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Making use of the Ruscheweyh derivatives, we introduce the subclasses T(n,α,λ) (n ∈
{0,1,2,3, . . .}, −π/2 < α < π/2, and 0 ≤ λ ≤ cos2α) of functions f (z)= z +

∑∞
k=2 akz

k

which are analytic in |z| < 1. Subordination and inclusion relations are obtained. The
radius of α-spirallikeness of order ρ is calculated. A convolution property and a special
member of T(n,α,λ) are also given.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let A denote the class of functions f of the form

f (z)= z+
∞∑

k=2

akz
k (1.1)

which are analytic in the unit disk U = {z : |z| < 1}. Let S⊂ A consist of univalent func-
tions in U . For 0≤ ρ < 1, a function f ∈ S is said to be starlike of order ρ if

Re
z f ′(z)
f (z)

> ρ (z ∈U). (1.2)

The class of such functions we denote by S∗(ρ) (0≤ ρ < 1). A function f ∈ S is said to be
convex in U if

Re

{

1 +
z f ′′(z)
f ′(z)

}

> 0 (z ∈U). (1.3)

We denote by K the class of all convex functions in U . For −π/2 < α < π/2 and 0≤ ρ < 1,
a function f ∈ S is said to be α-spirallike of order ρ in U if

Re

{

eiα
z f ′(z)
f (z)

}

> ρcosα (z ∈U). (1.4)
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2 Subclasses of α-spirallike functions

Further let UCV ⊂ K be the class of functions introduced by Goodman [2] called uni-
formly convex in U . It was shown in [4, 7] that f ∈ A is in UCV if and only if

Re

{

1 +
z f ′′(z)
f ′(z)

}

>

∣
∣
∣
∣
∣

z f ′′(z)
f ′(z)

∣
∣
∣
∣
∣

(z ∈U). (1.5)

In [7], Ronning investigated the class Sp defined by

Sp =
{
f ∈ S∗(0) : f (z)= zg′(z), g ∈UCV

}
. (1.6)

The uniformly convex and related functions have been studied by several authors (see,
e.g., [1–4, 7, 6, 8, 12]).

If f (z)= z+
∑∞

k=2 akz
k ∈A and g(z)= z+

∑∞
k=2 bkz

k ∈A, then the Hadamard product
or convolution of f and g is defined by ( f ∗ g)(z)= z+

∑∞
k=2 akbkz

k. Let

Dn f (z)= z

(1− z)n+1
∗ f (z), (1.7)

for f ∈ A and n∈N0 = {0,1,2,3, . . .}. Then

Dn f (z)= z
(
zn−1 f (z)

)(n)

n!
. (1.8)

This symbol Dn f is called the Ruscheweyh derivative of order n of f . It was introduced
by Ruscheweyh [9].

In this paper we introduce and investigate the subclasses T(n,α,λ) of A as follows.

Definition 1.1. A function f ∈ A is said to be in T(n,α,λ) if

(

Re

{

eiα
z
(
Dn f (z)

)′

Dn f (z)

})2

+ λ >
∣
∣
∣
∣
z
(
Dn f (z)

)′

Dn f (z)
− 1

∣
∣
∣
∣

2

(z ∈U), (1.9)

where n∈N0,−π/2 < α < π/2, and 0≤ λ≤ cos2α.
Note that, for λ= 0,

T(n,α,0)=
{

f ∈ A : Re

{

eiα
z
(
Dn f (z)

)′

Dn f (z)

}

>

∣
∣
∣
∣
∣

z
(
Dn f (z)

)′

Dn f (z)
− 1

∣
∣
∣
∣
∣

(z ∈U)

}

. (1.10)

In particular, T(0,0,0)= Sp and T(1,0,0)=UCV.

2. Properties of T(n,α,λ)

Let f and g be analytic in U . Then we say that f is subordinate to g in U , written f ≺ g,
if there exists an analytic function w in U such that |w(z)| ≤ |z| and f (z)= g(w(z)) for
z ∈U . If g is univalent in U , then f ≺ g is equivalent to f (0)= g(0) and f (U)⊂ g(U).
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Theorem 2.1. Let n∈ N0,α∈ (−π/2,π/2), and λ∈ [0,cos2α]. A function f ∈ A belongs
to T(n,α,λ) if and only if

eiα
z
(
Dn f (z)

)′

Dn f (z)
≺ h(z)cosα+ isinα (z ∈U), (2.1)

where

h(z)= 1− λ

2cos2α
+

2
π2

⎛

⎝log
1 +

√
(z+β)/(1 +βz)

1−
√

(z+β)/(1 +βz)

⎞

⎠

2

, (2.2)

with

β =
(
eμ− 1
eμ + 1

)2

, μ=
√
λπ

2cosα
. (2.3)

Proof. Let us define w = u+ iv by

eiα
z
(
Dn f (z)

)′

Dn f (z)
=w(z)cosα+ isinα (z ∈U). (2.4)

Then w(0)= 1 and the inequality (1.9) can be rewritten as

u >
1
2

(

v2 + 1− λ

cos2α

)

. (2.5)

Thus

w(U)⊂G= {w = u+ iv : u and v satisfy (2.5)
}
. (2.6)

It follows from (2.2) that

h(0)= 1− λ

2cos2α
+

2
π2

⎛

⎝log
1 +

√
β

1−
√
β

⎞

⎠

2

= 1. (2.7)

In order to prove the theorem, it suffices to show that the function w = h(z) defined by
(2.2) maps U conformally onto the parabolic region G.

Note that

0≤ 1
2

(

1− λ

cos2α

)

< 1− λ

2cos2α
≤ 1, (2.8)

for 0≤ λ≤ cos2α. Consider the transformations

w1 =
√

w−
(

1− λ

2cos2α

)

, w2 = e
√

2πw1 , t = 1
2

(

w2 +
1
w2

)

. (2.9)
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It is easy to verify that the composite function

t = ϕ(w)= ch

(

π

√

2w−
(

2− λ

cos2α

))

(2.10)

maps G+ = G
⋂{w = u+ iv : v > 0} conformally onto the upper half plane Im(t) > 0 so

that w = (1/2)(1− λ/ cos2α) corresponds to t = −1 and w = 1− λ/2cos2α to t = 1. Ap-
plying the symmetry principle, the function t = ϕ(w) maps G conformally onto Ω= {t :
|arg(t + 1)| < π}. Since t = 2((1 + ζ)/(1− ζ))2− 1 maps the unit disk |ζ| < 1 onto Ω, we
see that

w = ϕ−1(t)= 1− λ

2cos2α
+

1
2π2

(
log
(
t+
√
t2− 1

))2

= 1− λ

2cos2α
+

2
π2

⎛

⎝log
1 +

√
ζ

1−
√
ζ

⎞

⎠

2

= g(ζ)

(2.11)

maps |ζ| < 1 conformally onto G so that ζ = β (0≤ β < 1) corresponds to w = 1. There-
fore the function

w = h(z)= g
(
z+β

1 +βz

)

(z ∈U) (2.12)

maps U conformally onto G and the proof of the theorem is complete. �

Corollary 2.2. Let f ∈ T(n,α,λ), n∈N0, α∈ (−π/2,π/2), λ∈ [0,cos2α], and h be given
by (2.2). Then

Dn f (z)
z

≺ exp
(

e−iα cosα
∫ z

0

h(t)− 1
t

dt
)

, (2.13)

exp

(∫ 1

0

h
(− ρ|z|)− 1

ρ
dρ

)

≤
∣
∣
∣
∣
∣
∣

(
Dn f (z)

z

)eiα secα
∣
∣
∣
∣
∣
∣
≤ exp

(∫ 1

0

h
(
ρ|z|)− 1

ρ
dρ

)

, (2.14)

for z ∈U . The bounds in (2.14) are sharp with the extremal function f0 ∈A defined by

Dn f0(z)= zexp
(

e−iα cosα
∫ z

0

h(t)− 1
t

dt
)

. (2.15)

Proof. From Theorem 2.1 we have

eiα

cosα

(
z
(
Dn f (z)

)′

Dn f (z)
− 1

)

≺ h(z)− 1, (2.16)
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for f ∈ T(n,α,λ). Since the function h− 1 is univalent and starlike (with respect to the
origin) in U , using (2.16) and the result of Suffridge [11, Theorem 3], we obtain

eiα

cosα
log

Dn f (z)
z

= eiα

cosα

∫ z

0

((
Dn f (t)

)′

Dn f (t)
− 1

t

)

dt ≺
∫ z

0

h(t)− 1
t

dt. (2.17)

This implies (2.13).
Noting that the univalent function h maps the disk |z| < ρ (0 < ρ ≤ 1) onto a region

which is convex and symmetric with respect to the real axis, we get

h
(− ρ|z|)≤ Reh(ρz)≤ (ρ|z|) (z ∈U). (2.18)

Now, (2.17) and (2.18) lead to

∫ 1

0

h
(− ρ|z|)− 1

ρ
dρ ≤ log

∣
∣
∣
∣
∣

(
Dn f (z)

z

)eiα secα
∣
∣
∣
∣
∣
≤
∫ 1

0

h
(
ρ|z|)− 1

ρ
dρ, (2.19)

for z ∈U , which yields (2.14).
The bounds in (2.14) are best possible since the equalities are attained for the function

f0 in T(n,α,λ) defined by (2.15). �

Theorem 2.3. Let f ∈ T(n,α,λ), n ∈ N0, α ∈ (−π/2,π/2), λ ∈ [0,cos2α]. Then Dn f is
α-spirallike of order ρ in |z| < r, where

r = r(ρ,α,λ)=
β+

(
tan

(
(π/4)

√
2(1− ρ)− λ/cos2α

))2

1 +β
(

tan
(

(π/4)
√

2(1− ρ)− λ/cos2α
))2

×
(

1
2

(

1− λ

cos2α

)

≤ ρ < 1− λ

2cos2α

)
(2.20)

and β is given by (2.2).The result is sharp.

Proof. It follows from (2.20) and (2.2) that

0 < 2(1− ρ)− λ

cos2α
≤ 1, 0≤ β < r ≤ 1. (2.21)

Let h be given by (2.2). Then

h(−r)= 1− λ

2cos2α
+

2
π2

⎛

⎝log
1 + i

√
(r−β)/(1−βr)

1− i
√

(r−β)/(1−βr)

⎞

⎠

2

= 1− λ

2cos2α
− 8
π2

(

arctan

√
√
√ r−β

1−βr

)2

(2.22)
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and hence

inf
|z|<r

Reh(z)= h(−r)= ρ. (2.23)

If f ∈ T(n,α,λ), then from Theorem 2.1 and (2.23) we have

Re

{

eiα
z
(
Dn f (z)

)′

Dn f (z)

}

> ρcosα
(|z| < r

)
, (2.24)

that is, Dn f is α-spirallike of order ρ in |z| < r. Further, the result is sharp with the ex-
tremal function f0 defined by (2.15).

Taking ρ = (1/2)(1− λ/ cos2α), Theorem 2.3 yields. �

Corollary 2.4. Let f ∈ T(n,α,λ), n∈N0, α∈ (−π/2,π/2), λ∈ [0,cos2α]. Then Dn f is
α-spirallike of order (1/2)(1− λ/ cos2α) in U and the result is sharp.

Theorem 2.5. Let f ∈ T(n,α,λ), n ∈ N0, α ∈ (−π/2,π/2), λ ∈ [0,cos2α]. Then Dn f ∈
S∗((1− λ)/2) and the order (1− λ)/2 is sharp.

Proof. Let h be given by (2.2). Then it follows from the proof of Theorem 2.1 that

∂h(U)=
{

w = u+ iv : u= 1
2

(

v2 + 1− λ

cos2α

)}

. (2.25)

Hence

min
|z|=1(z 
=1)

Re
{
e−iα

(
h(z)cosα+ isinα

)}= min
u≥(1/2)(1−λ/cos2 α)

g(u)cosα+ sin2α, (2.26)

where

g(u)= ucosα−|sinα|
√

2u− 1 +
λ

cos2α

(

u≥ 1
2

(

1− λ

cos2α

))

. (2.27)

Since

g′(u)= cosα− |sinα|√
2u− 1 + λ/cos2α

(

u >
1
2

(

1− λ

cos2α

))

, (2.28)

the function g attains its minimum value at u= (1− λ)/2cos2α. Thus

min
|z|=1(z 
=1)

Re
{
e−iα

(
h(z)cosα+ isinα

)}= g
(

1− λ

2cos2α

)

cosα+ sin2α= 1− λ

2
. (2.29)

Let f ∈ T(n,α,λ). Then, by Theorem 2.1 and (2.29), we conclude that Dn f is starlike
of order (1− λ)/2 in U , and the function f0 defined by (2.15) shows that the order (1−
λ)/2 is sharp. �

Theorem 2.6. T(n+ 1,α,λ)⊂ T(n,α,λ), where n∈N0, α∈ (−π/2,π/2), λ∈ [0,cos2α].
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Proof. It follows from (1.7) that

z
(
Dn f (z)

)′ = (n+ 1)Dn+1 f (z)−nDn f (z) (z ∈U), (2.30)

for f ∈ A. Set

p(z)= eiα
z
(
Dn f (z)

)′

Dn f (z)
(z ∈U). (2.31)

Then (2.30) and (2.31) lead to

Dn+1 f (z)
Dn f (z)

= e−iα p(z) +n

n+ 1
(z ∈U). (2.32)

Differentiating both sides of (2.32) logarithmically and using (2.31), we get

eiα
z
(
Dn+1 f (z)

)′

Dn+1 f (z)
= p(z) +

zp′(z)
e−iα p(z) +n

(z ∈U). (2.33)

If f ∈ T(n+ 1,α,λ), then by Theorem 2.1 and (2.33) we have

p(z) +
zp′(z)

e−iα p(z) +n
≺ h(z)cosα+ isinα (z ∈U), (2.34)

where h is given by (2.2). The function Q(z) = e−iα(h(z)cosα + isinα) + n is univalent
and convex in U and

ReQ(z) >
1− λ

2
+n≥ 0 (z ∈U) (2.35)

because of (2.29). Hence an application of the result of Miller and Mocanu [5, Corollary
1.1] yields

p(z)= eiα
z
(
Dn f (z)

)′

Dn f (z)
≺ h(z)cosα+ isinα (z ∈U). (2.36)

Now, by Theorem 2.1, we know that f ∈ T(n,α,λ) and the theorem is proved. �

Remark 2.7. Combining Theorem 2.6 with Corollary 2.4, we see that each function in
T(n,α,λ) is α-spirallike of order (1/2)(1− λ/ cos2α) in U . In view of Theorems 2.5 and
2.6 we have T(n,α,λ)⊂ S∗((1− λ)/2).

Theorem 2.8. A function f ∈A is in T(n,α,λ) if and only if

F(z)= n+ 1
zn

∫ z

0
tn−1 f (t)dt (2.37)

is in T(n+ 1,α,λ), where n∈N0, α∈ (−π/2,π/2), λ∈ [0,cos2α].
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Proof. It follows from (2.37) that F ∈ A and

(n+ 1) f (z)= nF(z) + zF′(z) (z ∈U), (2.38)

for f ∈ A. By using (2.30) and (2.38), we obtain

Dn f (z)= nDnF(z) + z
(
DnF(z)

)′

n+ 1
=Dn+1F(z) (z ∈U), (2.39)

which proves the assertions of the theorem. �

Let R(ρ) be the class of prestarlike functions of order ρ in U consisting of functions
f ∈ A satisfying

z

(1− z)2−2ρ ∗ f (z)∈ S∗(ρ), (2.40)

for some ρ (0≤ ρ < 1). The following lemma is due to Ruscheweyh [10].

Lemma 2.9. If f ∈ S∗(ρ) and g ∈ R(ρ) (0≤ ρ < 1), then for any analytic function F in U ,

g ∗ (F f )
g ∗ f

(U)⊂ co
(
F(U)

)
, (2.41)

where co(F(U)) stands for the convex hull of F(U).

Applying the lemma, we derive the following.

Theorem 2.10. Let f ∈ T(n,α,λ) and g ∈ R((1− λ)/2). Then

f ∗ g ∈ T(n,α,λ), (2.42)

where n∈N0, α∈ (−π/2,π/2), λ∈ [0,cos2α].

Proof. Let f ∈ T(n,α,λ). Making use of Theorems 2.1 and 2.5, we have

F(z)= z(Dn f (z))′

Dn f (z)
≺ e−iα(h(z)cosα+ isinα), Dn f ∈ S∗

(
1− λ

2

)

. (2.43)

If we put ϕ= f ∗ g, then for z ∈U ,

z(Dnϕ(z))′

Dnϕ(z)
= z(g(z)∗Dn f (z))′

g(z)∗Dn f (z)
= g(z)∗ (z(Dn f (z))′)

g(z)∗Dn f (z)

= g(z)∗ (F(z)Dn f (z))
g(z)∗Dn f (z)

.

(2.44)
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Since the univalent function e−iα(h(z)cosα+ isinα) is convex in U and g ∈ R((1− λ)/2),
from (2.43), (2.44), and the lemma we deduce that

z
(
Dnϕ(z)

)′

Dnϕ(z)
≺ e−iα(h(z)cosα+ isinα). (2.45)

Therefore, by using Theorem 2.1, ϕ∈ T(n,α,λ) and the proof is complete. �

Note that R(1/2)= S∗(1/2). Since R(ρ1)⊂ R(ρ2) for 0≤ ρ1 < ρ2 < 1 (see [10]), we have
K = R(0)⊂ R((1− λ)/2). Thus Theorem 2.10 yields the following.

Corollary 2.11. (i) If f ∈ T(n,α,0), n ∈ N0, α ∈ (−π/2,π/2), and g ∈ S∗(1/2), then
f ∗ g ∈ T(n,α,0).

(ii) If f ∈ T(n,α,λ), n∈N0, α∈ (−π/2,π/2), λ∈ [0,cos2α], and g ∈ K , then f ∗ g ∈
T(n,α,λ).

Theorem 2.12. Let n ∈ N0, α ∈ (−π/2,π/2), λ ∈ [0,cos2α]. The function f ∈ A defined
by

Dn f (z)= z

(1− bz)2e−iα cosα
(z ∈U) (2.46)

is in T(n,α,λ), where b is complex and

|b| =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

cos2α+ λ

3cos2α− λ

(
0≤ λ≤ (3− 2

√
2
)

cos2α
)
,

√ √
λ

2cosα+
√
λ

((
3− 2

√
2
)

cos2α≤ λ≤ cos2α
)
.

(2.47)

The result is sharp, that is, |b| cannot be increased.

Proof. Let f ∈A be given by (2.46). Then

eiα
z(Dn f (z))′

Dn f (z)
= 1 + bz

1− bz
cosα+ isinα. (2.48)

Hence, by Theorem 2.1, f ∈ T(n,α,λ) if and only if

1 + bz

1− bz
≺ h(z), (2.49)

where h is given by (2.2), or, equivalently, when

{

w :

∣
∣
∣
∣
∣
w− 1 + |b|2

1−|b|2
∣
∣
∣
∣
∣
<

2|b|
1−|b|2

}

⊂ h(U), (2.50)

for 0 < |b| < 1.
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Let δ denote the minimum distance from the point (1 + |b|2)/(1− |b|2) to the points
on the parabola ∂h(U) given by (2.25). Then

δ = min
u≥(1/2)(1−λ/cos2 α)

√
g(u), g(u)=

(

u− 1 + |b|2
1−|b|2

)2

+ 2u− 1 +
λ

cos2α
. (2.51)

Note that

1 + |b|2
1−|b|2 >

1
2

(

1− λ

cos2α

)

, g′(u)= 2

(

u− 2|b|2
1−|b|2

)

. (2.52)

(i) If

0≤ λ≤ (3− 2
√

2)cos2α, |b| = cos2α+ λ

3cos2α− λ
, (2.53)

then λ2− 6λcos2α+ cos4α≥ 0. Thus

|b|2 =
(

cos2α+ λ

3cos2α− λ

)2

≤ cos2α− λ

5cos2α− λ
,

2|b|2
1−|b|2 ≤

1
2

(

1− λ

cos2α

)

. (2.54)

From (2.51), (2.52) and (2.54), we have g′(u)≥ 0 and hence

δ =
√
√
√
√g

(
1
2

(

1− λ

cos2α

))

= 1 + |b|2
1−|b|2 −

1
2

(

1− λ

cos2α

)

= 2|b|
1−|b|2 . (2.55)

(ii) If 0≤ λ < (3− 2
√

2)cos2α and

cos2α+ λ

3cos2α− λ
< |b| <

√
cos2α− λ

5cos2α− λ
, (2.56)

then g′(u) > 0 and

δ = 1 + |b|2
1−|b|2 −

1
2

(

1− λ

cos2α

)

<
2|b|

1−|b|2 . (2.57)

(iii) If

(3− 2
√

2)cos2α≤ λ≤ cos2α, |b| =
√ √

λ

2cosα+
√
λ

, (2.58)
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then λ2− 6λcos2α+ cos4α≤ 0 and so

|b|2 =
√
λ

2cosα+
√
λ
≥ cos2α− λ

5cos2α− λ
,

2|b|2
1−|b|2 ≥

1
2

(

1− λ

cos2α

)

. (2.59)

Thus we have

δ =
√

g
(

2|b|2
1−|b|2

)

=
√

4|b|2
1−|b|2 +

λ

cos2α
= 2|b|

1−|b|2 . (2.60)

(iv) If (3− 2
√

2)cos2α≤ λ≤ cos2α and
√√

λ/(2cosα+
√
λ) < |b| < 1, then

δ =
√

4|b|2
1−|b|2 +

λ

cos2α
<

2|b|
1−|b|2 . (2.61)

By virtue of (2.49), (2.50), (2.55), (2.57), (2.60), and (2.61), the proof of the
theorem is now complete. �

Letting n= α= 0 in Theorem 2.12, we have the following.

Corollary 2.13. The function f (z) = z/(1− bz)2 is in T(0,0,λ), where λ ∈ [0,1],b is
complex and

|b| =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

1 + λ

3− λ

(
0≤ λ≤ 3− 2

√
2
)
,

√ √
λ

2 +
√
λ

(
3− 2

√
2≤ λ≤ 1

)
.

(2.62)

The result is sharp, that is, |b| cannot be increased.
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