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The authors apply the generalized Minkowski formula to set up a spherical theorem. It is
shown that a compact connected hypersurface with positive constant higher-order mean
curvature H, for some fixed r, 1 < r < n, immersed in the de Sitter space S/*' must be a
sphere.
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1. Introduction

The classical Liebmann theorem states that a connected compact surface with constant
Gauss curvature or constant mean curvature in R? is a sphere. The natural generalizations
of the Gauss curvature and mean curvature are the rth mean curvature H,, r = 1,...,n,
which are defined as the rth elementary symmetric polynomial in the principal curva-
tures of M. Later many authors [1, 4, 5, 7, 8] have generalized Liebmann theorem to
the cases of hypersurfaces with constant higher-order mean curvature in the Euclidian
space, hyperbolic space, the sphere, and so on. A significant result due to Ros [8] is that
a compact hypersurface with the rth constant mean curvature H,, for some r = 1,...,1n,
embedded into the Euclidian space must be a sphere.

The purpose of this note is to prove a spherical theorem of the Liebmann type for the
compact spacelike hypersurface immersed in the de Sitter space by setting up a general-
ized Minkowski formula. The main result is the following.

TaEOREM 1.1. Let M be a compact connected hypersurface immersed in the de Sitter space
ST If for some fixed r, 1 < r < n, the rth mean curvature H, is a positive constant on M,
then M is isometric to a sphere.

For the cases of the constant mean curvature and constant scalar curvature, that is,
r = 1,2, the theorem was founded by Montiel [4] and Cheng and Ishikawa [1], respec-
tively.
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2 Spacelike hypersurfaces in de Sitter space

2. Preliminaries
Let [R{”z be the real vector space R"*? endowed with the Lorentzian metric (-, ) given by

n+2

(x,y) = —xoy0+ > Xiy; (2.1)

i=1

for x, y € R"2. The de Sitter space S/ (c) can be defined as the following hyperquadratic:
n+1 n+2 2 11
ST (e) = jx e RT™ | Ix|* = o >0¢t. (2.2)

In this way, the de Sitter space inherits from (-,-) a metric which makes it an indefinite
Riemannian manifold of constant sectional curvature c. If x € S/"!(c), we can put

T ST (c) = {v € RI*? | (v,x) = 0}. (2.3)

Let ¥ : M — S7*! be a connected spacelike hypersurface immersed in the de Sitter space
with the sectional curvature 1. Following O’Neill [6], the unit normal vector field N for
Y can be viewed as the Gauss map of M:

N:M— {xe R/ | |x|*=-1}. (2.4)

Let S, : R" — R, r = 1,...,n, be the normalized rth elementary symmetric function in
the variables y,...,y,. For r = 1,...,n, we denote by C, the connected component of
the set {y € R" | S,(y) >0} containing the vector y = (1,...,1). Notice that every vec-
tor (y1,...,y,) with all its components greater than zero lies in each C,. We derive the
following two lemmas, which will be needed for the proof of the theorem.

LemMa 2.1 [3]. (i) Ifr = k, then C, C Cy; (ii) for y € C,,
Sr<siil<... <8V <s,. (2.5)

LemMa 2.2 (Minkowski formula). Let v : M — SP*! € R¥*? be a connected spacelike hy-
persurface immersed in de Sitter space S*'. For the rth mean curvature H, of v, r = 0, 1,...,
n—1,

|ty Hamanay -0, (2.6)

where Hy = 1 and a € R} is an arbitrary fixed vector and N is the unit normal vector of M.

Proof. The argument is based on the approach of geodesic parallel hypersurfaces in [5].
Let k, and e;, i = 1,...,n, be the principal curvatures and the principal directions at a
point p € M. The rth mean curvature of y is defined by the identity

P.(t)= (1+thky)---(1+tk,) =1+ (T)HIH St <Z>H,,t” (2.7)
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for all + € R. Thus H; = H is the mean curvature, H, = (n?H? — S)/n(n — 1), where S is
the square length of the second fundamental form and H, is the Gauss-Kronecker curva-
ture of M immersed in S7*'. Let us consider a family of geodesic parallel hypersurfaces y;
given by

wi(p) = eXPy(p) (—tN(p)) =cosht - y(p)+sinht - N(p). (2.8)
Then the unit normal vector field of y; with |N; |2 = —1 can be written as
Ni(p) = —sinht - y(p) — cosht - N(p). (2.9)

Because we have
vt, (ei) = (cosht — k;sinht) (e;),

2.10
N, (e;) = (—sinht+k;cosht) (e;); ( )

for the principal directions {e;}, i = 1,...,n and |#| < ¢, the second fundamental form of
¥, can be expressed as

ot (1, (ei)> v, (ej)) = —(Ny, (&), ys, (e)))
= (sinht — kjcosht) (e;, ys, (ej))

(2.11)
sinht — k;cosht
= cosht — kisinhz (V- (&) e (e))-
Then the mean curvature H(t) of y can be expressed as
1< 1 tanht — k
H(t)—n; ;,:zll ktanht
. (2.12)
" 1Py tanht 1=Z1 (tanh? - g(l—kjtanht).
But
[ [ (1—kjtanht) = nP,(—tanht) — coshtsinht P, (—tanht). (2.13)
j#i
Then we get
H(t) = tanht + M (2.14)

nP,(—tanht)’

By the way, we must point out that the formula (7") in [5] is incorrect because the second
term in the right-hand side of the expression of H(t) should be P, (tanht)/nP,(tanht).
The volume element dV; for immersion y; can be given by

dV; = (cosht — kysinht) - - - (conht — k,sinht)dV

2.15
= —conh"tP,(—tanht)dV, (2.15)
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where dV is the volume element of . It is an easy computation that
A({y,a)+H(N,a)) =0, (2.16)

where N is a unit normal field of ¥ and a € R{** an arbitrary fixed vector (cf. [4, page

914]). Integrating both sides of (2.16) over the hypersurface M and applying Stoke’s the-
orem, we get

J ({w,a) + Hi(N,a))dV = 0. (2.17)
M

For y4, || < ¢, we obtain

[ () +HO N a) v, o (2.18)

Substituting (2.14) and (2.15) into (2.18), we get

|| tyoa) + HO(Npaav,
= % cosh”! tJM ((nP,(—tanht) — sinhtcoshtP,(—tanht))(y,a) (2.19)
— cosh? tP, (—tanht)(N,a))dV = 0.
By using the expression

nP,(—tanht) — sinhtcosh tP;(— tanht)
—n+(n- 1)<T>Hl(—tanht)+ . +n<
we obtain

I {(nP,(—tanht) — sinhtcosht P, (—tant)) (y,a) — conh? tP, (—tanht)(N,a)}dV
M
= Z:l(n —r— U(rf 1)(—tanht)r_l,

J (Hr—l (Wt>a> +H, (Nt,a>)dV =0.
: (2.21)

The left-hand side in the equality is a polynomial in the variable tanht. Therefore, all its
coefficients are null. This completes the proof of Lemma 2.2. g

3. Proof of Theorem 1.1

Here we work for the immersed hypersurfaces in $7! instead of embedded hypersurfaces
because we can only use algebraic inequalities and the integral formula above to com-
plete the proof. Let some H, be a positive constant. Multiplying (2.17) by H, and then
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abstracting from (2.6), we obtain that
| @~ H) aav =0 (3.1)
M

We know from Newton inequality [2] that H,_H,+; < H?, where the equality implies
thatk; = - - - = k,. Hence

H, \(HH, - H,,) = H.(HH,_, - H,). (3.2)
It derives from Lemma 2.1 that
0<HY <HY'<...<H)?<H,. (3.3)
Thus we conclude that
H, |(H\H, - H,,,) = H,(H H,, - H,) >0, (3.4)

and if > 2, the equalities happen only at umbilical points of M. We choose a constant
vector a such that |a|?2 = —1 and ay < —1. Since the normal vector N satisfies [N |2 = —1,
we have (N,a) > 1 on M. It follows from (3.1) that

HH, — Hyyy = 0. (3.5)

Thus, k; = - - - = ky, M is totally umbilical, and M is isometric to a sphere. This ends the
proof of Theorem 1.1.

If there is a convex point on M, that is, a point at which k; > 0, for all i = 1,...,n, then
the constant rth mean curvature H, is positive. By means of the same argument as that of
Theorem 1.1, we derive the following.

CoROLLARY 3.1. Let M be a compact connected hypersurface immersed in the de Sitter space
ST*LIf for some fixed r, 1 < r < n, the rth mean curvature H, is constant, and there is a
convex point on M, then M is isometric to a sphere.
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