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Received 21 December 2005; Revised 5 July 2006; Accepted 5 September 2006

A ring R is called a right Ikeda-Nakayama (for short IN-ring) if the left annihilator of
the intersection of any two right ideals is the sum of the left annihilators, that is, if �(I ∩
J) = �(I) + �(J) for all right ideals I and J of R. R is called Armendariz ring if whenever
polynomials f (x) = a0 + a1x + ··· + amxm, g(x) = b0 + b1x + ··· + bnxn ∈ R[x] satisfy
f (x)g(x) = 0, then aibj = 0 for each i, j. In this paper, we show that if R[x] is a right
IN-ring, then R is a right IN-ring in case R is an Armendariz ring.
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1. Introduction

Throughout this work, all rings will be associative with identity. Let R be a ring. A right
(or left) annihilator of a subset U of R is defined by rR(U)= {a∈ R : Ua= 0} (or �R(U)=
{a∈ R : aU = 0}).

Recall that, a ring R is called a right Ikeda-Nakayama ring if the left annihilator of the
intersection of any two right ideals is the sum of the left annihilators, that is, if �(I ∩ J)=
�(I) + �(J) for all right ideals I and J of R (cf. [6]). Let SMR be an (S,R)-bimodule. Extend
the notion of an IN-ring to module such as �S(A∩B)= �S(A) + �S(B) for any submodules
A, B of MR (cf. [10]).

For a module MR, let M[x] be the set of all formal polynomials in indeterminate x
with coefficients from M. Then M[x] becomes a right R[x]-module under usual addition
and multiplication of polynomials.

We prove that if S[x]M[x]R[x]-bimodule andU andV areR[x]-submodules ofM[x]R[x],

then for any t(x)∈ �S[x](U ∩V), every U +V
αt(x)−→M[x] extends commutatively to M[x]

by λ(s(x)) for some s(x)∈ S[x], where λ : S[x]→ End(M[x]R[x]) if and only if M[x] is an
IN-module.

Following [1], R is called Armendariz ring if whenever polynomials f (x)= a0 + a1x+
···+ amxm and g(x) = b0 + b1x + ···+ bnxn ∈ R[x] satisfy f (x)g(x) = 0, then aibj = 0
for each i, j.
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2 Ikeda-Nakayama modules

A module M is called α-Armendariz if
(i) for any m∈M and a∈ R, ma= 0 if and only if mα(a)= 0;

(ii) for any m(x) =∑n
i=0mixi ∈M[x] and f (x) =∑s

j=0 ajx j ∈ R[x], m(x) f (x) = 0
implies miaj = 0 for each i, j (cf. [8, 9]).

In [5, Proposition 3.1], Hirano showed that R is Armendariz ring if and only if
rAnnR(2R)→ rAnnR(2R[x]); A→ AR[x] is bijective, where rAnnR(2R)= {rR(U) : U ⊆ R}.
Using this proposition, in this paper, it is shown that if R[x] is a right IN-ring, then R is a
right IN-ring, in case R is an Armendariz ring.

2. Ikeda-Nakayama modules

Let S[x] and R[x] be the polynomial rings over rings S and R and, for a module SMR, let
M[x] be the set of all formal polynomials in indeterminate x with coefficients from M.
Then M[x] becomes an (S[x],R[x])-bimodule under usual addition and multiplication
of polynomials. Extend the notion of an IN-ring to module such as the following.

Definition 2.1. Recall that M[x] is called an Ikeda-Nakayama module (IN-module) if

�S[x](U ∩V)= �S[x](U) + �S[x](V) (2.1)

for any R[x]-submodules U and V of M[x]R[x]. Such modules and rings were studied by
many authors (cf. [4, 6, 10]). Professor Harmanci asked (private communication) for a
description modules M (rings R) such that M[x] (R[x]) are Ikeda-Nakayama modules
(right Ikeda-Nakayama rings), respectively.

Note that there is a canonical ring homomorphism λ : S[x]→ End(M[x]R[x]) given by
λ(s(x))(m(x))= s(x)m(x) for m(x)∈M[x] and s(x)∈ S[x].

Let U and V be R[x]-submodules of M[x]. Then, for any t(x) ∈ �S[x](U ∩V), αt(x) :
U +V →M[x], u+ v→ t(x)u is well defined, where u∈U and v ∈V .

Lemma 2.2. Let S[x]M[x]R[x]-bimodule and U and V be R[x]-submodules of M[x]R[x].

Then, for any t(x) ∈ �S[x](U ∩V), every U +V
αt(x)−→M[x] extends commutatively to M[x]

by λ(s(x)) for some s(x)∈ S[x] if and only if M[x] is an IN-module.
In particular, if U ∩V = 0, then every U +V

α1−→M[x] extends commutatively to M[x]
by λ(s(x)) for some s(x)∈ S[x] if and only if S[x]= �S[x](U) + �S[x](V).

Proof. Let t(x) ∈ �S[x](U ∩V). Then αt(x) : U + V →M[x], u + v → t(x)u is a well de-
fined R[x]-module homomorphism, where u ∈ U and v ∈ V . By assumption, there ex-
ists s(x)∈ S[x] such that λ(s(x)) extends to αt(x). Thus, for all u∈U and v ∈ V , t(x)u=
αt(x)(u+ v)= λ(s(x))(u+ v)= s(x)(u+ v) and so (t(x)− s(x))u+ (−s(x))v = 0. It follows
that t(x)− s(x) ∈ �S[x](U) and −s(x) ∈ �S[x](V). Hence t(x) = (t(x)− s(x)) + (−s(x)) ∈
�S[x](U) + �S[x](V). The other inclusion is clear.

For converse, assume that M[x] is an IN-module and, for any t(x) ∈ �S[x](U ∩V),
αt(x) : U + V →M[x] defined as above. For a(x) ∈ �S[x](U) and b(x) ∈ �S[x](V), write
t(x)= a(x) + b(x). Then, for all u∈U and v ∈V , αt(x)(u+ v)= t(x)u= (a(x) + b(x))u=
a(x)u+ b(x)u= 0 + b(x)u= b(x)u= b(x)u+ b(x)v = b(x)(u+ v)= λ(b(x)(u+ v)). �

As a result of Lemma 2.2, we have the following proposition.
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Proposition 2.3. Let R[x] be the set of all polynomials in indeterminate x with coefficients
from R. If I and J are right ideals of R[x] such that every R[x]-linear map I + J → R[x]
extends to R[x], then

�R[x](I ∩ J)= �R[x](I) + �R[x](J). (2.2)

In particular, this holds if I + J = R[x], in which case �R[x](I ∩ J)= �R[x](I)⊕ �R[x](J).

Let N be an R[x]-submodule of M[x] and NC = {mi ∈M : ∃n ∈ N with n = m0 +
m1x+ ···+mtxt}.
Theorem 2.4. Let M be an Ikeda-Nakayama module and let N and K be R[x]-submodules
of M[x] such that �S((N ∩K)C)= �S(NC ∩KC). Then M[x] is an IN-module.

Proof. Let U and V be R[x]-submodules of M[x]. Let t(x) ∈ �S[x](U ∩V). Then αt(x) :
U +V →M[x],u+ v → t(x)u is a well defined R[x]-homomorphism, where u ∈ U and
v ∈ V . Similarly, for all t ∈ �S(UC ∩VC), the αt : UC + VC →M,u′ + v′ → tu′ is a well
defined R-homomorphism, where u′ ∈ UC and v′ ∈ VC. Since M is an IN-module, we
have �S(U ∩V)C)= �S(NC ∩KC)= �S(UC) + �S(VC) by assumption and definition. Hence
there exists a homomorphism ht : M →M such that hti = αt, where i : UC +VC →M is
the inclusion map by [10, Lemma 1]. We define h′ : M[x]→M[x] such that h′t(k0 + k1x+
···+ knxn)= ht(k0) +ht(k1)x+ ···+ht(kn)xn. It is clear that h′t is well defined. Let t(x)=
t0 + t1x + t2x2 + ··· + tnxn ∈ �S[x](U ∩V). Then t0, t1, . . . , tn ∈ �S((U ∩V)C) = �S(UC) +
�S(VC). For each t j ,αtj : UC +VC →M, u′ + v′ → tu′ is a well defined R-homo-morphism,
and then we define a map htj : M →M such that htj i= αtj , where i : UC +VC →M is the
inclusion map. We extend it by defining h′t j : M[x]→M[x] such that, for j = 0,1,2, . . . ,n,
h′j(k0 + k1x+ ···+ knxn)= (htj (k0) +htj (k1)x+ ···+htj (kn)xn)x j .

To complete the proof, we show that hi = αt(x), where i′ : U + V →M[x] is the in-
clusion map. Let h =∑n

j=0h
′
j and u = u0 + u1x + ··· + urxr ∈ U and v(x) = v0 + v1x +

···+ vsxs ∈ V . Then u0,u1, . . . ,ur ∈ UC and v0,v1, . . . ,vs ∈ VC. So h′j(u+ v) = (htj (u0) +
htj (u1)x+ ···+htj (ur)x

r)x j = t jx j(u0 +u1x+ ···+urxr) and h(u+ v)=∑n
j=0h

′
j(u+ v)=

t(x)(u+ v). Hence M[x] is an IN-module by Lemma 2.2. �

Let α be an endomorphism of R, that is, α is a ring homomorphism from R to R with
α(1)= 1. Following [9], a module M is called α-Armendariz if

(1) for any m∈M and a∈ R, ma= 0 if and only if mα(a)= 0;
(2) for any m(x) =∑n

i=0mixi ∈M[x] and f (x) =∑s
j=0 ajx j ∈ R[x], m(x) f (x) = 0

implies miaj = 0 for each i, j.
Note that 1-Armendariz module is called Armendariz module.
We denote rAnnR(2M) = {rR(U) | U ⊆M} and �AnnR(2M) = {�R(U) | U ⊆M}. If U

is a subset of M, then �R[x](U) = �R(U)[x] and rR[x](U) = rR(U)[x]. Hence we have the
maps

Φ : rAnnR
(
2M
)−→ rAnnR[x]

(
2M[x]) (2.3)



4 Ikeda-Nakayama modules

defined by Φ(rR(U))= rR[x](U)= rR(U)[x] for every rR(U)∈ rAnnR(2M) and

Φ′ : �AnnR
(
2M
)−→ �AnnR[x]

(
2M[x]) (2.4)

defined by Φ′(�R(U))= �R[x](U)= �R(U)[x] for every �R(U)∈ �AnnR(2M).
For a polynomial m(x)∈M[x], Cm(x) denotes the set of coefficients of m(x) and for a

subset V of M[x], CV denotes the set
⋃

m(x)∈V Cm(x). Then

rR[x](V)∩R= rR(V)= rR
(
CV
)
, �R[x](V)∩R= �R(V)= �R

(
CV
)
. (2.5)

Hence we also have the maps

Ψ : rAnnR[x]
(
2M[x])−→ rAnnR

(
2M
)

(2.6)

defined by Ψ(rR[x](V))= rR[x](V)∩R for every rR[x](V)∈ rAnnR[x](2M[x]) and

Ψ′ : �AnnR[x]
(
2M[x])−→ �AnnR

(
2M
)

(2.7)

defined by Ψ′(�R[x](V))= �R[x](V)∩R for every �R[x](V)∈ �AnnR[x](2M[x]).
Obviously Φ (or Φ′) is injective and Ψ (or Ψ′) is surjective. Also, Φ (or Φ′) is surjective

if and only if Ψ (or Ψ′) is injective and in this case Φ and Ψ (or Φ′ and Ψ′) are the inverses
of each other.

Proposition 2.5. Let MR be a module. Then the following are equivalent.
(1) MR is an Armendariz module.
(2) The map Φ : rAnnR(2M) → rAnnR[x](2M[x]) defined by Φ(rR(U)) = rR[x](U) =

rR(U)[x], for every rR(U)∈ rAnnR(2M), is bijective.
(3) The map Φ′ : �AnnR(2M) → �AnnR[x](2M[x]) defined by Φ′(�R(U)) = �R[x](U) =

�R(U)[x], for every �R(U)∈ �AnnR(2M), is bijective.

Proof. (1)⇔(2). This is [3, Theorem 2.1].
(1)⇒(3). Assume M is an Armendariz module. Obviously Φ′ is injective. So it is

enough to show Φ′ is surjective. Let �R[x](V) ∈ �AnnR[x](2M[x]) for some V ⊆M[x].
Then for �R(CV ) ∈ �AnnR(2M), Φ′(�R(CV )) = �R[x](CV ) = �R[x](V). In fact, let f (x) ∈
�R[x](CV ), where f (x) = a0 + a1x + ···+ anxn. Then f (x)CV = 0. Thus for all m ∈ CV ,
f (x)m = a0m + a1mx + ··· + anmxn = 0 and hence ajm = 0 for all j. Let n(x) = n0 +
n1x+ ···+ntxt ∈V be arbitrary. Then f (x)n(x)= 0 since ni ∈ CV for all i. Hence f (x)∈
�R[x](V). Conversely, let g(x)= b0 +b1x+···+bkxk ∈ �R[x](V). Then for all m(x)∈V ,
g(x)m(x)=0, where m(x)=m0 +m1x+ ···+mlxl ∈V . Since MR is Armendariz, bjmi =
0 for all i and j. Hence g(x)mi = 0 for all i. So g(x) ∈ �R[x](CV ) since m(x) ∈ V is arbi-
trary. Consequently for each �R[x](V)∈ �AnnR[x](2M[x]) for some V ⊆M[x] there exists
�R(CV )∈ �AnnR(2M) such that Φ′(�R(CV ))= �R[x](V), and therefore Φ′ is surjective.



M. Tamer Koşan 5

(3)⇒(1). Conversely, assume f (x)m(x) = 0, where m(x) = m0 + m1x + ··· + mtxt ∈
M[x] and f (x)= a0 + a1x+ ···+ akxk ∈ R[x]. By hypothesis, �R[x](m(x))= �R(U)[x] for
some U ⊆M. Then f (x) ∈ �R(U)[x] and hence aj ∈ �R(U) for all j. So aj ∈ �R(U) ⊆
�R(U)[x]= �R[x](m(x)) then ajm(x)= 0. Consequently, ajmi = 0 for all i and j. Therefore
MR is an Armendariz module. �

By Proposition 2.5, we can obtain [5, Proposition 3.1].

Proposition 2.6. Let R be a ring. The following statements are equivalent.
(1) R is Armendariz ring.
(2) rAnnR(2R) → rAnnR(2R[x]); A → AR[x] is bijective, where rAnnR(2R) = {rR(U) :

U ⊆ R}.
(3) �AnnR(2R) → �AnnR(2R[x]); B → R[x]B is bijective, where �AnnR(2R) = {�R(U) :

U ⊆ R}.
Now, we give the main result of this work.

Theorem 2.7. Let R be an Armendariz ring. If R[x] is a right IN-ring, then R is a right
IN-ring.

Proof. Let I and J be right ideals of R. Since R is an Armendariz ring, we have �R[x](I)=
�R(I)[x] by Proposition 2.6, for every right ideal I of R. Note that �R[x](I)= �R[x](I[x]). By
assumption, �R[x](I) + �R[x](J) = �R[x](I[x]) + �R[x](J[x]) = �R[x](I[x]∩ J[x]) = �R[x]((I ∩
J)[x]) = �R[x](I ∩ J). Then �R((I ∩ J)[x]) = �R(I[x]) + �R(J[x]) = (�R(I) + �R(J))[x] im-
plies that �R(I ∩ J)= �R(I) + �R(J). So R is a right IN-ring. �

Example 2.8. (i) Since Z is an Armendariz ring, Z is a right IN-ring if and only if Z[x] is
an IN-ring.

(ii) Let R be a trivial extension of Z and the Z-module Z2∞ , that is, R = Z⊕Z2∞ with
the following addition and multiplication:

(n,a) + (m,b)= (n+m,a+ b),

(n,a)(m,b)= (nm,nb+ma).
(2.8)

Also R is the subring
{(a n

0 a

)
: a∈ Z, n∈ Z2∞

}
. R is an IN-ring by [10]. As Lee and Zhou

pointed out [8, Corollary 2.7], R is an Armendariz ring. We consider the right ideals I
and J of R[x]:

I =
{(

px2 u(x)

0 px2

)

: u(x)∈ Z2∞ , p is prime

}

,

J =
{(

qx+ qx2 0

0 qx+ qx2

)

: q is prime and (p,q)= 1

}

.

(2.9)

Clearly, �R[x](I ∩ J)= R[x] since p and q are primes with (p,q)= 1 and so I ∩ J = 0. But
�R[x](I) and �R[x](J) do not contain constant. Therefore, �R[x](I) + �R[x](J) �= �R[x](I ∩ J).
So R[x] is not a right IN-ring by Proposition 2.3.
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Recall that, a ring R is called reduced ring if it has no nonzero nilpotent elements, a
ring R is called right p.p.-ring for all a ∈ R, rR(a) = eR, where e2 = e ∈ R and R is called
Baer ring, for all I ≤R R, rR(I)= eR, where e2 = e ∈ R.

As a result of Theorem 2.7, we can say the following corollary.

Corollary 2.9. Let R[x] be a right IN-ring. Then R is a right IN-ring in each of the fol-
lowing cases.

(1) R2 = 0.
(2) R is a reduced ring.
(3) R is an Abelian (if every idempotent of R is central) and von Neumann regular ring.
(4) R is an Abelian right (left) p.p.-ring.
(5) R is an Abelian Baer ring.

Proof. Assume R[x] is a right IN-ring.
(1) By [1], if R2 = 0, then R is an Armendariz ring.
(2) By [2], reduced rings are Armendariz.
(3) Every Abelian von Neumann regular ring is a reduced ring.
(4) By [1, Theorem 6] or [7, Lemma 7], if R is an Abelian right (left) p.p.-ring, then

R is an Armendariz (a Reduced and so Armendariz) ring.
(5) Every Abelian Baer ring is a reduced ring.

Hence R is a right IN-ring by Theorem 2.7. �
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