= 3497.

One natural covariate in this case is some price index. For these 8 brands, we have 8
different prices in each week (promotions are launched in a weekly basis). The price index
was composed by finding a weighted average of the 8 individual prices, with weights given
by the overall market shares during the 20 months. After calculating the weighted average,
we applied a logarithm transformation, obtaining the covariate pt (some preliminary
estimations have shown that using the logarithm of prices provides better values for the
BIC and AIC than using the untransformed prices). The logarithm of the price index is
presented in the upper-right graph in Figure 6.1.

To model some nonstationarities in the data, we also included, in the vector of predic-
tors, a linear time trend t, 1≤ t ≤ 86, where t is the number of the focused week. Finally,
in the middle of the overall period, one competitor entered the neighborhood, which may
have caused some impact in the buying behavior of the list of customers, and to model
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the competitor effect, we used a dummy variable dt, with dt = 0, if t ≤ 42, and dt = 1
otherwise.

After trying different numbers of experts and different numbers of lags for each pre-
dicting variable, the resulting model is a mixture of two experts (all parameters are signif-
icant with level 1%). (In selecting the final model, we employed the BIC for choosing the
number of experts and the t-statistics for selecting the number lags, starting from an ini-
tial model with high number of lags. This procedure was based on the general-to-specific
approach, commonly used for model building in econometrics (see [13, 24]). Nonethe-
less, there is still need for further research on model selection in ME models, as discussed
in Section 7.) The two binomial regressions for each expert are given by

yj,t ∼ Bin
(

ν= 3,497;
ehj,t

1 + ehj,t

)
, j = 1,2, (6.1)

where

h1,t =−1.9971− 7.8328log
(
pt
)

+ 2.5268log
(
pt−1

)
+ 1.0988log

(
pt−2

)
,

h2,t =−1.0908− 8.7378log
(
pt
)

+ 2.4033log
(
pt−1

)
+ 1.0322log

(
pt−2

)
.

(6.2)

As expected, the contemporary price elasticities are negative, which implies the effec-
tiveness of price reductions in increasing the number of buying customers. Observe that
the second expert presents a higher-price sensitivity. Both regressions present significant
positive coefficients for the first and second lags of the logarithm of the price index, what
implies the existence of a dynamic effect. Basically, the inclusion of the lags of the price
index suggests that if there is a promotion in the current week, some of the customers
buy and stock up canned tuna so that, even if there is another price reduction the next
week, the price effect will not be so pronounced.

The gating function, corresponding to the weight of the first expert, is given by

g1,t = exp
(
0.1375 + 0.0292t− 0.9828dt

)

1 + exp
(
0.1375 + 0.0292t− 0.9828dt

) . (6.3)

Intuitively, we can regard the overall price elasticity as a linear combination of the price
elasticities in both experts, weighted by the corresponding gate functions. Therefore,
when we increase the weight for the first expert, we decrease the overall price sensitiv-
ity. As we can note from the expression for g1,t (see lower graphs in Figure 6.1), the price
sensitivity decreases with the time trend and increases with the entrance of the competi-
tor.

The above conclusion about the positive effect that the competitor caused in the over-
all price sensitivity is quite surprising, if we take into account the fact that the competitor
has the tradition of being a more inexpensive store. Basically, we expect that the competi-
tor will attract the more price sensitive customers, so the remaining tuna buyers will be
less-price sensitive. One plausible explanation for this contraction can be found by look-
ing at the plot for the logarithm of the price index in the upper-right graph in Figure 6.1.
Apparently, the studied store changed its price strategy, increasing the number of promo-
tions after the appearance of the competitor. Actually, the averages of the logarithm of the
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Figure 6.2. Simulated time series for both covariates the x1,t and x2,t and the response yt .

price index before and after the competitor are 0.0169 and −0.0114. In this way, it seems
that the studied store regained its price sensitive customers.

6.2. Simulated data. The following example illustrates the application of ME of Gauss-
ian autoregressions to simulated data, so as to illustrate the ability of ME of time series
in modeling the conditional density in time series processes. The artificial time series
present nonlinearities not only in the conditional mean function but also in other condi-
tional moments. To evaluate the performance of the estimated models, we present several
graphical criteria as suggested in [16].

The simulated time series corresponds to a variance covariate dependent process. The
response yt and the covariates x1,t and x2,t obey the autoregressions

yt = 3.0 + 0.6yt−1− 0.2
(
xt−1− 10.0

)2
+ σtεt, where σ2

t = 1.0 + 0.9
(
xt−2− 5

)4
,

x1,t = 1.0 + 0.9x1,t−1 + εt,

x2,t = 2.0 + 0.6x2,t−1 + 0.3εt, εt ∼N(0,1.0).

(6.4)

Note that there is an explicit nonlinearity in how the conditional variance of yt depends
on the second lag of x2,t. Besides, the conditional mean function of yt is a nonlinear
function of the lagged covariate x1,t. The simulated time series are presented in Figure 6.2.

We estimated a mixture of normal experts model to 600 observations. These obser-
vations were obtained from the data generating process in (6.4), after 100000 warm-up
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data points. By selecting the number of experts via BIC, the resulting model is a mix-
ture of three experts, with lags up to order 2 of both the covariates x1,t and x2,t and the
response yt in the experts and in the gates.

In order to assess the goodness-of-fit of the estimated ME of normal autoregressions
in modeling the simulated series studied in this paper, we use the methodology based
on the probability integral transform, initially defined by [44]. This approach has been
employed by a number of recent papers such as [4, 16]. The analysis is based on the
relationship between the data generating process ft(yt|xt−1), for the response variable
yt, and the sequence of estimated conditional densities pt(yt|xt−1), obtained by using
the mixture model. The probability integral transform ut is the conditional cumulative
distribution function corresponding to the density pt(yt | xt−1) evaluated at the actual
observed value yt,

ut =
∫ yt

−∞
pt
(
v | xt−1

)
dv ≡ Pt

(
yt | xt−1

)
. (6.5)

We then have the following fact, a proof of which can be found in [16], which is the
backbone for the model-checking analysis in this paper: if a sequence of density estimates
{pt(yt|xt−1)}Tt=1 coincides with the true data-generating process { ft(yt | xt−1)}Tt=1, then
under the usual conditions of nonzero Jacobian with continuous partial derivatives, the
sequence of probability integral transforms {ut}Tt=1 of {yt}Tt=1 with respect to {pt(yt |
xt−1)}Tt=1 is i.i.d. U(0,1).

In this paper, instead of working directly with the sequence {ut}Tt=1, we followed the
suggestion in [4] and worked with the transformation {Φ−1(ut)}Tt=1, where Φ−1(·) is the
inverse of the standard normal distribution function. The aforementioned fact implies
that {Φ−1(ut)}Tt=1 is a standard normal i.i.d. sequence. Therefore, after estimating the
mixtures of autoregressive Gaussian experts, we evaluated the model fitting by check-
ing for the hypothesis of independence and standard normality for the constructed series
{zt}Tt=1, where zt =Φ−1(ut), t = 1, . . . ,T . Following [16], we employed a number of graph-
ical methods for assessing goodness-of-fit. The analysis can be done by plotting the den-
sity estimate for the series zt and comparing it to the standard normal density function.
Our density estimation employs the Gaussian kernel and uses the optimal bandwidth for
i.i.d. Gaussian data. Additionally, we also plotted the normal quantile plot for the series
{ut}Tt=1 and compared it to the normal quantile plot for a standard normal variable. The
two upper graphs in Figure 6.3 present the normal quantile plots (left-upper graph) and
the density estimates (right-upper graph) for the simulated example.

To check for the independence hypothesis in the series {zt}Tt=1, we can plot the autocor-
relation function for the series (zt − z̄), (zt − z̄)2, (zt − z̄)3, and (zt − z̄)4, as suggested by
[16], where z̄ is the sample mean for {zt}Tt=1. The four lower graphs in Figure 6.3 contain
the plots of autocorrelation functions for the four trasformed series for the ME model
applied to the two artificial time series, along with the corresponding 5% significance
limits. For these limits, we used the approximation ±1.96T−1/2 (see [5], for details).

According to Figure 6.3, the ME model seems to be a good approximation for the true
data-generating process in the simulated example. Note that the normal quantile plots
and the density plots seem to support the standard normality of {zt}Tt=1. Besides, the ACF
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Figure 6.3. Density evalution and autocorrelation analysis for the simulated data.

plots seem to provide support for the independence of the contructed series {zt}Tt=1. For
more examples on simulated and real data regarding ME of Gaussian autoregressions, see
[9].

7. Final comments and suggestions for future research

In this paper, we discussed some of the recent results on a nonlinear class of models for
time series data. This class is based on the idea of combining several simple models, in a
mixture structure, where the weight for each model is a function of the covariates. Each
combined simple model is called expert, whereas the weights are denoted as gates. The
combined resulting model is denoted as mixtures-of-experts of time series. To incorpo-
rate time series dynamics, the covariates in the experts and in the gates may include lags
or transformed lags of the dependent variable. Therefore, we can regard these models
as nonlinear autoregressive structures, and they include several archtectures suggested in
the literature [25, 51, 52, 54, 57].

Some simulated examples showed that, even with a relatively simple and intuitive
structure, mixtures-of-experts can reproduce a great variety of time series behaviors, even
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with a small number of components. When the number of mixed components go to in-
finity, ME of time series models constitute a universal approximator for the conditional
function of yt given xt−1, in the same way as artificial neural networks, stochastic neu-
ral networks, and other sieves-type models [28, 29]. However, because of the mixture
construction, ME of time series models are also able to capture more than only approx-
imations in the mean function. In fact, it may also capture multiple modes [54], asym-
metries (skewed conditional distribution), heavy tails, and nonhomogeneity in higher
conditional moments (e.g., conditional heterocedasticity). Moreover, one can easily ex-
tend the ideas presented in this paper and combine densities from different families, such
as normal and gamma, or Poisson and binomial. Therefore, ME of time series models
may be able to provide not only good approximations for the conditional-mean func-
tion, but also to provide good approximations to the entire conditional distribution of
the response variable yt. This fact was illustrated in this paper using a simulated example.
More examples, with simulated and real data, can be found in [9].

We discussed several important results regarding model identification and stochas-
tic stability for the ME of time series models. The main two assumptions for model
identification are no two experts have the same parameter vector (θi �= θj , for all i �= j,
1≤ i, j ≤ J); and the design matrix obtained from stacking the covariate vectors xt−1’s is
full rank with probability 1 [9, 11, 30]. For stochastic stability, a sufficient condition is
that all autoregressive experts are stationary individually. Given that condition, no addi-
tional assumptions on the gates are necessary [7, 10]. Nonetheless, as [54] has pointed
out, even when some of the experts are nonstationary, the whole system may still be sta-
tionary. Therefore, providing more general conditions for ME stability still remains an
open question.

Parameter estimation of the ME model can be performed by maximum likelihood,
employing the EM algorithm, which exploits the mixture construction. Alternatively, one
can use heuristic methods for likelihood maximization (genetic algorithms, simulated an-
nealing, etc.), instead of using the EM method. Several analytical results have been shown
that, when the true data generating process follows a ME construction, maximum likeli-
hood parameter estimates are consistent for the true parameters, and asymptotic normal-
ity holds. Additionally, even when the model is misspecified and the true data-generating
process does not belong to a ME of time series family, the parameter estimates are still
consistent and asymptotic normal. In this case, some easily computable corrections have
to be done for the estimated covariance matrix. For more details, refer to [9, 10, 28, 31].
Finally, simulated examples show that BIC seems to be consistent for selecting the num-
ber of experts.

Several important questions still remain regarding ME of time series models. The an-
alytical results for approximation capability and stochastic stability can be extended to
more general conditions. Moreover, there is still work to be done on alternative estima-
tion algorithms. Besides, model selection still deserves further investigation. Even though
the BIC seems to be consistent in selecting the number of experts, there is still need for
research on the selection of covariates, and on the selection of the number of lags.

In terms of estimation algorithms, one possibility is to use Bayesian techniques, which
have been successfully employed for nonlinear time series models and for mixture models
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(see [19, 25, 39, 42], e.g.). One of the advantages of using Bayesian methods is that, in
terms of forecasting k-steps ahead, the Markov chain Monte Carlo (MCMC) approach
will automatically provide samples from the predictive distribution. Besides, one can em-
ploy reversible jump MCMC to obtain the posterior distribution for the number of ex-
perts in ME construction (see [21]). Some of these topics are under current investigation
by the authors.
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