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Let E be a real uniformly smooth Banach space, and K a nonempty closed convex sub-
set of E. Assume that T1 + T2 : K → K is a continuous and strongly pseudocontractive
mapping, where T1 : K → K is Lipschitz and T2 : K → K has the bounded range map-
ping. Then the Ishikawa iterative sequence converges strongly to the unique fixed point
of T1 +T2.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

Let E be an arbitrary real Banach space and E∗ the dual space on E. The normalized
duality mapping J : E→ 2E

∗
is defined by

Jx = { f ∈ E∗ : 〈x, f 〉 = ‖x‖ · ‖ f ‖ = ‖ f ‖2}, (1.1)

for all x ∈ E, where 〈·,·〉 denotes the generalized duality pairing. It is well known that if
E is a uniformly smooth Banach space, then J is single valued such that J(−x) = −J(x),
J(tx) = tJ(x) for all t ≥ 0, x ∈ E; and J is uniformly continuous on any bounded subset
of E. In the sequel we will denote single-valued normalized duality mapping by j. In the
following we give some concepts.

Let T : D(T)→ E be a mapping with domain D(T) and range R(T). A mapping T is
said to be pseudocontractive if for any x, y ∈ D(T) there exists j(x− y) ∈ J(x− y) such
that

〈
Tx−Ty, j(x− y)

〉≤ ‖x− y‖2. (1.2)

The mapping T is said to be strongly pseudocontractive if for any x, y ∈D(T) there exists
j(x− y)∈ J(x− y) such that

〈
Tx−Ty, j(x− y)

〉≤ k‖x− y‖2 (1.3)

for some constant k ∈ (0,1).
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2 Approximation of fixed point mappings in Banach spaces

Recently, Zhou and Jia [5] proved the following result: let E be a real Banach space
with a uniformly convex dual E∗, and let K be a nonempty closed convex and bounded
subset of E. Assume that T : K → K is a continuous and strong pseudocontraction, the
Ishikawa iteration sequence {xn}∞n=1 generated by (IS) converges strongly to the unique
fixed point of T . However, when T is continuous strongly pseudocontractive mapping,
one question arises naturally: if T neither is Lipschitzian nor has the bounded range,
whether or not the Ishikawa iterative sequence {xn}∞n=1 generated converges strongly to
the unique fixed point of T . It is our purpose in this note to solve the above question by
proving the following much more general result: E is a real uniformly smooth Banach
space, and K is a nonempty closed convex subset of E. Assume that T : K → K is a con-
tinuous and strong pseudocontraction, and T neither is Lipschizian nor has the bounded
range, then the Ishikawa iteration sequence converges strongly to the unique fixed point
of T .

Lemma 1.1 [5]. Let E be a real Banach space, then for all x, y ∈ E, there exists j(x + y) ∈
J(x+ y) such that

‖x+ y‖2 ≤ ‖x‖2 + 2
〈
y, j(x+ y)

〉
. (1.4)

Lemma 1.2 [5]. Let {ρn}∞n=1 be a nonnegative real sequence satisfying

ρn+1 ≤
(
1− λn

)
ρn + σn, (1.5)

where λn ∈ [0,1],
∑∞

n=1 λn =∞ and σn = o(λn). Then ρn→ 0 as n→∞.

2. Main results

Now we prove the main results of this note, In the sequel, we always assume that E is a
real uniformly smooth Banach space.

Theorem 2.1. Let K be a nonempty closed convex subset of E. Assume that T1 +T2 : K → K
is a continuous and strongly pseudocontractive mapping, where T1 : K → K is Lipschitz and
T2 : K → K has the bounded range mapping. Let {αn}∞n=1 and {βn}∞n=1 be two real sequences
in [0,1] satisfying the following conditions: (i) αn,βn→ 0 as n→∞; (ii)

∑∞
n=1αn =∞. Then

the Ishikawa iterative sequence generated from an arbitrary x1 ∈ K by (IS1),

xn+1 =
(
1−αn

)
xn +αn

(
T1 +T2

)
yn,

yn =
(
1−βn

)
xn +βn

(
T1 +T2

)
xn,

(2.1)

converges strongly to the unique fixed point of T1 +T2.

Proof. The existence of a fixed point follows from Deimling [4]. Let q be a fixed point of
T1 +T2. Since T1 +T2 is strongly pseudocontractive, thus for all x, y ∈ K ,

〈(
T1 +T2

)
x− (T1 +T2

)
y, J(x− y)

〉≤ k‖x− y‖2, (2.2)

where k ∈ (0,1). Then we may get that q must be unique fixed point of T1 +T2. Let L
denote the Lipschitzian constant of T1, M = supx∈K{‖T2x−T2q‖}, T = T1 +T2. Using
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(2.1), we have
∥
∥yn− q

∥
∥≤ (1−βn

)∥∥xn− q
∥
∥+βn

(∥∥T1xn−T1q
∥
∥+

∥
∥T2xn−T2q

∥
∥)

≤ (1−βn
)∥∥xn− q

∥
∥+βn

(
L
∥
∥xn− q

∥
∥+M

)

≤ (1−βn +βnL
)∥∥xn− q

∥
∥+βnM.

(2.3)

Set An = ‖J((xn+1−q)/(1+‖xn− q‖))−J((yn− q)/(1+‖xn− q‖))‖, Dn = ‖J((yn− q)/(1 +
‖xn − q‖))− J((xn − q)/(1 + ‖xn − q‖))‖, then An → 0, Dn → 0 as n→∞. Indeed {(yn −
q)/(1 + ‖xn − q‖)}, {(xn − q)/(1 + ‖xn − q‖)}, and {(xn+1 − q)/(1 + ‖xn − q‖)} are all
bounded, using that J is uniformly continuous on bounded subset, hence An → 0 as
n→∞ and Dn→ 0 as n→∞. Applying Lemma 1.1, we obtain

∥
∥xn+1− q

∥
∥2 = ∥∥(1−αn

)(
xn− q

)
+αn

(
Tyn−Tq

)∥∥2

≤ (1−αn
)2∥∥xn− q

∥
∥2

+ 2αn
〈
Tyn−Tq, J

(
xn+1− q

)〉

≤ (1−αn
)2∥∥xn− q

∥
∥2

+ 2αn
〈
Tyn−Tq, J

(
yn− q

)〉

+ 2αn
〈
Tyn−Tq, J

(
xn+1− q

)− J
(
yn− q

)〉

≤ (1−αn
)2∥∥xn− q

∥
∥2

+ 2αnk
∥
∥yn− q

∥
∥2

+ 2αn

〈

Tyn−Tq, J

(
xn+1− q

1 +
∥
∥xn− q

∥
∥

)

− J

(
yn− q

1 +
∥
∥xn− q

∥
∥

)〉

× (1 +
∥
∥xn− q

∥
∥)

≤ (1−αn
)2∥∥xn− q

∥
∥2

+ 2αnk
∥
∥yn− q

∥
∥2

+ 2αnAn
(
L
∥
∥yn− q

∥
∥+M

)(
1 +

∥
∥xn− q

∥
∥).

(2.4)

Again using Lemma 1.1, we obtain

∥
∥yn− q

∥
∥2 = ∥∥(1−βn

)(
xn−q

)
+βn

(
Txn−Tq

)∥∥2

≤ (1−βn
)2∥∥xn− q

∥
∥2

+2βn
〈
Txn−Tq, J

(
yn−q

)〉

≤ (1−βn
)2∥∥xn− q

∥
∥2

+ 2βn
〈
Txn−Tq, J

(
yn− q

)− J
(
xn− q

)〉

+ 2βn
〈
Txn−Tq, J

(
xn−q

)〉

≤ (1−βn
)2∥∥xn−q

∥
∥2

+2βn

〈
Txn−Tq, J

(
yn−q

1 +
∥
∥xn−q

∥
∥

)
− J
(

xn−q
1 +

∥
∥xn−q

∥
∥

)�

× (1+
∥
∥xn−q

∥
∥)+2kβn

∥
∥xn−q

∥
∥2

≤ ((1−βn
)2

+2kβn
)∥∥xn−q

∥
∥2

+2βn
(∥∥T1xn−T1q

∥
∥+
∥
∥T2xn−T2q

∥
∥)Dn

(
1+
∥
∥xn−q

∥
∥)
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≤((1−βn
)2

+ 2kβn
)∥∥xn− q

∥
∥2

+ 2βn
(
L
∥
∥xn− q

∥
∥+M

)
Dn
(
1 +

∥
∥xn− q

∥
∥)

≤((1−βn
)2

+2kβn
)∥∥xn−q

∥
∥2

+2βn(L+M)
(
1+
∥
∥xn−q

∥
∥)2

≤((1−βn
)2

+2kβn
)∥∥xn−q

∥
∥2

+4βn(L+M)
(
1 +
∥
∥xn−q

∥
∥2)

≤((1−βn
)2

+2kβn+4βn(L+M)
)∥∥xn− q

∥
∥2

+4βn(L+M).

(2.5)

Furthermore, we have the following estimates to a part of (2.4):

2αnAn
(
L
∥
∥yn− q

∥
∥+M

)(
1 +

∥
∥xn− q

∥
∥)

≤ 2αnLAn
(
1−βn +βnL

)∥∥xn− q
∥
∥(LMAnβn +MAn

)(
1 +

∥
∥xn− q

∥
∥)

≤ 2LAnαn
(
1−βn +βnL

)∥∥xn− q
∥
∥2

+ 2MαnAn
(
Lβn + 1

)

+ 2LAnαn
(
1−βn +βnL

)
+ 2MAnαn

(
Lβn + 1

)∥∥xn− q
∥
∥

≤ (2L+M)Anαn
(
1 +βnL

)∥∥xn− q
∥
∥2

+ (3L+M)Anαn
(
1 +Lβn

)

≤ En
∥
∥xn− q

∥
∥2

+En,

(2.6)

where En = (3L+M)Anαn(1 +Lβn). Substituting (2.5) and (2.6) in (2.4), we have

∥
∥xn+1− q

∥
∥2 ≤ ((1−αn

)2
+ 2αnk

((
1−βn

)2
+ 2kβn + 4βn(L+M)

)
+En

)∥∥xn− q
∥
∥2

+ 8kαnβn(L+M) +En =
(
1− 2(1− k)αn +Fn

)∥∥xn− q
∥
∥2

+Gn,
(2.7)

where Fn = α2
n − 4kαnβn + 2kαnβ2

n + 4k2αnβn + 8kαnβn(L + M) + 2kαnEn, Gn = 8k(L
+M)αnβn +En, then Fn = o(αn), Gn = o(αn). Hence, we may choose a large positive inte-
ger N such that for all n≥N ,

Fn <
1− k

2
αn. (2.8)

Thus the above inequality (2.7) yields

∥
∥xn+1− q

∥
∥2 ≤

(
1− 3(1− k)

2
αn

)∥
∥xn− q

∥
∥2

+Gn. (2.9)

By Lemma 1.2 we see that as ‖xn− q‖→ 0 as n→∞. The proof of theorem is completed.
�

Remark 2.2. Concrete the following example: let E = (−∞,+∞), K = [0,+∞), where
‖x‖ = |x|, x ∈ E. Let T1 : K → K be defined by T1x = x/3, and let T2 : K → K be defined
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by

T2x =

⎧
⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

−
√(

1− (x− 1)2
)

3
, if x ∈ [0,1],

−1
3

, if x ∈ (1,+∞).

(2.10)

Then T1 is Lipschitz, T2 has the bounded range, and T1 +T2 is strongly pseudocontractive
mapping. But T1 +T2 neither is Lipschitzian nor has a bounded range.

Remark 2.3. Theorem 2.1 contains a good number of the known results as its special
cases. In particular, if the mapping T considered here satisfies one of the following as-
sumptions: (i) T : K → K is a Lipschitzian; (ii) T has the bounded range, then T satisfied
the conditions of Theorem 2.1.

Remark 2.4. In [1], Bogin proved that T is strongly pseudocontractive if and only if (I −
T) is strongly accretive, where I denotes the identity operator. It is well known that if T
is continuous and strongly accretive, then T is surjective, so that, for any given f ∈ E, the
equation Tx = f has unique solution.

Theorem 2.5. Assume that T = T1 +T2 : E→ E is a continuous strongly accretive operator,
where T1 : E → E is Lipschitz, T2 : E → E has the bounded range operator. For any given
f ∈ E, define S : E→ E by Sx = f −Tx + x for all x ∈ E. Let {αn}∞n=1 and {βn}∞n=1 be two
real sequences [0,1] in satisfying the conditions: (i) αn,βn → 0 as n→∞; (ii)

∑∞
n=1αn =∞.

Then the Ishikawa iterative sequence generated from an arbitrary x1 ∈ E by (IS2),

xn+1 =
(
1−αn

)
xn +αnSyn,

yn =
(
1−βn

)
xn +βnSxn,

(2.11)

converges strongly to the unique solution of the equation Tx = f .

Proof. By virtue of Remark 2.3, the equation Tx = f has unique solution. Set S1x = x−
T1x, S2x = −T2x, x ∈ E. Then S1 is Lipschitz, S2 has the bounded range operator, and
Sx = S1x + S2x + f . Hence S is a continuous and strongly pseudocontractive mapping.
We obtain directly the conclusion from Theorem 2.1. �
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