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Let Kq denote the finite field of order q and odd characteristic p. For a ∈ Kq, let

gd(x,a) denote the Dickson polynomial of degree d defined by gd(x,a) = ∑[d/2]
i=0 d/

(d− i)(d−ii )(−a)ixd−2i. Let f (x) denote a monic polynomial with coefficients in Kq. As-
sume that f 2(x)−4 is not a perfect square and gcd(p,d)=1. Also assume that f (x) and
g2( f (x),1) are not of the form gd(h(x),c). In this note, we show that the polynomial
gd(y,1)− f (x)∈ Kq[x, y] is absolutely irreducible.
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Let Kq denote the finite field of order q and odd characteristic p. For a∈ Kq, let gd(x,a)

denote the Dickson polynomial of degree d and parameter a defined by gd(x,a)=∑[d/2]
i=0 d/

(d− i)(d−ii )(−a)ixd−2i. Alternatively, gd(x,a) can also be defined by the second-order lin-
ear recursive sequence

gd(x,a)= xgd−1(x,a)− agd−2(x,a), (1)

where go(x,a)= 2 and g1(x,a)= x. Thus,

gd(x,a)= gd

(

y +
a

y
,a
)

= yd +
ad

yd
, (2)

where x and y are related by the generating equation y2− xy + a= 0. Dickson polynomi-
als have been extensively studied by many authors and an excellent survey of their many
properties and applications has been written by Lidl et al. [2]. Since gd(x,0) = xd, the
Dickson polynomial gd(x,a) may be viewed as a generalization of the power polynomial
xd. Equations of the form yd = f (x) are called elliptic equations and have a very rich re-
search history, see, for example, [1, Chapter 18]. In particular, if f (x)= (x− c1)d1 ···(x−
cs)ds is the factorization of f (x)∈ Kq[x] in K̄q, then it is easy to prove that, see [3, page 11],
yd − f (x) ∈ Kq[x, y] is absolutely irreducible if and only if gcd(d,d1 , . . . ,ds) = 1. Hence,
applying Weil’s Riemman hypothesis theorem [3, page 131], if e = max{d,deg( f (x))}
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and gcd(d,d1 , . . . ,ds)= 1, then the number of roots N of yd − f (x) in Kq×Kq satisfies the
inequality

|N − q| ≤ (e− 1)(e− 2)
√
q+ c(e) (3)

for some constant c(e).
In this note, we show that if gcd(p,d) = 1 and f 2(x)− 4 is not a perfect square, then

gd(y,1)− f (x)∈ Kq[x, y] is absolutely irreducible as far as both f (x) and g2( f (x),1) are
not of the form gd(h(x),c) for some constant c and h(x)∈ Kq[x].

The following lemmas will be needed to prove our main result, Theorem 3.

Lemma 1. Let Kq denote the finite field of order q and odd characteristic p. Let f (x) be
a monic polynomial with coefficients in Kq. Assume that f 2(x)− 4 is not a perfect square.
Then

(a) ( f (x)±
√
f 2(x)− 4)n /∈ Kq(x) for n≥ 1;

(b) if n≥ 1 and ( f (x) +
√
f 2(x)− 4)n + c( f (x)−

√
f 2(x)− 4)n ∈ K̄q(x), then c = 1.

Proof. (a) Assume that ( f (x)±
√
f 2(x)− 4)n = ∑n

j=0 (−1) j(nj ) f n− j(x)(
√
f 2(x)− 4) j ∈

Kq(x). Then

h(x)=
m∑

i=0

(
n

2i+ 1

)

f n−2i−1(x)
(
f (x)− 4

)i = 0, (4)

where m = [(n− 1)/2]. Hence, the leading coefficient of h(x) gives the contradiction
∑m

i=0 ( n
2i+1 )= 2n−1 = 0. Therefore, ( f (x)±

√
f 2(x)− 4)n /∈ Kq(x) for n≥ 1.

(b) Assume that ( f (x) +
√
f 2(x)− 4)n + c( f (x)−

√
f 2(x)− 4)n ∈ K̄q(x) for some n ≥

1. Then

m∑

i=0

(1− c)
(
f (x)

)n−2i−1(
f 2(x)− 4

)i = 0, (5)

where m= [(n− 1)/2]. Therefore, (1− c)
∑m

i=0 ( n
2i+1 )= (1− c)2n−1 = 0 and so c = 1. �

Lemma 2. With notation as in Theorem 3, assume that σr(a1, . . . ,an)θr + σr(1/a1, . . . ,1/
an)θ−r ∈ K̄q(x) for some r ≥ 1. Then, σr(a1, . . . ,an)=0 if and only if σr(1/a1, . . . ,1/an)=0.

Proof. Assume that σr(a1, . . . ,an) �= 0 and σr(1/a1, . . . ,1/an) = 0. Then, θdr = ( f (x) +√
f 2(x)− 4)r ∈ K̄q(x) contradicting Lemma 2. A similar argument also shows that the

cases σr(a1, . . . ,an)= 0 and σr(1/a1, . . . ,1/an) �= 0 cannot occur. Therefore, σr(a1, . . . ,an)=
0 if and only if σr(1/a1, . . . ,1/an)= 0. �

Theorem 3. Let Kq denote the finite field of order q and odd characteristic p. Let f (x) be
a monic polynomial with coefficients in Kq. Assume that f 2(x)− 4 is not a perfect square.
For d ≥ 1, let gd(y,1) denote the Dickson polynomial of degree d and parameter 1. Assume
that f (x) and g2( f (x),1) are not of the form gd(h(x),c) for some c ∈ K̄q and h(x)∈ Kq[x].
Assume that gcd(p,d)= 1. Then, gd(y,1)− f (x)∈ Kq[x, y] is absolutely irreducible.
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Proof. Consider gd(y,1)− f (x) as a polynomial in y with coefficients in the field of ra-
tional functions K̄q(x). Set y = w + 1/w. Then, gd(y,1)− f (x)= wd + 1/wd − f (x)= 0 if

and only if wd = ( f (x)±
√
f 2(x)− 4)/2. Hence, combining with Lemma 1,

gd(y,1)− f (x)=
d∏

i=1

(

y− σidθ−
1

σidθ

)

, (6)

where θ is any of the roots of wd = ( f (x)±
√
f 2(x)− 4)/2.

Now assume that gd(y,1)− f (x) is reducible over K̄q[x, y]; that is,

gd(y,1)− f (x)=
r∏

i=1

fi(x, y) (7)

for some polynomials fi(x, y)∈ K̄q[x, y] with degree in y less than d. Then,

fi(x, y)=
ni∏

j=1

(

y− ai jθ− 1
ai jθ

)

∈ K̄q[x, y], (8)

where {ai1,ai2, . . . ,aini} ⊂ {1,σd, . . . ,σn−1
d }.

Therefore,

fi(x, y)=
ni∏

j=1

(

y− ai jθ− 1
ai jθ

)

= yni +hi1(x)yni−1 + ···+hini−1(x)y +hini(x)∈ K̄q[x, y],

(9)

where the polynomials hi j(x) can be expressed in terms of elementary symmetric poly-
nomials as the following equations show:

hi1(x)= σ1
(
ai1,ai2, . . . ,aini

)
θ + σ1

(
1
ai1

,
1
ai2

, . . . ,
1
aini

)

θ−1,

hi2(x)= σ2
(
ai1, . . . ,aini

)
θ2 + σ2

(
1
ai1

, . . . ,
1
aini

)

θ−2

+
ni∑

j=1

[
σ1
(
ai1, . . . , âi j , . . . ,aini

)

ai j
+ ai jσ1

(
1
ai1

, . . . ,
1̂
ai j

, . . . ,
1
aini

)]

,

...
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hini(x)= σni
(
ai1, . . . ,aini

)
θni + σni

(
1
ai1

, . . . ,
1
aini

)

θ−ni

+
ni∑

j=1

[
σni−1

(
ai1, . . . , âi j , . . . ,aini

)
θni−2

ai j
+ ai jσni−1

(
1
ai1

, . . . ,
1̂
ai j

, . . . ,
1
aini

)

θ−ni+2

]

+
ni∑

t �= j

[
σni−2

(
ai1, . . . , âit, . . . , âi j , . . . ,aini

)
θni−4

aitai j

+ aitai jσni−2

(
1
ai1

, . . . ,
1̂
ait

, . . . ,
1̂
ai j

, . . . ,
1
aini

)

θ−ni+4

]

...

+
ni∑

ts �=t j

[
σni−w

(
ai1, . . . , âit1 , . . . , âitw , . . . ,aini

)
θni−2w

ait1ait2 ···aitw

+ ait1 ···aitwσni−w
(

1
ai1

, . . . ,
1̂
ait1

, . . . ,
1̂
aitw

, . . . ,
1
aini

)

θ−ni+2w

]

,

(10)

where w = [ni/2] and deg(hi j(x)) < deg( f (x)) for 1≤ j ≤ ni. �

Now, combining with Lemma 2, we consider the following two cases.

Case 1. σ1(ai1, . . . ,aini)σ1(1/ai1, . . . ,1/aini) �= 0 for some 1≤ i≤ r. Then,

θ + ciθ
−1 = hi1(x)

ci
=Hi1(x)∈ K̄q[x], (11)

where ci = σ1(1/ai1, . . . ,1/aini)/σ1(ai1, . . . ,aini). Hence,

gd

(

θ +
ci
θ

,ci

)

=
f (x)±

√
f 2(x)− 4

2
+ cdi

f (x)∓
√
f 2(x)− 4

2

= gd
(
Hi1(x),ci

)
.

(12)

Therefore,

f (x)= gd
(
Hi1(x),ci

)
, (13)

where cdi = 1.



Javier Gomez-Calderon 5

Case 2. σ1(ai1, . . . ,aini)= σ1(1/ai1, . . . ,1/aini)= 0 for all 1≤ i≤ r. Then,

hi2(x)= σ2
(
ai1, . . . ,aini

)
θ2 + σ2

(
1
ai1

, . . . ,
1
aini

)

θ−2

+
ni∑

j=1

[
σ1
(
ai1, . . . , âi j , . . . ,aini

)

ai j
+ ai jσ1

(
1
ai1

, . . . ,
1̂
ai j

, . . . ,
1
aini

)]

= σ2
(
ai1, . . . ,aini

)
θ2 + σ2

(
1
ai1

, . . . ,
1
aini

)

θ−2 +
ni∑

j=1

[−ai j
ai j

+
ai j
−ai j

]

= σ2
(
ai1, . . . ,aini

)
θ2 + σ2

(
1
ai1

, . . . ,
1
aini

)

θ−2− 2ni.

(14)

Hence, if σ2(ai1, . . . ,aini)= σ2(1/ai1, . . . ,1/aini)= 0 for all 1≤ i≤ r, then the second-order
leading coefficient of gd(y,1)− f (x)=∏r

i=1 fi(x, y) at y gives the contradiction

d =
r∑

i=1

2ni = 2
r∑

i=1

ni = 2d. (15)

So, σ2(ai1, . . . ,aini)σ2(1/ai1, . . . ,1/aini) �= 0 for some value i and consequently, using such
particular value,

θ2 + ciθ
−2 = hi2(x) + 2ni

ci
=Hi2(x)∈ K̄q[x], (16)

where ci = σ2(1/ai1, . . . ,1/aini)/σ2(ai1, . . . ,aini). Therefore,

gd

(

θ2 +
ci
θ2

,ci

)

=
⎛

⎝
f (x)±

√
f 2(x)− 4

2

⎞

⎠

2

+ cdi

⎛

⎝
f (x)∓

√
f 2(x)− 4

2

⎞

⎠

2

= gd
(
Hi2(x),ci

)
,

g2
(
f (x),1

)= gd
(
Hi1(x),ci

)
,

(17)

where cdi = 1.
Since both cases contradict our assumptions on f (x) and g2( f (x),1), then we conclude

that gd(y,1)− f (x) is absolutely irreducible.

Corollary 4. With conditions as in Theorem 3, let N denote the number of zeros of gd(y,1)
− f (x) in Kq×Kq. Let e =max{d,deg( f (x))}. Then,

|N − q| ≤ (e− 1)(e− 2)
√
q+ c(e) (18)

for some constant c(e).

Proof. Combine Theorem 3 and Weil’s Riemann hypothesis theorem for curves over fi-
nite fields. �
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