
INVARIANT TRIPLE PRODUCTS

ANTON DEITMAR

Received 18 May 2005; Revised 26 June 2006; Accepted 5 July 2006

It is shown that the space of invariant trilinear forms on smooth representations of a
semisimple Lie group is finite dimensional if the group is a product of hyperbolic groups.
Explicit upper bounds are given which are attained in the case of induced representations.
Applications to automorphic coefficients are given.

Copyright © 2006 Hindawi Publishing Corporation. All rights reserved.

1. Introduction

LetG= PGL2(R) and let π1, π2, π3 be irreducible admissible smooth representations ofG.
Then the space of G-invariant trilinear forms on π1×π2×π3 is at most one dimensional.
This has, in different contexts, been proved by Loke [9], Molčanov [10], and Oksak [11].
In this paper, we ask for such a uniqueness result in the context of arbitrary semisimple
groups. We give evidence that for a given groupG, uniqueness can only hold ifG is locally
a product of hyperbolic groups. For such groups, we show uniqueness and for spherical
vectors, we compute the invariant triple products explicitly.

By a conjecture of Jacquet’s, which has been proved in [3], triple products on GL2

are related to special values of automorphic L-functions, see also [2, 4, 6, 7]. The con-
jecture/theorem says that the existence of nonzero triple products is equivalent to the
nonvanishing of the corresponding triple L-function at the center of its functional equa-
tion.

The uniqueness of triple products in the PGL2-case mentioned above has been used
in [1] to derive new bounds for automorphic L2-coefficients. This can also be done for
higher-dimensional hyperbolic groups, but, with the exception of the case treated in [1],
the results do not exceed those in [8]. For completeness, we include these computations
in the appendix.

2. Representations and integral formulae

Let G be a connected semisimple Lie group with finite center. Fix a maximal compact
subgroup K . Let ̂G and ̂K denote their unitary duals, that is, the sets of isomorphism
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2 Invariant triple products

classes of irreducible unitary representations of G, respectively, K . Let π be a continuous
representation of G on a locally convex topological vector space Vπ . Let V ′

π be the space
of all continuous linear forms on Vπ and let V∞

π be the space of smooth vectors, that is,

V∞
π =

{

v ∈Vπ : x �−→ α
(

π(x)v
)

is smooth∀α∈V ′
π

}

. (2.1)

The representation π is called smooth if Vπ =V∞
π .

A representation (π,Vπ) is called admissible if for each τ ∈ ̂K , the space HomK (Vτ ,Vπ)
is finite-dimensional. Let ̂Gadm be the admissible dual, that is, the set of infinitesimal iso-
morphism classes of irreducible admissible representations. A representation π in ̂Gadm

is called a class one or spherical representation if it contains K-invariant vectors. In that
case, the space VK

π of K-invariant vectors is one-dimensional. This is trivial for principal
series representations (see below) and follows generally from Casselman’s subrepresen-
tation theorem which says that every π ∈ ̂Gadm is equivalent to a subrepresentation of a
principal series representation.

The Iwasawa decomposition G= ANK gives smooth maps

a :G−→ A,

n :G−→N ,

k :G−→ K ,

(2.2)

such that for every x ∈ G, one has x = a(x)n(x)k(x). As an abbreviation, we also define
an(x)= a(x)n(x). Let gR, aR, nR, kR denote the Lie algebras of G, A, N , K and let g, a, n,
k be their complexifications.

For x ∈G and k ∈ K , we define

kx
def= k(kx). (2.3)

Lemma 2.1. The rule k �→ kx defines a smooth (right) group action of G on K .

Proof. The map k gives a diffeomorphismAN\G→ K and the action under consideration
is just the natural right action of G on AN\G. �

Lemma 2.2. For f ∈ C(K) and y ∈G, one has the integral formula
∫

K
f (k)dk =

∫

K
a(ky)2ρ f

(

ky
)

dk, (2.4)

or
∫

K
f
(

ky
)

dk =
∫

K
a
(

ky−1)2ρ
f (k)dk. (2.5)

Here ρ ∈ a∗ is the modular shift, that is, a2ρ = det(a | n).

Proof. The Iwasawa integral formula implies that
∫

G
g(x)dx =

∫

AN

∫

K
g(ank)dkdan. (2.6)
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Let f ∈ C(K) and choose a function η ∈ Cc(AN) such that η ≥ 0 and
∫

AN η(an)dadn= 1.
Let g(x)= η(an(x)) f (k(x)). Then g ∈ Cc(G) and

∫

G
g(x)dx =

∫

AN
η(an)dan

∫

K
f (k)dk =

∫

K
f (k)dk. (2.7)

On the other hand, since G is unimodular, this also equals
∫

G
g(xy)dx =

∫

G
η
(

an(xy)
)

f
(

k(xy)
)

dx

=
∫

AN

∫

K
η
(

an(anky)
)

f
(

k(ky)
)

dank

=
∫

K

(∫

AN
η
(

an(anky)
)

dan
)

f
(

ky
)

dk

=
∫

K

(∫

AN
η
(

anan(ky)
)

dan
)

f
(

ky
)

dk

=
∫

K
a(ky)2ρ

(∫

AN
η(an)dan

)

f
(

ky
)

dk

=
∫

K
a(ky)2ρ f

(

ky
)

dk.

(2.8)

The second assertion follows from the first by replacing f with ˜f (k)= f (ky) and then y
with y−1. �

LetM be the centralizer ofA intersected withK , then P =MAN is a minimal parabolic
subgroup of G. The inclusion map K↩G induces a diffeomorphism M\K → P\G and
in this way, we get a smooth G-action on M\K . An inspection shows that this action is
given by Mk �→Mkx for k ∈ K , x ∈G.

3. Trilinear products

Let π1, π2, π3 be three admissible smooth representations of the group G and let � :
Vπ1 ×Vπ2 ×Vπ3 → C be a continuous G-invariant trilinear form, that is,

�
(

π1(x)v1,π2(x)v2,π3(x)v3
)=�

(

v1,v2,v3
)

(3.1)

for all vj ∈Vπj and every x ∈G.
We want to understand the space of all trilinear forms � as above. In this paper, we will

only consider principal series representations, the general case will be considered later. So
we assume that π1, π2, π3 are principal series representations. This means that there are
given a minimal parabolic P =MAN , irredicible representations σj ∈ ̂M, and λj ∈ a∗ for
j = 1,2,3. Each pair (σj ,λj) induces a continuous group homomorphism P→GL(Vσj ) by
man �→ aλj+ρσ(m), which in turn defines aG-homogeneous vector bundle Eσj ,λj over P\G.
The representation πj is the G-representation on the space of smooth sections Γ∞(Eσj ,λj )
of that bundle. In other words, πj lives on the space of all C∞ functions f :G→Vσj with

f (manx)= aλj+ρσj(m) f (x) (3.2)
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for all m ∈M, a ∈ A, n ∈ N , x ∈ G. The representation πj is defined by πj(y) f (x) =
f (xy). Every such f is uniquely determined by its restriction toK which satisfies f (mk)=
σj(m) f (k), that is, f is a section of the K-homogeneous bundle Eσj on M\K induced by
σj . So the representation space can be identified withVπj

∼= Γ∞(Eσj ). Thus a trilinear form
� is a distribution on the vector bundle Eσ = Eσ1 �Eσ2 �Eσ3 over M\K ×M\K ×M\K .
Here � denotes the outer tensor product.

For f1, f2, f3 ∈ C∞(M\K), we write �( f1, f2, f3) for the expression

∫

M\K×M\K×M\K
φ
(

k1,k2,k3
)[

f1
(

k1
)

� f2
(

k2
)

� f3
(

k3
)]

dk1dk2dk3, (3.3)

where φ is the kernel of �.
The group G is called a real hyperbolic group if it is locally isomorphic to SO(d,1) for

some d ≥ 2.
On Y = (P\G)3, we consider the G3-homogeneous vector bundle Eσ ,λ given by Eσ ,λ =

Eσ1,λ1 �Eσ2,λ2 �Eσ3,λ3 . Next Y can be viewed as a G-space via the diagonal action and so
Eσ ,λ becomes a G-homogeneous line bundle on Y .

We are going to impose the following condition on the induction parameters λ1, λ2,
λ3. We assume that

∑3
j=1 εj(λj + ρ) �= 0 for any choice of εj ∈ {±1}. In other words, this

means that
(i) λ1 + λ2 + λ3 + 3ρ �= 0,

(ii) λ1 + λ2− λ3 + ρ �= 0,
(iii) λ1− λ2− λ3− ρ �= 0.

Theorem 3.1. Assume the parameters λ1, λ2, λ3 satisfy the above condition. Let Y be the
G-space (P\G)3. If there is an openG-orbit in Y , then the dimension of the space of invariant
trilinear forms on smooth principal series representations is less than or equal to

∑

o

dim
(

σ1⊗ σ2⊗ σ3
)Mo , (3.4)

where the sum runs over all open orbits o andMo is the stabilizer group of a point in the orbit
o which is chosen so that Mo is a subgroup of M. If all induction parameters are imaginary
(unitary induction), then there is equality.

In particular, if π1, π2, π3 are class-one representations, then the dimension is less than or
equal to the number of open orbits in Y .

There is an open orbit if and only if G is locally isomorphic to a product of hyperbolic
groups.

For G = SO(2,1)0, the number of open orbits is 2, for G = SO(2,1) or G = SO(d,1)0,
d ≥ 3, the number is 1. Here SO(d,1)0 is the connected component of the Lie group SO(d,1).

The Proof is based on the following lemma.

Lemma 3.2. Let G be a Lie group and H a closed subgroup. Let X = G/H and let E→ X be
a smooth G-homogeneous vector bundle. Let � be a distribution on E, that is, a continuous
linear form on Γ∞c (E). Suppose that � is G-invariant, that is, �(g · s) = �(s) for every
s∈ Γ∞c (E). Then � is given by a smooth G-invariant section of the dual bundle E∗.
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Let (σ ,Vσ) be the representation of H on the fibre EeH and let (σ∗,Vσ∗) be its dual. Then
the space of allG-invariant distributions on E has dimension equal to the dimension dimVH

σ∗

of H-invariants. So in particular, if σ is irreducible, this dimension is zero unless σ is trivial,
in which case the dimension is one.

Proof. Equation �(g · s) =�(s), that is, g ·� =� for all g ∈ G implies that X ·� = 0
for every X ∈ gR, the real Lie algebra of G. Let hR be the Lie algebra of H and choose a
complementary space pR for hR such that gR = hR⊕ pR. Let X1, . . . ,Xn be a basis of V and
let

D = X2
1 +X2

2 + ···+X2
n ∈U

(

gR
)

. (3.5)

We show that D induces an elliptic differential operator on E. By G-homogeneity, it suf-
fices to show this at a single point. So let P = exp(pR). In a neighborhood U of the unit
in G, there are smooth maps h :U →H and p :U → P such that h(x)p(x)= x for x ∈U .

The sections of E can be identified with the smooth maps s : G→ Vσ with s(hx) =
σ(h)s(x) for h∈H and x ∈ G. We can attach to each section s a map fs on p with values
in Vσ by fs(Y)= s(exp(Y)). The action of X ∈ pR on the section s is described by

fXs(Y)= d

dt

∣

∣

∣

∣

t=0
s
(

exp(Y)exp(tX)
)

= d

dt

∣

∣

∣

∣

t=0
σ
(

h
(

exp(Y)exp(tX)
)

s
(

p
(

exp(Y)exp
(

(tX)
)

.

(3.6)

Let AX(Y)= d/dt|t=0σ(h(exp(Y)exp(tX))∈ End(Vσ). Then the Leibniz rule implies that

fXs(Y)=AX(Y) fs(Y) +X fs(Y). (3.7)

The first summand is of order zero and the second is of order one. Moreover, the sec-
ond summand at Y = 0 coincides with the coordinate-derivative in the direction of X .
This implies that the leading symbol of D at eH is ξ2

1 + ···+ ξ2
n and so D is elliptic. The

distributional equation D�= 0 then implies that � is given by a smooth section.
For the second assertion of the lemma, recall that a G-invariant section is uniquely

determined by its restriction to the point eH which must be invariant under H . �

For the proof of the theorem, we will need to investigate the G-orbit structure of
Y = (P\G)3. First note that since the map Mk �→ Pk is a K-isomorphism from M\K
to P\G, the K-orbit of every y ∈ Y contains an element of the form (y1, y2,1). Hence
the P =MAN-orbit structure of (P\G)2 is the same as the G-orbit structure of Y . By
the Bruhat decomposition, the P-orbits in P\G are parametrized by the Weyl group
W =W(G,A), where the unique open orbit is given by Pw0P, here w0 is the long ele-
ment of the Weyl group. Note that the P-stabilizer of Pw0 ∈ P\G equals AM. This im-
plies that the G-orbits in Y of maximal dimension are in bijection to the AM-orbits in
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P\G of maximal dimension via the map PxAM �→ (x,w0,1) ·G. Again by Bruhat decom-
position, it follows that the latter are contained in the open cell Pw0P = Pw0N . So the
G-orbits of maximal dimension in Y are in bijection to the AM-orbits in N of maximal
dimension, where AM acts via the adjoint action. The exponential map exp : nR → N is
an AM-equivariant bijection, so we are finally looking for the AM-orbit structure of the
linear adjoint action on nR.

We will now prove that there is an open orbit if and only ifG is locally a product of real
hyperbolic groups. So suppose that Y contains an open orbit. Then nR contains an open
AM-orbit, say AM ·X0. Let φ+ be the set of all positive restricted roots on a = Lie(A).
Decompose nR into the root spaces

nR =
⊕

α∈φ+

nR,α. (3.8)

On each nR,α, install an M-invariant norm ‖ · ‖α. This is possible since M is compact.
Consider the map

ψ : nR −→
∏

α∈φ+

R,

x �−→
∏

α

‖x‖α.
(3.9)

Since the orbit AM · X0 is open, the image ψ(AM · X0) of the orbit must contain a
nonempty open set. Away from the set {X ∈ nR : ∃α : ‖x‖α = 0}, the map ψ can be chosen
differentiable. Since the norms are invariant under M, one gets a smooth map

A−→R|φ+|

a �−→ ψ
(

a ·X0
)

,
(3.10)

whose image contains an open set. This can only happen if the dimension of A is at least
as big as |φ+| and the latter implies that G is locally a product of real rank-one groups.
Now by Araki’s table (see [5, pages 532–534]), one knows that these real rank-one groups
must all be hyperbolic, because otherwise there would be two different root lengths.

For the converse direction, let G be locally isomorphic to SO(d,1). We have to show
that there is an open AM-orbit in nR. This, however, is clear as the action of AM on nR is
the natural action of R×+ × SO(d− 1) on Rd−1, hence there are two orbits, the zero orbit
and one open orbit.

We will now show that if there is an open orbit, then there are no invariant distri-
butions supported on lower-dimensional orbits. For this, it suffices to consider the case
G = SO0(d,1). For simplicity, we only consider the trivial bundle, that is, functions in-
stead of sections. The general case is similar. The orbit structure is as follows. For d = 2,
the group M = SO(d− 1) is trivial, and so there are two open AM-orbits in N ∼= R in
this case. If d > 2, there is only one open orbit. Since the proof is very similar in the case
d = 2, we will now restrict ourselves to the case d > 2. The open orbit [w0n0,w0,1], given
by some n0 ∈N , contains in its closure the orbits [w0,w0,1] and [w0,1,1] which in turn
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contain in their closures the orbit [1,1,1],

[

w0n0,w0,1
]

∪ ∪
[

w0,w0,1
] [

w0,1,1
]

∪ ∪
[1,1,1]

(3.11)

Let � = [w0n0,w0,1] be the open orbit. Let x1 = (w0,w0,1), then one has [w0,w0,1] =
x1 ·G. Consider A∼=R×+ as a subset of R suitably normalized, then one can write

x1 = lim
a→0

x0 · am. (3.12)

Let � be a G-invariant distribution supported on the closure of the orbit of x1. Since �
is G-invariant, it satisfies X ·� = 0 for every X ∈ g. Hence the wave front set WF(�)⊂
T∗Y is a G-invariant subset of the normal bundle of the manifold x1 ·G. This implies
that � is of order zero along the manifold x1 ·G. By the G-invariance, it follows that � is
of the form

�( f )=
∫

x1·G
D
(x
f
)(

x1
)

dx+R, (3.13)

where R is supported in [1,1,1]. Further, D is a differential which we can assume to be
G-equivariant. Then D( f )(x1) is of the form

D1(m) f
(

x0 · am
)|a=0, (3.14)

where D1(m) is a differential operator in the variable a. Since D is G-equivariant, we may
replace f with a0 f for some a0 ∈A. Since x1a0 = x1, we get that the above is the same as

D1(m) f
(

x0 · aa0m
)|a=0. (3.15)

This implies thatD1 must be of order zero and so � is of order zero. Restricted to the orbit
x1 ·G∼= AM\G, the distribution � is given by an integral of the form

∫

AM\Gφ(y) f (x1y)dy.
(Note that we use the notation without the dot again.) Invariance implies that φ is con-
stant. If � is nonzero, then y �→ f (x1y) must be left invariant under AM, which implies
that λ1 + λ2 − λ3 + ρ = 0, a case we have excluded. So � must be zero. This shows that
any invariant distribution which is zero on the open orbit also vanishes on x1 ·G. The
remaining orbits are dealt with in a similar fashion. To prove the theorem, it remains to
show the existence of invariant distributions in the case of unitary parameters. For this,
we change our point of view and consider sections of Lλ no longer as functions on Y , but
as functions on G3 with values in Vσ = Vσ1 ⊗Vσ2 ⊗Vσ3 which spit out aλ+ρσ(m) on the
left. We induce this in the notation by writing f (x0y) instead of f (x0 · y). On a given or-
bit of maximal dimension, there is a standard invariant distribution which, by the lemma,
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is unique up to scalars and is given by

�st f = α
(∫

G
f
(

x0y
)

dy
)

, (3.16)

where α is a linear functional on the space of Mo-invariants. In order to show that this
extends to a distribution on Y , we need to show that the defining integral converges for
all f ∈ Γ∞(Eσ ,λ). This integral equals

∫

G
f
(

x0y
)

dy =
∫

G
f
(

w0n0y,w0y, y
)

dy

=
∫

G
a
(

w0n0y
)ρ+λ1a

(

w0y
)ρ+λ2a(y)ρ+λ3 f

(

k
(

x0y
))

dy.
(3.17)

Since f is bounded on K3, it suffices to show the following lemma.

Lemma 3.3. Let G= SO(d,1)0 and let k0 = k(w0n0). Then

∫

G
a
(

w0n0y
)ρ
a
(

w0y
)ρ
a(y)ρdy <∞. (3.18)

Conjecture 3.4. The assertion of the lemma should hold for any semisimple group G with
finite center and n0 ∈N generic.

The conjecture would imply that if G is not locally a product of hyperbolic groups,
then the space of invariant trilinear forms on principal series representations is infinite-
dimensional.

Proof of Lemma 3.3. Replace the integral over G by an integral over ANK using the Iwa-
sawa decomposition. Since a(xk) = a(x) for x ∈ G and k ∈ K , the K-factor is irrelevant
and we have to show that

∫

AN
a
(

k0an
)ρ
a
(

w0an
)ρ
aρ dadn <∞. (3.19)

Now write w0n0 = a′n′k0. Then k0an = (a′n′)−1w0n0an, and therefore a(k0an) =
(a′)−1a(w0n0an), so it suffices to show that

∫

AN
a
(

w0n0an
)ρ
a
(

w0an
)ρ
aρ dadn <∞. (3.20)

Next note thatw0a=a−1w0 and so we have a(w0an)ρ=a−ρa(w0n)ρ as well as a(w0n0an)ρ=
a−ρa(w0n

a
0n)ρ, where na0 = a−1n0a. We need to show that

∫

AN
a
(

w0n
a
0n
)ρ
a
(

w0n
)ρ
a−ρ dadn <∞. (3.21)

This is the point where we have to make things more concrete. Let J be the diagonal
(d+ 1)× (d+ 1)-matrix with diagonal entries (1, . . . ,1,−1). Then SO(d,1) is the group of
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real matrices g with gtJg = J . Writing g = (A b
c d

)

with A∈Matd(R), this amounts to

AtA− ctc = 1,

Atb− ctd = 0,

d2− btb = 1.

(3.22)

The connected component SO(d,1)0 consists of all matrices g as above with d > 0. The
maximal compact subgroup K can be chosen to be

(

SO(d)
1

)

(3.23)

and M as

⎛

⎜

⎝

SO(d− 1) 0
1 0

0 0 1

⎞

⎟

⎠ . (3.24)

Further, we can choose A and N as follows:

A=
⎧

⎪

⎨

⎪

⎩

⎛

⎜

⎝

1
α β
β α

⎞

⎟

⎠ : α > 0, α2−β2 = 1

⎫

⎪

⎬

⎪

⎭

,

N =

⎧

⎪

⎪

⎪

⎪

⎪

⎨

⎪

⎪

⎪

⎪

⎪

⎩

n(x)=

⎛

⎜

⎜

⎜

⎜

⎝

1 −x x

xt 1− |x|
2

2
D
|x|2

2

xt −|x|2
2 1 +

|x|2
2

⎞

⎟

⎟

⎟

⎟

⎠

: x ∈Rd−1

⎫

⎪

⎪

⎪

⎪

⎪

⎬

⎪

⎪

⎪

⎪

⎪

⎭

,

(3.25)

where we have written |x|2 = x2
1 + x2

2 + ···+ x2
d−1. Note that the Lie algebra of A is gen-

erated by H =
(1

0 1
1 0

)

. One derives an explicit formula for the ANK-decomposition. In

particular, if g = (A b
c d

)

and

a(g)=
⎛

⎜

⎝

1
α β
β α

⎞

⎟

⎠ , (3.26)

then

a(g)ρ = (α+β)(d−1)/2 =
( (

d+ bd
)

1 + b2
1 + ···+ b2

d−1

)(d−1)/2

. (3.27)
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The Weyl representative element can be chosen to be

w0 =

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

1
. . .

1
−1

−1
1

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

. (3.28)

So that with n= n(x) for x ∈Rd−1, we have

a
(

w0n
)ρ = a

⎛

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎜

⎝

∗ ∗ x1

∗ ∗ ...
∗ ∗ xd−2

∗ ∗ −xd−1

∗ ∗ −|x|
2

2

∗ ∗ 1 +
|x|2

2

⎞

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎟

⎠

ρ

=
(

1
1 + x2

1 + ···+ x2
d−1

)(d−1)/2

.

(3.29)

We choose n0 = n(1,0, . . . ,0) and get with a= exp(tH) that

a
(

w0n
a
0n
)ρ =

(

1

1 +
(

e−t + x1
)2

+ x2
2 + ···+ x2

d−1

)(d−1)/2

. (3.30)

With n= d− 1 and a−ρ = e−(n/2)t, our assertion boils down to
∫

Rn

∫

R
e−(n/2)t(1 + |x|2)−n/2

(

1 +
∣

∣e−tv1 + x
∣

∣

2
)−n/2

dtdx < ∞. (3.31)

Consider first the case n= 1 and the integral over x < 0:

∫

R

∫ 0

−∞
e−(1/2)t(1 + x2)−1/2

(

1 +
(

e−t + x
)2
)−1/2

dxdt

=
∫

R

∫∞

0
e−(1/2)t(1 + x2)−1/2

(

1 +
(

x− e−t)2
)−1/2

dxdt

=
∫

R

∫∞

−e−t
e−(1/2)t

(

1 +
(

x+ e−t
)2
)−1/2(

1 + (x)2)−1/2
dxdt.

(3.32)

Thus it suffices to show the convergence of

∫

R

∫∞

0
e−(1/2)t(1 + x2)−1/2

(

1 +
(

x+ e−t
)2
)−1/2

dtdx. (3.33)
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Setting y = e−t, we see that this integral equals

∫∫∞

0
y−1/2(1 + x2)−1/2(

1 + (x+ y)2)−1/2
dydx

=
∫∞

0

∫∞

x
(y− x)−1/2(1 + x2)−1/2(

1 + y2)−1/2
dydx.

(3.34)

Since the mapping

x �−→
∫∞

x
(y− x)−1/2(1 + x2)−1/2(

1 + y2)−1/2
dy (3.35)

is continuous, the integral over 0 < x < 1 converges. It remains to show the convergence
of

∫∞

1

∫∞

x
(y− x)−1/2(1 + x2)−1/2(

1 + y2)−1/2
dydx

=
∫∫∞

1
x1/2(v− 1)−1/2(1 + x2)−1/2(

1 + v2x2)−1/2
dvdx

≤ 3−1/2
∫∫∞

1
x1/2(v− 1)−1/2(1 + x2)−1(

1 + v2)−1/2
dvdx <∞.

(3.36)

Here we have used the substitution y = vx and the fact that for a,b ≥ 1, one has (1 +
a)(1 + b)≤ 3(1 + ab).

Now for the case n > 1, using polar coordinates, we compute

∫

Rn−1

∫∫

R
e−tn/2

(

1 + x2 +
∣

∣xr
∣

∣

2
)−n/2

(1+)e−t + x
)2

+
∣

∣xr
∣

∣

2
)−n/2

dtdxdxr

= C
∫∞

0

∫∫

R
e−tn/2rn−2(1 + x2 + r2)−n/2(1+)e−t + x

)2
+ r2

)−n/2
dtdxdxr .

(3.37)

As above, we can restrict to the case x > 1. We get that this equals

∫∫∫∞

0
y(n/2)−1rn−2(1 + x2 + r2)−n/2(1 + (x+ y)2 + r2)−n/2dydxdr

=
∫∫∞

0

∫∞

x
(y− x)(n/2)−1rn−2(1 + x2 + r2)−n/2(1 + y2 + r2)−n/2dydxdr,

(3.38)

which equals

∫∫∞

0

∫∞

1
(v− 1)n/2−1xn/2rn−2(1 + x2 + r2)−n/2(1 + v2x2 + r2)−n/2dydxdr. (3.39)

As above, it suffices to restrict the integration to the domain x > 1. So one considers

∫∞

0

∫∫∞

1
(v− 1)(n/2)−1xn/2rn−2(1 + x2 + r2)−n/2(1 + v2x2 + r2)−n/2dydxdr. (3.40)
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Choose 0 < ε < 1/2 and write

(

1 + x2 + r2)−n/2 = (1 + x2 + r2)ε−n/2(1 + x2 + r2)−ε

≤ (1 + r2)ε−n/2(1 + x2)−ε.
(3.41)

So our integral is less than or equal to

∫∞

0
rn−2(1 + r2)ε−n/2dr (3.42)

times

∫∫∞

1
(v− 1)(n/2)−1xn/2

(

1 + x2)−ε(1 + v2x2)−n/2dvdx

≤ C
∫∫∞

1
(v− 1)(n/2)−1xn/2

(

1 + x2)−ε(1 + v2)−n/2(1 + x2)−n/2dvdx <∞.
(3.43)

�

4. An explicit formula

Let d ≥ 2 and G = SO(d,1)0 if d > 2. For d = 2, let G be the double cover ˜SO(2,1)o ∼=
PGL2(R). Then K = SO(d), M = SO(d− 1) for d > 2. For d = 2, we have K ∼= O(2) and
M ∼= Z/2Z and in all cases, we haveM\K ∼= Sd−1, the (d− 1)-dimensional sphere. For each
λ ∈ a∗, let eλ be the class-one vector in the associated principal series representation πλ
given by eλ(ank)= aλ+ρ. Let λ,μ,ν∈ a∗ be imaginary. Let �st be the invariant distribution
on L(λ,μ,ν) considered in the last section. We are interested in the growth of �st(eλ,eμ,eν)
as a function in λ. First note that the Killing form induces a norm | · | on a∗.

We write �st(λ,μ,ν) for �st(eλ,eμ,eν) and identifying aR to R via λ �→ λ(H0), we con-
sider �st as a function on (iR)3.

In this section, we will prove the following theorem.

Theorem 4.1. For λ, μ, ν imaginary, �st(λ,μ,ν) equals a positive constant times

Γ
((

2(λ+μ−ν)+n
)

/4
)

Γ
((

2(λ−μ+ν)+n
)

/4
)

Γ
((

2(−λ+μ+ν)+n
)

/4
)

Γ
((

2(λ+μ+ν)+n
)

/4
)

Γ
(

(2λ+n)/2
)

Γ
(

(2μ+n)/2
)

Γ
(

(2ν +n)/2
) ,

(4.1)

where n= d− 1, so in particular, for fixed imaginary μ and ν. Then, as |λ| tends to infinity,
while λ is imaginary, one has the asymptotic

∣

∣�st(λ,μ,ν)
∣

∣= cexp
(

− π

2
|λ|
)

|λ|(d/2)−2
(

1 +O
(

1
|λ|
))

, (4.2)

for some constant c > 0.
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Proof. The asymptotic formula follows from the explicit expression and the well-known
asymptotical formula,

∣

∣Γ(σ + it)
∣

∣=√2π exp
(

− π

2
|t|
)

|t|σ−(1/2)
(

1 +O
(

1
|t|
))

(4.3)

as |t| →∞, where the real part σ is fixed.
Now for the proof of the first assertion. The permutation group S3 in three letters acts

on (iR)3 by permuting the coordinates. We claim that �st is invariant under that action.
So let σ ∈ S3 and let f = f1⊗ f2⊗ f3, then

�st
(

σ( f )
)=

∫

G
f
(

σ−1(x0 · y
))

dy =
∫

G
f
(

σ−1(x0
) · y)dy. (4.4)

Since the open orbit is unique, there is yσ ∈G with σ−1(x0)= x0 · yσ , and so

�st
(

σ( f )
)=

∫

G
f
(

x0 · yσ y
)

dy =
∫

G
f
(

x0 · y
)

dy =�st( f ). (4.5)

So in particular �st(λ,μ,ν) is invariant under permutations of (λ,μ,ν).
We have

�st
(

eλ,eμ,eν
)=

∫

G
a
(

w0n0y
)λ+ρ

a
(

w0y
)μ+ρ

a(y)ν+ρ dy. (4.6)

Replace the integral over G by an integral over ANK using the Iwasawa decomposition.
Since a(xk)= a(x) for x ∈G and k ∈ K , theK-factor is irrelevant and we have to compute

∫

AN
a
(

w0n0an
)λ+ρ

a
(

w0an
)μ+ρ

aν+ρ dadn. (4.7)

Note that w0a = a−1w0, and so we have a(w0an)ρ = a−ρa(w0n) as well as a(w0n0an) =
a−ρa(w0n

a
0n), where na0 = a−1n0a. So the integral equals

∫

AN
aν−λ−μ−ρa

(

w0n
a
0n
)λ+ρ

a
(

w0n
)μ+ρ

dadn. (4.8)

Using the explicit approach of the last section, we see that �st(λ,μ,ν) equals

0
∫

R

∫

Rd−1
et(ν−λ−μ−(d−1)/2)

(

1 +
∣

∣e−tv1 + x
∣

∣

2
)−λ−(d−1)/2(

1 + |x|2)−μ−(d−1)/2
dxdt, (4.9)

where v1 = (1,0, . . . ,0).
Set n= d− 1= 1,2,3, . . . and use polar coordinates to compute for n > 1 that

∫

R

∫

Rn
et(ν−λ−μ−(n/2))

(

1 +
∣

∣e−tv1 + x
∣

∣

2
)−λ−(n/2)(

1 + |x|2)−μ−(n/2)
dxdt (4.10)
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equals (n− 1)vol(Bn−1) times

∫∫

R

∫∞

0
rn−2et(ν−λ−μ−(n/2))

(

1 +
(

e−t + x
)2

+ r2
)−λ−(n/2)(

1 + x2 + r2)−μ−(n/2)
dr dxdt.

(4.11)

Define In(a,b,c) to be

∫∫

R

∫∞

0
rn−2et(c−a−b)

(

1 +
(

e−t + x
)2

+ r2
)−a(

1 + x2 + r2)−bdr dxdt, (4.12)

and I1(a,b,c) to be equal to

∫∫

R
et(c−a−b)

(

1 +
(

e−t + x
)2
)−a(

1 + x2)−bdr dxdt. (4.13)

Then, for all n∈N,

�st(λ,μ,ν)= cnIn
(

λ+
n

2
,μ+

n

2
,ν +

n

2

)

, (4.14)

where c1 = 1 and cn = (n− 1)vol(Bn−1) for n > 1. So in particular, In is invariant under
permutations of the arguments.

Note that

∂

∂r

[(

1 +
(

e−t + x
)2

+ r2
)−a(

1 + x2 + r2)−b
]

(4.15)

equals

−2ar
(

1 +
(

e−t+ x
)2

+ r2
)−a−1(

1 + x2 + r2)−b−2br
(

1 +
(

e−t + x
)2

+ r2
)−a(

1 + x2 + r2)−b−1
,

(4.16)

and rn−2 = ∂/∂r[rn−1/n− 1]. So, integrating by parts, for n > 1 we compute

In(a,b,c)= 2a
n− 1

In+2(a+ 1,b,c+ 1) +
2b
n− 1

In+2(a,b+ 1,c+ 1). (4.17)

To get a similar result for I1, note that

(

1 +
(

e−t + x
)2
)−a(

1 + x2)−b (4.18)

equals

−
(

1 +
(

e−t + x
)2

+ r2
)−a(

1 + x2 + r2)−b|r=∞r=0

=−
∫∞

0

∂

∂r

[(

1 +
(

e−t + x
)2

+ r2
)−a(

1 + x2 + r2)−b
]

dr.
(4.19)
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This implies that

I1(a,b,c)= 2aI3(a+ 1,b,c+ 1) + 2bI3(a,b+ 1,c+ 1). (4.20)

Let I′n(a,b,c) be the same as In(a,b,c) except that there is a factor x in the integrand, that
is,

∫∫

R

∫∞

0
rn−2et(c−a−b)

(

1 +
(

e−t + x
)2

+ r2
)−a(

1 + x2 + r2)−bxdr dxdt. (4.21)

Replacing x with −x first and then with x+ e−t yields

I′n(a,b,c)=−I′n(b,a,c)− In(b,a,c− 1). (4.22)

The last equation also holds for n= 1. Integration by parts gives
∫

R
et(c−a−b)

(

1 +
(

e−t + x
)2

+ r2
)−a

dt

= 2a
a+ b− c

∫

R
et(c−a−b)

(

1 +
(

e−t + x
)2

+ r2
)−a−1(

e−2t + xe−tv
)

dt.
(4.23)

So,

In(a,b,c)= 2a
a+ b− c

(

In(a+ 1,b,c− 1) + I′n(a+ 1,b,c)
)

. (4.24)

Using (4.22) yields

In(a,b,c)= 2a
c− a− b I

′
n(b,a+ 1,c), (4.25)

or

I′n(x, y,z)= z− x− y + 1
2y− 2

In(y− 1,x,z). (4.26)

Plugging this into (4.22), one gets

c− a− b+ 1
2b− 2

In(b− 1,a,c)= a+ b− c− 1
2a− 2

In(a− 1,b,c)− In(b,a,c− 1). (4.27)

Replacing (a,b,c) with (a+ 1,b+ 1,c+ 1) gives

c− a− b
2b

In(b,a+ 1,c+ 1)= a+ b− c
2a

In(a,b+ 1,c+ 1)− In(b+ 1,a+ 1,c), (4.28)

or, using the invariance of In,

c− b− a
2ab

(

aIn(a+ 1,b,c+ 1) + bIn(a,b+ 1,c+ 1)
)=−In(a+ 1,b+ 1,c), (4.29)

and hence

aIn+2(a+ 1,b,c+ 1) + bIn+2(a,b+ 1,c+ 1)= 2ab
a+ b− c In+2(a+ 1,b+ 1,c). (4.30)
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Using (4.17) and (4.20), one gets for n > 1 that

In(a,b,c)= 4ab
a+ b− c

1
n− 1

In+2(a+ 1,b+ 1,c),

I1(a,b,c)= 4ab
a+ b− c I3(a+ 1,b+ 1,c).

(4.31)

Finally we arrive at

In+2(a+ 1,b+ 1,c+ 1)= a+ b− c− 1
4ab

(n− 1)In(a,b,c+ 1) (4.32)

for n > 1 and

I3(a+ 1,b+ 1,c+ 1)= a+ b− c− 1
4ab

I1(a,b,c+ 1). (4.33)

These formulae amount to

�n+2
st (λ,μ,ν)= dn λ+μ− ν + (n/2)− 1

(2λ+n)(2μ+n)
�n

st(λ,μ,ν + 1), (4.34)

where dn = (n− 1)cn+2/cn if n > 1 and d1 = c3. A calculation using the functional equa-
tion of the Gamma function, Γ(z+ 1)= zΓ(z), shows that the right-hand side of the claim
in the theorem satisfies the same equation as n is replaced by n+ 2. So the claim of the
theorem for n implies the same claim for n+ 2. Note that [1, formula (A.5)] implies the
theorem for n= 1, where one has to take into account that in [1], a different normaliza-
tion is used. To get our formula from theirs, one has to replace λj by−2λj in [1]. To finish
the proof of the theorem, it therefore remains to show the claim for n= 2.

To achieve this, we proceed in a fashion similar to [1]. First note that the group G =
SL2(C) is a double cover of SO(3,1)0, so we might as well use this group for the computa-
tion. For λ∈ C, let Vλ denote the space of all smooth functions f on C2 with f (az,aw)=
|a|−2(λ+1) f (z,w) for every a∈C×. ThenG=SL2(C) acts on the spaceVλ via πλ(g) f (z,w)=
f ((z,w)g). This is the principal series representation with parameter λ. For λ= 1, there is
a G-invariant continuous linear functional L :V1 → C, which is unique up to scalars and
is given by

L( f )=
∫

S3
f (x)dx, (4.35)

where the integral runs over the standard sphere S3 ⊂ C2 with the volume element in-
duced by the standard metric on C2 ∼= R4. Since S3 equals (0,1)K , where K = SU(2)
is the maximal compact subgroup of G, the theory of induced representations shows
that this functional is indeed invariant under G and is unique with that property. If λ
is imaginary, then the representation πλ is preunitary, the inner product being given by
〈 f ,g〉 = L( f g). To compute �2

st(λ1,λ2,λ3), we will describe this functional on the space
Vλ1 ⊗Vλ2 ⊗Vλ3 . Let ω : C2 → C be given by ω(a,b)= a1b2− a2b1 the bilinear G-invariant
on C2. Let Kλ1,λ2,λ3 (v1,v2,v3) be the invariant kernel

∣

∣ω
(

v1,v2
)∣

∣

(−λ1+λ2+λ3−1)∣
∣ω
(

v1,v3
)∣

∣

(λ1−λ2+λ3−1)∣
∣ω
(

v2,v3
)∣

∣

(λ1+λ2−λ3−1)
. (4.36)
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This kernel is invariant under the diagonal action of G and is homogeneous of degree
2(λj − 1) with respect to the variable vj . From this point, the computations run like in
[1, formulae (A.4) and (A.5)]. The theorem follows. �

Appendix

Automorphic coefficients

Let Γ ⊂ G be a uniform lattice and consider the right regular representation of G on
L2(Γ\G), which decomposes as a direct sum,

L2(Γ\G)=
⊕

π∈ ̂G
L2(Γ\G)(π), (A.1)

where the isotypic component L2(Γ\G)(π) is zero for π outside a countable set of π ∈ ̂G
and is always isomorphic to a sum of finitely many copies of π. By the Sobolev lemma, one
has L2(Γ\G)∞ ⊂ C∞(Γ\G). A function ϕ is called pure if ϕ∈ L2(Γ\G)(π) for some π ∈ ̂G.
For three pure smooth ϕ1, ϕ2, ϕ3, the integral

∫

Γ\Gϕ1(x)ϕ2(x)ϕ3(x)dx exists. Moreover,

fix π1,π2,π3 ∈ ̂G and fix G-equivariant embeddings σj :Vπj → L2(Γ\G), then

�aut
(

v1,v2,v3
)=

∫

Γ\G
σ1
(

v1
)

(x)σ2
(

v2
)

(x)σ3
(

v3
)

(x)dx (A.2)

defines a G-invariant continuous trilinear form on V∞
π1
×V∞

π2
×V∞

π3
. Let L2(Γ\G)K be the

space of all K-invariant vectors in L2(Γ\G). Then there is an orthonormal basis (ϕi)i∈N
of pure vectors in L2(Γ\G)K . For each i, let Li be the G-stable closed subspace of L2(Γ\G)
generated by ϕi. Then the spaces Li are mutually orthogonal.

For fixed pure normalized ϕ,ϕ′ ∈ L2(Γ\G)K , we are interested in the growth of the
sequence

ci
def= �aut

(

ϕi,ϕ,ϕ′
)

. (A.3)

Let (λi,μ,ν) be the induction parameters of the representations given by (ϕi,ϕ,ϕ′). First
note that the numbers ci decay exponentially in |λi|. So we define the renormalized se-
quence

bi
def= ∣∣ci

∣

∣

2
exp

(

π
∣

∣λi
∣

∣

)

. (A.4)

In [1], it is shown that for d = 2, one has
∑

|λi|≤T
bi ≤ C logT , (A.5)

and in [8, Theorem 7.6], for d ≥ 3,
∑

|λi|≤T
bi ≤ CT2(d−2). (A.6)

We are going to reprove this result for d ≥ 4.
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Theorem A.1. Let d ≥ 4. There is C > 0 such that for every T > 0,

∑

|λi|≤T
bi ≤ CT2(d−2). (A.7)

Proof. By the uniqueness of trilinear forms, there exists a constant ai such that

�aut
(

ϕi,ϕ,ϕ′
)= ai�st

(

ϕi,ϕ,ϕ′
)

. (A.8)

This constant depends on the embeddings of πλ, πν, πμ into L2(Γ\G), but we can normal-
ize these embeddings by insisting that the standard class-one vectors eλ, eμ, eν are mapped
to ϕi, ϕ, ϕ′. Thus the number ai only depends on ϕi, ϕ, ϕ′.

Fix two smooth preunitaryG-representationsV ,V ′ and let L, L′ be their Hilbert com-
pletions. Consider the unitary representation of G×G on L⊗L′ and let E = (L⊗L′)∞ be
its smooth part. Denote by �(E) the real vector space of all Hermitian forms on E and
denote by �+(E) the cone of nonnegative forms.

Let W be a smooth preunitary admissible representation of G. A G-invariant func-
tional � : W ⊗V ⊗V ′ → C defines a G-equivariant linear map l� : V ⊗V ′ →W∗ which
extends to a G-map l� : E→W , where W is the space W with complex conjugate linear
structure. The Hermitian form HW on W induces a form HW on W . Define a Hermitian
form H� on E by H� = l∗�HW , that is, for u,v ∈ E, one has H�(u,v)=HW (l�(u), l�(v)).
Finally, suppose that W = Vλ,V ,V ′ are all principal series representations and let �st

be the standard trilinear form, then we write H st
λ for the Hermitian form induced on E.

We also assume that Vλ,V ,V ′ are cuspidal, that is, those fixed embeddings into L2,∞ are
given. Then the cuspidal trilinear form � induces a Hermitian form Haut

λ on E.
Next consider the space L2,∞(Γ\G×Γ\G). LetHΔ denote the Hermitian form on L2,∞(Γ\

G×Γ\G) given by restriction to the diagonal, that is,

HΔ(u,v)=
∫

Γ\G
u(x,x)v(x,x)dx. (A.9)

Let U be a Hilbert space with Hermitian form H . For a closed subspace L of U , let PrL
denote the orthogonal projection from U to L and let HL be the Hermitian form on U
given by

HL(u,v)=H(PrL(u),PrL(v)
)

. (A.10)

The map L �→ HL is additive and monotonic, that is, HL+L′ = HL +HL′ if L and L′ are
orthogonal and HL ≤HL′ if L⊂ L′. �

Lemma A.2. On the space E, one has

∑

i

∣

∣ai
∣

∣

2
H st
λi
≤HΔ. (A.11)

Proof. By the uniqueness, it follows that Haut
λi
= |ai|2H st

λi
and since all the spaces Li are

orthogonal, one also deduces that
∑

i H
aut
λi
≤HΔ. �
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The group G×G acts on L2,∞(Γ\G× Γ\G) and thus on the real vector space of Her-
mitian forms on L2,∞(Γ\G×Γ\G). By integration, this action extends to a representation
of the convolution algebra C∞c (G×G). Note that a nonnegative function h∈ C∞c (G×G)
will preserve to cone of nonnegative Hermitian forms.

Lemma A.3. Let h∈ C∞c (G×G) be nonnegative. Then there exists C > 0 such that

h ·HΔ ≤ CHaut, (A.12)

where Haut is the L2-Hermitian form on L2,∞(Γ\G×Γ\G).

Proof. The form h ·HΔ is given by integration over a smooth measure on Γ\G× Γ\G.
Being smooth, this measure is bounded by a multiple of the invariant measure. �

A positive functional on �(E) is an additive map ρ : �+(E)→R≥0∪{∞}. For example,
every vector u∈ E gives rise to a positive functional δu defined as

δu(H)=H(u,u). (A.13)

Every positive functional is monotonic and homogeneous, that is,

ρ(H)≤ ρ(H′) if H ≤H′,

ρ(tH)= tρ(H) for t > 0.
(A.14)

Let ρ be a positive functional and let hρ(λ)= ρ(H st
λ ). Then Lemma A.2 implies that

∑

i

hρ
(

λi
)∣

∣ai
∣

∣

2 ≤ ρ(HΔ
)

. (A.15)

Proposition A.4. There are constants T0,C > 0 such that for every T ≥ T0, there is a posi-
tive functional ρT on �(E) with

ρT
(

HΔ
)≤ CTdim(M\K)+1, (A.16)

and with hT = hρT one has hT(λ)≥ 1/C for every |λ| ≤ 2T .

Proof. Let D be a relatively compact open subset of G with g ∈ D1 ⇒ g−1 ∈ D. Assume
further that D is invariant under right and left translations by elements of K . Let h ∈
C∞c (G×G) such that h is constantly one on D×D and such that h is invariant under
left and right translates by elements of K . The space E can be identified with C∞(M\K ×
M\K). Fix a norm ‖ · ‖ on the Lie algebra of AN .

Note that the map

ψ : A×N ×M −→ P\G×P\G,

(a,n,m) �−→ (

w0anm,w0n0anm
) (A.17)

is a diffeomorphism onto an open subset of (P\G)2 ∼= (M\K)2. Let F = ψ(1× 1×M)=
the M-orbit of the point (w0,w0n0). Let C1,T > 0 be large and set

S=
{

ψ(a,n,m) : ‖logan‖ < 1
C1T

, m∈M
}

. (A.18)
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Let uT be a nonnegative smooth function on (M\K)2 with support in S such that
∫

udxdy = 1,
∫

|u|2dxdy ≤ Tdim(M\K)+1. (A.19)

It is possible to construct such a function since the codimension of F equals dim(M\K) +
1. With these data, define a positive functional ρT on �(E) by

ρT(H)= δuT (h ·H). (A.20)

Then one has

ρT
(

HΔ
)= ρu

(

h ·HΔ
)≤ C′ρu

(

Hst
)≤ CTdim(M\K)+1. (A.21)

�

Recall the standard trilinear form �st on Vλ ⊗ V ⊗ V ′ and the corresponding lin-
ear map l�st : V ⊗V ′ → Vλ. We identify the space Vλ with C∞(M\K) and let z denote
the point M1 ∈M\K . The Dirac measure δz at z is a continuous linear functional on
C∞(M\K). We get an induced Hermitian form Hz on E defined by

Hz(u,v)= l�st (u)(z)l�st (v)(z). (A.22)

Lemma A.5. On E, one has

H st
λ =

∫

K
(k,k) ·Hzdk. (A.23)

Proof. This follows from the fact that the invariant Hermitian form on Vλ is equal to
∫

K π(k) ˜Hzdk, where ˜Hz is the Hermitian form on Vλ given by ˜Hz(u,v)= u(z)v(z). �

Since the test function h was assumed to be K ×K-invariant, it follows that

hT(λ)= ρT
(

H st
λ

)= δu
(

h ·Hz
)

. (A.24)

So in order to establish a lower bound for ρT(H st
λ ), it suffices to give a lower bound

for δu(x ·Hz) = |〈π(x) fz,u〉|2 for x ∈ D, where fz is the linear functional on E given
by fz(u)= δz(l�st (u)).

Lemma A.6. There is C > 0 such that for T0 large enough, there exists an open, nonempty
subset D0 ⊂D such that for T ≥ T0, |λ| ≤ T , and x ∈D0, |〈π(x) fz,uT〉| ≥ 1/C.

Proof. Note first that with x = ank ∈G, we have

〈

π(x) fz,uT
〉=

∫

(M\K)2
uT
(

k2,k3
)

φ
(

k,kank2 ,kank3

)

dk2dk3. (A.25)

We next derive an explicit formula for φ on the open orbit. Recall that

�st( f )=
∫

G
f
(

y,w)y,w0n0y
)

dy

=
∫

ANK
f
(

ank,w0ank,w0n0ank
)

dadndk,

(A.26)
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and that the last integrand equals

aλ+ρa
(

w0an
)μ+ρ

a
(

w0n0an
)ν+ρ

f
(

k,k
(

w0an
)

k,k
(

w0n0an
)

k
)

dadndk. (A.27)

We deduce that

φ
(

k,k
(

w0an
)

k,k
(

w0n0an
)

k
)= aλ+ρa

(

w0an
)μ+ρ

a
(

w0n0an
)ν+ρ

W(an), (A.28)

where W is the Radon-Nykodim derivative of dadndk against the measure on (M\K)3.
In particular, this function is positive and smooth and does not depend on λ. It follows
that the functional π(x) fz is given by integration against the function

π(ank) fz
(

w0a
′n′m′,w0n0a

′n′m′)= φ(k,w0aa
′n′′m′k,w0n0aa

′n′′m′k
)

, (A.29)

where n′′ = a−1n′am′n(m′)−1. Note that Mk =Mm′k and so the above equals

(aa′)λ+ρa
(

w0aa
′n′′

)μ+ρ
a
(

w0n0aa
′n′′

)ν+ρ
W(aa′n′′). (A.30)

Note in particular that the function π(x) fz is invariant under M.
The set S is a tubular neighborhood of the compact set F. We have natural local co-

ordinates with F-directions, which can be identified with open parts of M-orbits and
F⊥-directions, which can be viewed as AN-orbits. The above formula shows that the gra-
dient of π(x) fz is zero along the M-orbits. Along the AN-orbits, this gradient is bounded
by a constant times T , if we leave μ and ν fixed and restrict to |λ| ≤ T . Let C0 > 0 be large
and let D0 ⊂D be the subset of elements x ∈D such that |π(x) fz| < C0. This set is open
and nonempty if C0 is large enough and it does not depend on λ.

Lemma A.6 implies Proposition A.4 and the latter implies Theorem A.1 as follows.
Consider the inequality

∑

i |ai|2ρT(H st
λi

)≤ ρT(HΔ). By Proposition A.4, the right-hand
side is bounded by CT2dim(M\K) and since dimM\K = dimP\G= dimN = d− 1, we get

∑

i

∣

∣ai
∣

∣

2
ρT
(

H st
λi

)≤ CTd. (A.31)

Restricting the sum to those iwith |λi| ≤ 2T and using the second assertion of Proposition
A.4, we get

∑

|λi|≤T

∣

∣ai
∣

∣

2 ≤ CTd. (A.32)

According to Theorem 4.1, we have bi|λi|4−d ∼ |ai|2, and so

∑

|λi|≤T
bi
∣

∣λi
∣

∣

4−d ≤ CTd. (A.33)

This implies the theorem. �
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Auf der Morgenstelle 10, Tübingen 72076, Germany
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