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We establish a null controllability result for a nonlinear population dynamics model. In
our model, the birth term is nonlocal and describes the recruitment process in newborn
individuals population. Using a derivation of Leray-Schauder fixed point theorem and
Carleman inequality for the adjoint system, we show that for all given initial density,
there exists an internal control acting on a small open set of the domain and leading the
population to extinction.
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1. Introduction

For a given positive real function F, we consider in this paper the following nonlinear
population dynamics model:

∂y

∂t
+
∂y

∂a
−Δy +μy = v1ω in (0,T)× (0,A)×Ω,

y(t,a,σ)= 0 on (0,T)× (0,A)× ∂Ω,

y(0,a,x)= y0(a,x) in (0,T)× (0,A)×Ω,

y(t,0,x)= F
(∫ A

0
β(t,a,x)y(t,a,x)da

)
on (0,T)×Ω,

(1.1)

where Ω is a bounded open subset of RN , N ≥ 1 with a smooth boundary ∂Ω, σ ∈ ∂Ω,
T is a positive real and ω an open subset such that ω ⊂ Ω. Here y(t,a,x) is the dis-
tribution of individuals of age a at time t and location x ∈ Ω, 1ω is the characteristic
function of ω, A is the maximal live expectancy, Δ the Laplacian with respect to the
spatial variable, β(t,a,x) and μ(t,a,x) denote, respectively, the natural fertility and the
natural death rate of individuals of age a at time t and location x. Thus, the formula∫ A

0 β(t,a,x)y(t,a,x)da denotes the distribution of newborn individuals at time t and loca-
tion x. In an oviparus species it denotes the total eggs at time t and position x. Therefore,
the quantity F(

∫ A
0 β(t,a,x)y(t,a,x)da) is the distribution of eggs that hatches at time t

and position x.
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2 Controllability of a nonlinear population model

System (1.1) describes the evolution of an internal controlled age and space structured
population under inhospitable boundary conditions in the case that the flux of individu-
als has the form −∇y(t,a,x).

The purpose of this paper is to prove a null controllability result for (1.1) at any time
T . This means more precisely that there exists a control v ∈ L2((0,T)× (0,A)×ω) such
that the associated solution of (1.1) verifies

y(T ,a,x)= 0 a.e. in (0,A)×Ω. (1.2)

In our knowledge the first controllability result for an age and space structured popu-
lation dynamics model was established by Ainseba and Langlais in [4]: they proved that
a set of profiles is approximately reachable. In [2] a local exact controllability result was
proved for a linear population dynamics. More precisely, in [2] the authors proved that if
the initial distribution is small enough, one can find a control that leads the population to
extinction. The method used there is different from ours. In fact in [2] the adjoint system
was taken as a collection of parabolic equations along characteristic lines. This allowed
the authors to use Carleman inequality for parabolic equation. Ainseba and Iannelli in
[3] proved a null controllability result for a nonlinear population dynamics model. In
[3] the natural rates depend on the total population P = ∫ A0 y(t,a,x)da. The method in
[3] used Kakutani fixed point theorem. Therefore, crucial assumptions were made: first,
the natural rates were supposed to be globally Lipschitz with respect to the variable P,
secondly in order to perform key estimates, the death rate μ verified the following growth
condition: 0≤ μexp(

∫ a
0 μ(s)ds)≤ ζ where ζ is a positive constant.

In the case we study here, the above results cannot be applied. Indeed, since the birth
process is not globally Lipschitz with respect to the variable P and, without the previous
growth condition on μ one cannot use the method of [3]. On the other hand, the nonlin-
earity excludes the use of the result of [2]. In what follows, using a Carleman inequality
for an adjoint system we establish a null controllability result for the nonlinear popula-
tion dynamics models stated in (1.1) when the initial distribution is in L2((0,A)×Ω).
Roughly, in our method we first study a null controllability result for a population in
which the birth process is given by a fixed function. Afterwards, we prove the null con-
trollability result for the system (1.1) by means of a derivation of Leray-Shauder theorem.

The remainder of this paper is as follows: in Section 2, we state assumptions and we
provide the main result. In Section 3 we study a null controllability result for some asso-
ciated model. Section 4 is devoted to the proof of the main result.

2. Assumptions and main result

For the sequel we assume that the following assumptions hold:

H1

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ(t,a,x)= μ0(a) +μ1(t,a,x) a.e. in (0,T)× (0,A)×Ω,

μ≥ 0 a.e. in (0,T)× (0,A)×Ω,

μ1 ∈ L∞
(
(0,T)× (0,A)×Ω

)
; μ1(t,a,x)≥ 0 a.e. in (0,T)× (0,A)×Ω,

μ0 ∈ L1
loc(0,A), lima→A

∫ a
0
μ0(s)ds= +∞,
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H2

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

β ∈ C2
(
[0,T]× [0,A]×Ω

)
,

β(t,a,x)≥ 0 in [0,T]× [0,A]×Ω,

∃0<a0<a1<A such that β(t,a,x)=0 in [0,T]×((0,a0
)⋃(

a1,A
)×Ω

)
.

(2.1)

H3 F defined on R is a positive continuous function and there exist positive constants C0

and C1 such that F(t)≤ C0 +C1|t|, for all t ∈R.

Remark 2.1. Since μ and β are natural rates, the second assumptions of H1 and H2

are natural. The third assumption of H2 is also natural, since it means that older and
younger individuals are not fertile. The fourth assumption in H1 is also a standard one,
it means that all individual dies before the age A. In [3] the model did not take explic-
itly into account the death of newborns. Indeed the birth process there has the form
y(t,0,x)= ∫ A0 β(t,a,x,P(t,x))y(t,a,x)da where P(t,x)= ∫ A0 y(t,a,x)da. We present here a
quite different model. In fact our model addresses both supply and death of newborns.
Moreover in the case F(t)= kt with k a fixed positive constant, one obtains from (1.1) a
linear population dynamics problem.

Assume now that the function F is a globally Lipschitz one and verifies F(0)= 0. Then,
one can rewrite F as F(t) = tΦ(t) for a.e. t ∈ R. Therefore, the fourth equation of (1.1)
becomes y(t,0,x)= ∫ A0 βydaΦ(

∫ A
0 βyda). Hence, one obtains the system considered with

Neumann boundary conditions in [8, 10] where existence of solution was studied.

From now we set Q = (0,T)× (0,A)×Ω; q = (0,T)× (0,A)× ω; QA = (0,A)×Ω;
QT = (0,T)×Ω; Σ= (0,T)× (0,A)× ∂Ω and Cβ = ‖β‖C2(Q).

For α≥ 0 we set Sα(t,a)=exp(−αt+
∫ a

0 μ0(s)ds),Xα = {z∈L2(QA); Sα(t,a)z∈L2(QA)},
and Yα = {v ∈ L2(q); Sα(t,a)v ∈ L2(q)}. It is obvious that α1 ≥ α2 implies Xα1 ⊂ Xα2 and
Yα1 ⊂ Yα2 .

In the sequel, ν will denote the unit outward normal vector to ∂Ω and C(Ω,T ,A, . . .)
will denote positive constant that depends only on Ω,T ,A, . . . .

We are now ready to state the main result of this paper.

Theorem 2.2. For any γ > 0 assumed to be small enough, there exists a control v ∈ Y0 such
that the associated solution of (1.1) satisfies

y(T ,a,x)= 0 a.e. in (γ,A)×Ω (2.2)

for all y0 ∈ X0.

Remark 2.3. In the proof, it will appear clearly that such a control depends essentially
on γ.

Let us denote by λ0 a positive constant which will be fixed later. We make the following

standard changes: ŷ = Sλ0 (t,a)y, v̂ = Sλ0 (t,a)v, β̂ = S−1
λ0

(0,a)β and ŷ0 = Sλ0 (t,a)y0. Then
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it follows that ŷ solves the following system:

∂ŷ

∂t
+
∂ŷ

∂a
−Δ ŷ +

(
μ1 + λ0

)
ŷ = v̂1ω in Q,

ŷ(t,a,σ)= 0 on Σ,

ŷ(0,a,x)= ŷ0(a,x) in QA,

ŷ(t,0,x)= e−λ0tF
(
eλ0t

∫ A
0
β̂(t,a,x) ŷ(t,a,x)da

)
in QT.

(2.3)

The null controllability problem of Theorem 2.2 is now reduced to find v̂ in L2(q) such
that ŷ verifies (2.2). In fact after the previous change we obtain a system involving bound-
ed coefficients and this allows one to establish a global Carleman inequality. In the sequel
for the sake of simplicity, we will consider only the previous system without hats and in
addition we will write μ instead of μ1 + λ0.

3. Null controllability for some linearized model

3.1. An observability inequality result. We recall here that there exists a function Ψ ∈
C2(Ω) such that Ψ(x)= 0, for all x ∈ ∂Ω; Ψ(x) > 0, for all x ∈Ω and ∇Ψ(x) �= 0, for all
x ∈Ω− ω̃ where ω̃ is an open set such that ω̃ ⊂ ω ⊂Ω. (See [6] for the existence of Ψ.)

Let us consider the following system:

−∂w
∂t
− ∂w

∂a
−�w+μw = f in Q,

w(t,a,σ)= 0 on Σ,

w(T ,a,x)= g(a,x) in QA,

w(t,A,x)= 0 in QT.

(3.1)

Setting for all positive real λ, η(t,a,x)= (e2λ‖Ψ‖∞ − eλΨ(x))/at(T − t) and ϕ(t,a,x)= eλΨ(x)/
at(T − t) one can prove easily by adapting the method of [6] or [9] the following.

Proposition 3.1. There exist positive constants s1 ≥ 1 and λ1 ≥ 1 and there exists a pos-
itive constant C such that for all s ≥ s1, λ ≥ λ1, and for all solution of (3.1), the following
inequality holds:
∫
Q
e−2sηs3ϕ3λ4w2dtdadx ≤ C

(∫
Q
e−2sη f 2dtdadx+

∫
q
e−2sηs3ϕ3λ4w2dtdadx

)
. (3.2)

Remark 3.2. The proof of Proposition 3.1 is absolutely similar to those of global Carleman
inequality for the linear heat equation proposed in [9] or in [6]. Roughly, for the proof of
(3.2), one makes the change of variable: u= e−sηw in order to get from the definition of
η the following:

u(0,a,x)= u(T ,a,x)= u(t,0,x)= 0. (3.3)

Subsequently, one derives estimates on u and after return tow. We will prove first (3.2) for
a functionw ∈ C2(Q) and after the result forw ∈ L2(Q) will follow by density arguments.
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Proof of Proposition 3.1. We suppose that the function w ∈ C2(Q) and verifies (3.1) and
we make the following change of variables u = e−sηw. Then immediately it follows by
using the definition of η and (3.1) that

u(0,a,x)= u(T ,a,x)= 0 in (0,A)×Ω, (3.4)

u(t,0,x)= u(t,A,x)= 0 in (0,T)×Ω, (3.5)

u(t,a,σ)= 0 in (0,T)× (0,A)× ∂Ω. (3.6)

Notice that

∇η =−λϕ∇Ψ, (3.7)

∇ϕ= λϕ∇Ψ. (3.8)

Using once again the definitions of η and ϕ, we deduce that there exist positive constants
denoted by C such that |∂η/∂a| ≤ Cϕ2, |∂η/∂t| ≤ Cϕ2, |∂2η/∂a∂t| ≤ Cϕ3, and |∂η/∂a2| ≤
Cϕ3.

Similarly we get
∣∣∣∣∂ϕ∂a

∣∣∣∣≤ Cϕ2,
∣∣∣∣∂ϕ∂t

∣∣∣∣≤ Cϕ2,
∣∣∣∣ ∂

2ϕ

∂a∂t

∣∣∣∣≤ Cϕ3,
∣∣∣∣ ∂ϕ∂a2

∣∣∣∣≤ Cϕ3. (3.9)

We have

∂u

∂t
+
∂u

∂a
=−s

(
∂η

∂t
+
∂η

∂a

)
u+ e−sη

(
∂w

∂t
+
∂w

∂a

)
. (3.10)

From (3.7) and (3.8) we get

Δu= sλΔΨϕu+ sλ2|∇Ψ|2ϕu− s2λ2|∇Ψ|2ϕ2u+ 2sλϕ∇Ψ ·∇u+ e−sηΔw. (3.11)

Therefore

−
(
∂u

∂t
+
∂u

∂a

)
−Δu+μu

= e−sη f − sλ2uϕ|∇Ψ|2− 2sλϕ∇Ψ ·∇u+ s2λ2ϕ2|∇Ψ|2u+ s
(
∂η

∂t
+
∂η

∂a

)
u− sλϕuΔΨ.

(3.12)

This equation can be rewritten as

P1u+P2u= gs, (3.13)

where

P1u=−∂u
∂t
− ∂u

∂a
+ 2sλϕ∇Ψ ·∇u+ 2sλ2uϕ|∇Ψ|2,

P2u=−Δu− s
(
∂η

∂t
+
∂η

∂a

)
u− s2λ2ϕ2|∇Ψ|2u,

gs = e−sη f + sλ2uϕ|∇Ψ|2−μu− sλuϕΔΨ.

(3.14)
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Taking the square of (3.13) and integrating the result over Q yield

∫
Q

∣∣P1u
∣∣2
dtdadx+

∫
Q

∣∣P2u
∣∣2
dtdadx+ 2

∫
Q
P2uP1udtdadx =

∫
Q
g2
s dt dadx. (3.15)

Let us compute K = ∫Q P2uP1udtdadx.
We obtain

K =
∫
Q

(
− ∂u

∂t
− ∂u

∂a
+ 2sλϕ∇Ψ ·∇u+ 2sλ2uϕ|∇Ψ|2

)(
−Δu− s

(
∂η

∂a
+
∂η

∂t

)
u
)
dtdadx

−
∫
Q

(
− ∂u

∂t
− ∂u

∂a
+ 2sλϕ∇Ψ ·∇u+ 2sλ2uϕ|∇Ψ|2

)
s2λ2ϕ2|∇Ψ|2udtdadx.

(3.16)

This computation gives twelve terms denoted by Ii, j , i= 1, . . . ,4, j = 1,2,3.
We have by integration by parts

I1,1 =
∫
Q

∂u

∂t
Δudtdadx =

∫
Σ

∂u

∂t

∂u

∂ν
dtdadσ − 1

2

∫
Q

∂

∂t
|∇u|2dtdadx. (3.17)

Hence using (3.4) and (3.6) it follows that

I11 = 0,

I1,2 = s
∫
Q

∂u

∂t

(
∂η

∂a
+
∂η

∂a

)
udtdadx.

(3.18)

An integration by parts leads to

I1,2 =− s2
∫
Q
|u|2 ∂

∂t

(
∂η

∂a
+
∂η

∂a

)
dtdadx,

I1,3 = s2λ2
∫
Q

∂u

∂t
ϕ2u|∇Ψ|2dtdadx.

(3.19)

This gives

I1,3 = s2λ2

2

∫
Q

∂|u|2
∂t

ϕ2|∇Ψ|2dtdadx. (3.20)

Keeping in mind (3.4), an integration by parts with respect to the variable t yields

I1,3 =−s2λ2
∫
Q
|u|2 ∂ϕ

∂t
ϕ|∇Ψ|2dtdadx. (3.21)



Oumar Traore 7

Similarly, one gets easily that

I21 = 0,

I2,2 =− s2
∫
Q
|u|2 ∂

∂a

(
∂η

∂a
+
∂η

∂a

)
dtdadx,

I2,3 =−s2λ2
∫
Q
ϕ|u|2 ∂ϕ

∂a
|∇Ψ|2dtdadx.

(3.22)

Now, we are concerned by the term I3, j .
We have

I3,1 =−2sλ
∫
Q
ϕ∇Ψ ·∇uΔudtdadx. (3.23)

Then we have by an integration by parts

I3,1 =−2sλ
∫
Σ
ϕ∇Ψ ·∇u∂u

∂ν
dtdadσ + 2sλ

∫
Q
∇u ·∇(ϕ∇Ψ ·∇u)dtdadx. (3.24)

From the definition of Ψ and since (3.6) is fulfilled we see that for all σ ∈ ∂Ω we have
∇u(t,a,σ)= (∇u(t,a,σ) · ν(σ))ν(σ) and∇Ψ(σ)= (∇Ψ(σ) · ν(σ))ν(σ).

Therefore it follows, using also (3.8), that

I3,1 =−2sλ
∫
Σ
ϕ(∇Ψ · ν)|∇u · ν|2dtdadσ + 2sλ2

∫
Q
|∇u ·∇Ψ|2ϕdtdadx

+ 2sλΣNi, j=1

(∫
Q
ϕ
∂u

∂xi

∂2u

∂xi∂xj

∂Ψ

∂xj
dtdadx+

∫
Q
ϕ
∂u

∂xi

∂2Ψ

∂xi∂xj

∂u

∂xj
dtdadx

)
.

(3.25)

We have

2sλΣNi, j=1

∫
Q
ϕ
∂u

∂xi

∂2u

∂xi∂xj

∂Ψ

∂xj
dtdadx

= sλ
∫
Σ
ϕ(∇Ψ ·n)|∇u ·n|2dtdadσ − sλ2

∫
Q
|∇u|2|∇Ψ|2ϕdtdadx

− sλ
∫
Q
ϕ|∇u|2ΔΨdtdadx.

(3.26)

Therefore

I3,1 =−sλ
∫
Σ
ϕ(∇Ψ ·n)|∇u · ν|2dtdadσ + 2sλ2

∫
Q
|∇u ·∇Ψ|2ϕdtdadx

− sλ2
∫
Q
|∇u|2|∇Ψ|2ϕdtdadx− sλ2

∫
Q
|∇u|2|∇Ψ|2ϕdtdadx

−sλ
∫
Q
ϕ|∇u|2ΔΨdtdadx+ 2sλΣNi, j=1

∫
Q
ϕ
∂2Ψ

∂xi∂xj

∂u

∂xj

∂u

∂xi
dtdadx

I3,2 =−2s2λ
∫
Q
ϕ∇Ψ ·∇u

(
∂η

∂t
+
∂η

∂a

)
udtdadx.

(3.27)
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Classical computations give

I3,2 =−s2λ2
∫
Q
ϕ|∇ψ|2|u|2

(
∂η

∂t
+
∂η

∂a

)
dtdadx+ s2λ

∫
Q
ϕ|u|2∇·

(
∇Ψ

(
∂η

∂t
+
∂η

∂a

))
,

I3,3 =−2s3λ3
∫
Q
ϕ3∇Ψ ·∇u|∇Ψ|2udtdadx.

(3.28)

Equality (3.8) and an integration by part give

I3,3 = 3s3λ4
∫
Q
ϕ3u2|∇Ψ|4dtdadx+ s3λ3

∫
Q
ϕ3|u|2∇· (∇Ψ|∇Ψ|2)dtdadx. (3.29)

Now we compute the terms I4, j

I4,1 =−2sλ2
∫
Q
ϕu|∇Ψ|2Δudtdadx = 2sλ2

∫
Q
∇(ϕu|∇Ψ|2) ·∇udtdadx. (3.30)

Therefore

I4,1 = 2sλ3
∫
Q
ϕu∇Ψ ·∇u|∇Ψ|2dtdadx+ 2sλ2

∫
Q
ϕ|∇u|2|∇Ψ|2∇udtdadx

+ 2sλ2
∫
Q
ϕu∇u ·∇(|∇Ψ|2)dtdadx.

(3.31)

Directly, we have

I42 =−2s2λ2
∫
Q
ϕ|∇Ψ|2

(
∂η

∂t
+
∂η

∂a

)
|u|2dtdadx, (3.32)

I43 =−2s3λ4
∫
Q
ϕ3|∇Ψ|4u2dtdadx. (3.33)

Grouping all the terms Ii, j and using the boundeness of the derivatives of ϕ and η one
can write

2
∫
Q
P1uP2udtdadx = X1 +X2− 2sλ

∫
Σ
ϕ∇Ψ · ν|∇u · ν|2dtdadσ

+ 4sλ2
∫
Q
ϕ|∇u ·∇Ψ|2dtdadx

+ 2sλ2
∫
Q
ϕ|∇u|2|∇Ψ|2dtdadx+ 2s3λ4

∫
Q
ϕ3u2|∇Ψ|4dtdadx,

(3.34)

where X1 and X2 verify

X1 ≤ C
(
sλ+ λ2)∫

Q
ϕ|∇u|2dtdadx,

X2 ≤ C
(
s2λ4 + s3λ3)∫

Q
ϕ3|u|2dtdadx.

(3.35)
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Note that ν is the outward normal vector to ∂Ω. So, using the fact that Ψ(x) > 0 for all
x ∈Ω and Ψ(σ)= 0 for all σ ∈ ∂Ω we infer that∇Ψ · ν < 0. Therefore, (3.34) yields

2
∫
Q
P1uP2udtdadx ≥ X1 +X2 + 2sλ2

∫
Q
ϕ|∇u|2|∇Ψ|2dtdadx

+ 2s3λ4
∫
Q
ϕ3u2|∇Ψ|4dtdadx.

(3.36)

Note also that Ψ∈ C2(Ω) and |∇Ψ| �= 0 in Ω− ω̃. Consequently, there exists a positive
constant δ such that |∇Ψ| > δ in Ω− ω̃. Therefore (3.36) gives

2
∫
Q
P1uP2udtdadx+ 2sλ2δ2

∫
q̃
ϕ|∇u|2dtdadx+ 2s3λ4δ4

∫
q̃
ϕ3u2dtdadx

≥ X1 +X2 + 2sλ2δ2
∫
Q
ϕ|∇u|2dtdadx+ 2s3λ4δ4

∫
Q
ϕ3u2dtdadx,

(3.37)

where q̃ = (0,T)× (0,A)× ω̃. Furthermore, we have

∫
Q
g2
s dt dadx ≤

∫
Q
e−2sη f 2dtdadx+X1 +X2. (3.38)

Then, it follows from (3.15) and (3.37) that

∫
Q
e−2sη f 2dtdadx+X1 +X2 + 2s3λ4δ4

∫
q̃
ϕ3|u|2dtdadx+ 2sλ2δ2

∫
q̃
ϕ|∇u|2dtdadx

≥
∫
Q

∣∣P1u
∣∣2
dtdadx+

∫
Q

∣∣P2u
∣∣2
dtdadx+ 2sλ2δ2

∫
Q
ϕ|∇u|2dtdadx

+ 2s3λ4δ4
∫
Q
ϕ3|u|2dtdadx.

(3.39)

We can choose s and λ sufficiently large so that

sλ2δ2
∫
Q
ϕ|∇u|2dtdadx+ s3λ4δ4

∫
Q
ϕ3|u|2dtdadx ≥ X1 +X2. (3.40)

This means more precisely that there exists positive constants s1 > 1 and λ1 > 1 such that
for s≥ s1 and λ≥ λ1 (3.39) yields

∫
Q
e−2sη f 2dtdadx+ 2s3λ4δ4

∫
q̃
ϕ3|u|2dtdadx+ 2sλ2δ2

∫
q̃
ϕ|∇u|2dtdadx

≥
∫
Q

∣∣P1u
∣∣2
dtdadx+

∫
Q

∣∣P2u
∣∣2
dtdadx+ sλ2δ2

∫
Q
ϕ|∇u|2dtdadx

+ s3λ4δ4
∫
Q
ϕ3|u|2dtdadx.

(3.41)
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We want now to eliminate the term

2sλ2δ2
∫
q̃
ϕ|∇u|2dtdadx (3.42)

in (3.41). For this aim, we introduce a cut-off function α such that α∈ C∞0 (ω); 0≤ α≤ 1;
and α= 1 on ω̃.

Multiplying P2u by ϕα2u and integrating the result over Q leads to

∫
Q
ϕα2uP2udtdadx

=−s
∫
Q

(
∂η

∂t
+
∂η

∂a

)
u2ϕα2dtdadx− s2λ2

∫
Q
u2ϕ3α2|Ψ|2dtdad−

∫
Q
uΔuϕα2dtdadx.

(3.43)

Note that
∫
Q
uΔuϕα2dtdadx

=−
∫
Q
|∇u|2ϕα2dtdadx− λ

∫
Q
u∇u ·∇Ψϕα2dtdadx− 2

∫
Q
u∇u ·∇αϕαdtdadx.

(3.44)

Therefore
∫
Q
ϕα2uP2udtdadx =−s

∫
Q

(
∂η

∂t
+
∂η

∂a

)
u2ϕα2dtdadx

− s2λ2
∫
Q
u2ϕ3α2|Ψ|2dtdadx+

∫
Q
|∇u|2ϕα2dtdadx

+ λ
∫
Q
u∇u ·∇Ψϕα2dtdadx+ 2

∫
Q
u∇u ·∇αϕαdtdadx.

(3.45)

This gives

∫
Q
|∇u|2ϕα2dtdadx =

∫
Q
ϕα2uP2udtdadx+ s

∫
Q

(
∂η

∂t
+
∂η

∂a

)
u2ϕα2dtdadx

+ s2λ2
∫
Q
u2ϕ3α2|Ψ|2dtdadx− λ

∫
Q
u∇u ·∇Ψϕα2dtdadx

− 2
∫
Q
u∇u ·∇αϕαdtdadx.

(3.46)

Note that

−λ
∫
Q
u∇u ·∇Ψϕα2dtdadx ≤ Cλ2

∫
Q
|u|2ϕα2dtdadx+

1
2

∫
Q
|∇u|2ϕα2dtdadx,

(3.47)
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where C is a positive constant. As ϕ ≤ Cϕ3 with C a positive constant, using now the
properties of α and Ψ we deduce

∫
q̃
|∇u|2ϕα2dtdadx

≤ C
∫
Q
ϕα2uP2udtdadx+Cs2λ2

∫
Q
u2ϕ3α2dtdadx+C

∫
Q
uϕ1/2|∇u|ϕ1/2αdtdadx.

(3.48)

Therefore we deduce from the previous estimate that

2sλ2δ2
∫
q̃
|∇u|2ϕdtdadx ≤ 1

2

∫
Q

∣∣P2u
2
∣∣dtdadx+Cs2λ2

∫
q
u2ϕ3dtdadx, (3.49)

where C is a positive constant.
Combining (3.41) and (3.49) we get

C
(∫

Q
e−2sη f 2dtdadx+ s3λ4

∫
q
ϕ3u2dtdadx

)

≥
∫
Q

∣∣P1u
∣∣2
dtdadx+

∫
Q

∣∣P2u
∣∣2
dtdadx+ sλ2

∫
Q
ϕ|∇u|2dtdadx

+ s3λ4
∫
Q
ϕ3u2dtdadx.

(3.50)

We want now to turn back to the variable w.
Note that u= e−sηw. Then, we have

∫
Q
ϕ3|u|2dtdadx =

∫
Q
e−2sηϕ3|w|2dtdadx,

∫
q
ϕ3|u|2dtdadx =

∫
q
e−2sηϕ3|w|2dtdadx.

(3.51)

Therefore one gets from (3.50)

s3λ4
∫
Q
ϕ3e−2sηw2dtdadx ≤ C

∫
Q
e−2sη f 2dtdadx+Cs3λ4

∫
q
e−2sηϕ3w2dtdadx.

(3.52)

This ends the proof. �

Remark 3.3. (i) Indeed one can prove that there exist positive constants s1 ≥ 1 and λ1 ≥ 1
and there exists a positive constant C > 0 such that for all s≥ s1, λ≥ λ1 and for all solution
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of (3.1) the following inequality holds:

∫
Q

e−2sη

sϕ

(∣∣∣∣∂w∂t +
∂w

∂a

∣∣∣∣
2

+ |Δw|2
)
dxdadt+

∫
Q
e−2sηs3ϕ3λ4w2dtdadx

+
∫
Q
e−2sηsλϕ|∇w|2dtdadx ≤ C

(∫
Q
e−2sη f 2dtdadx+

∫
q
e−2sηs3ϕ3λ4w2dtdadx

)
.

(3.53)

It is sufficient to use (3.50) and to turn back to the variable w by using the explicit expres-
sion of P1u and P2u.

(ii) In [1] the author tried to prove a Carleman inequality for the system (3.1) with
βw(t,0,x) instead of f . The problem there is more complex: after the change of vari-
able u= e−2sηw the right term becomes e−2sηw(t,0,x) and cannot be written in terms of
the variable u. Unfortunately, see [1, system (6) page 566], this term was ignored in the
computations.

In the sequel we take f = 0 in order to avoid this situation.

Our observability inequality is as follows.

Proposition 3.4. Assume that

f = 0 (3.54)

and that there exists a real γ ≥ 0 such that

g(a,x)= 0 a.e. in (0,γ)×Ω. (3.55)

Then, there exists a positive constant Cγ such that the following inequality holds:

∫
QA

w2(0,a,x)dadx+
∫
QT

w2(t,0,x)dtdx ≤ Cγ
∫
q
w2(t,a,x)dtdadx (3.56)

for all solution w of (3.1).

Let γ be small enough so that γ ≤min(T ,A). We define now two subsets of (0,T)×
(0,A):

N1 =
{

(t,a)∈ (0,T)× (0,A); t ≥ a+T − γ},

N2 =
{

(t,a)∈ (0,T)× (0,A); t ≤ a+ γ−A},
(3.57)

and we formulate a lemma which will be used in the proof of Proposition 3.4.

Lemma 3.5. If (3.54) and (3.55) hold, then all solutions of (3.1) verify

w(t,a,x)= 0 a.e. in
(
N1∪N2

)×Ω. (3.58)
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Proof of Lemma 3.5. We will prove that w = 0 on almost every characteristic line in N1∪
N2.

Let (t0,a0) ∈ N1. Then we have t0 = a0 + T − γ + d with 0 ≤ d ≤ γ. Therefore, a0 ≤
γ−d.

Let S(d) = {(t0 + s,a0 + s), s ∈ (0,γ− d− a0)} be a characteristic line of (3.1). Setting
z(s,x) = w(t0 + s,a0 + s,x) and μ(s,x) = μ(t0 + s,a0 + s,x) from (3.1), we deduce that z
solves

−∂z
∂s
−
z+μz = 0 in

(
0,γ−d− a0

)×Ω,

z(s,x)= 0 on
(
0,γ−d− a0

)× ∂Ω,

z
(
γ−d− a0,x

)=w(T ,γ−d,x)= g(γ−d,x) in Ω.

(3.59)

Then from (3.55) for almost all d ∈ (0,γ), standard results on heat equation imply that
z = 0. Thus, for almost all d ∈ (0,γ), w = 0 on S(d). Therefore, w = 0 in N1 ×Ω. The
same argument and the fact that w(t,A,x)= 0 in (0,T)×Ω allow us to prove that w = 0
in N2×Ω. �

Now, let us prove Proposition 3.4.

Proof of Proposition 3.4. We set

D1 =
{

(t,a)∈ (0,T)× (0,A), t ≤−T − γ/2
A− γ/2a+T − γ

2

}
,

D2 =
{

(t,a)∈ (0,T)× (0,A), a≥−A− γ/2
T − γ/2 t+A− γ(γ− 2A)

2(2T − γ)

}
,

D3 = (0,T)× (0,A)− (D1∪D2
)
,

D4 =
{

(t,a)∈D3; (t,a) /∈ (N1∪N2
)}

, (cf. Figure 3.1).

(3.60)

Consider now θ ∈ C∞0 (R2) a cut-off function such that θ = 1 on D1; θ = 0 on D2.
Setting w̃ = θw, it follows that w̃ solves

−∂w̃
∂t
− ∂w̃

∂a
−�w̃+μw̃ =−

(
∂θ

∂t
+
∂θ

∂a

)
w in Q,

w̃(t,a,x)= 0 on Σ,

w̃(T ,a,x)= 0 in QA,

w̃(t,A,x)= 0 in QT.

(3.61)

Multiplying (3.61) by w̃ and integrating over Q yield after minor majoration

∫ T−γ/2
0

∫
Ω
w2(t,0,x)dxdt+

∫ A−γ/2
0

∫
Ω
w2(0,a,x)dxda≤−2

∫
Q

(
∂θ

∂t
+
∂θ

∂a

)
θw2dtdadx.

(3.62)
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γ A� γ A a

γ

T � γ

T

t

D1

N2

D4

D2

N1

Figure 3.1

Using Lemma 3.5 and the definition of θ, we deduce that (∂θ/∂t + ∂θ/∂a)θw = 0 almost
every where outside of D4 ×Ω. Note that η and ϕ are bounded on D4 ×Ω by strictly
positive reals. Hence there exists a positive constant Cγ > 0 such that

−2
∫
Q

(
∂θ

∂t
+
∂θ

∂a

)
θw2dtdadx ≤ Cγ

∫
Q
ϕ2e−2sηw2dtdadx. (3.63)

Therefore (3.62) yields

∫ T−(γ/2)

0

∫
Ω
w2(t,0,x)dxdt+

∫ A−(γ/2)

0

∫
Ω
w2(0,a,x)dxda≤ Cγ

∫
Q
ϕ2e−2sηw2dtdadx,

(3.64)

where Cγ is a positive constant depending on γ. Using now (3.2), (3.58) and the fact that
ϕ2e−2sη ≤ 1 for λ and s sufficiently large we deduce (3.56). �

Remark 3.6. A careful calculation for s≥ s1 and λ≥ λ1 leads to the following estimate of
Cγ:

Cγ ≥ C(T)γ2 exp
(
C(Ψ,s,λ)
γ3AT

)
, (3.65)

where C(Ψ,s,λ) and C(T) are positive constants.
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3.2. A null controllability result. In this section, for a given function b ∈ L2(QT) we
consider the following system:

∂y

∂t
+
∂y

∂a
−�y +μy = v1ω in Q,

y(t,a,σ)= 0 on Σ,

y(0,a,x)= y0(a,x) in QA,

y(t,0,x)= b(t,x) in QT.

(3.66)

For all ε > 0 we introduce the functional

Jε(v)= 1
2ε

∫ A
γ

∫
Ω
y2(T ,a,x)dxda+

1
2

∫
q
v2(t,a,x)dxdadt. (3.67)

It follows easily that Jε is continuous, convex, and coercive. Hence, Jε admits a unique
minimizer vε and we have

vε(t,a,x)=−wε(t,a,x)1ω(x) in Q, (3.68)

where wε is the solution of the following system:

−∂wε
∂t

− ∂wε
∂a

−Δwε +μwε = 0 in Q,

wε(t,a,σ)= 0 on Σ,

wε(T ,a,x)= 1
ε
yε(T ,a,x)1(γ,A)(a) in QA,

wε(t,A,x)= 0 in QT ,

(3.69)

and yε is the solution of (3.66) associated to vε.
Multiplying (3.69) by yε and integrating on Q give

− 1
ε

∫ A
γ

∫
Ω
y2
ε(T ,a,x)dxda+

∫ A
0

∫
Ω
wε(0,a,x)y0(a,x)dxda

+
∫ T

0

∫
Ω
wε(t,0,x)b(t,x)dxdt+

∫
q
vεwεdtdadx = 0.

(3.70)

Using (3.68) we obtain

∫ A
0

∫
Ω
wε(0,a,x)y0(a,x)dxda+

∫ T
0

∫
Ω
wε(t,0,x)b(t,x)dxdt

= 1
ε

∫ A
γ

∫
Ω
y2
ε(T ,a,x)dxda+

∫
q
v2
εdtdadx.

(3.71)
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On the other hand, Young inequality gives

∫ A
0

∫
Ω
wε(0,a,x)y0(a,x)dxda+

∫ T
0

∫
Ω
wε(t,0,x)b(t,x)dxdt

≤ 1
2Cγ

(∫ A
0

∫
Ω
w2
ε(0,a,x)dxda+

∫ T
0

∫
Ω
w2
ε(t,0,x)dtdx

)

+ 2Cγ

(∫ A
0

∫
Ω
y2

0(a,x)dxda+
∫ T

0

∫
Ω
b2(t,x)dxdt

)
.

(3.72)

Therefore Proposition 3.4 and inequality (3.72) imply

1
ε

∫ A
γ

∫
Ω
y2
ε(T ,a,x)dxda+

1
2

∫
q
v2
εdtdadx

≤ 2Cγ

(∫ A
0

∫
Ω
y2

0(a,x)dxda+
∫ T

0

∫
Ω
b2(t,x)dxdt

)
.

(3.73)

Consequently

∥∥vε∥∥2
L2(q) ≤ 4Cγ

(
‖b‖2

L2(QT ) +
∥∥y0
∥∥2
L2(QA)

)
,

∫
Ω
y2
ε(T ,a,x)dxda≤ 2εCγ

(
‖b‖2

L2(QT ) +
∥∥y0
∥∥2
L2(QA)

)
.

(3.74)

Then, one can extract subsequences also denoted by vε and yε such that vε → v weakly in
L2(q) and yε → y weakly in L2((0,T)× (0,A),H1

0 (Ω)).
Moreover y is the unique solution of (3.66) and verifies (2.2). Notice also that v verifies

(2.2).
Therefore, we have proved the following null controllability result.

Proposition 3.7. For any given positive real γ small enough, there exists a control v ∈ L2(q)
that verifies (3.74), such that the associated solution y of (3.66) verifies (2.2).

Remark 3.8. (i) This result is quite similar to what was proved in [7] for a so-called “lin-
earized crocco-type equation.” More precisely, it was proved in [7] that there exists a
control v acting on (x0,x1)×ω, with 0 < x0 < x1 < A such that the corresponding solution
of (3.66) with Ω⊂R verifies

y(T ,a,x)= 0 in
(
x0 + δ,L

)×Ω, (3.75)

where

L=
⎧⎨
⎩
x1 +T − δ if 0 < T < A− x1 + δ,

A if T > A− x1 + δ.
(3.76)

See [7, page 710].
The method in [7] uses the fact that 0 < x0 < A, energy estimates, and Carleman es-

timates for parabolic equation along characteristic lines of (3.66). Therefore one cannot
use the result of [7] for the case x0 = 0 and x1 =A which is studied here.
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(ii) System (3.13) describes in fact the evolution of a controlled age and space struc-
tured population in which the birth process is given by a function regardless of the dis-
tribution of individuals of age a > 0. That explains why it seems impossible to eradicate
individuals of age close to 0.

4. Proof of the main result

For θ ∈ L2(QT), letting b = e−λ0tF(eλ0tθ), we derive from Proposition 3.7 that there exists
a control v that verifies (3.74) so that the corresponding solution of (3.66) verifies (2.2).
Then for all θ ∈ L2(QT) we define by Λ(θ) the nonempty set of all

∫ A
0 βyda where y

verifies (2.2), solves (3.66) with v ∈ L2(q) that verifies (3.74). The problem is now reduced
to find a fixed point for Λ. In order to apply a generalization of the Leray-Schauder fixed
point theorem stated in [5], we define the setN = {θ ∈ L2(QT), (∃)ζ ∈ (0,1), θ ∈ ζΛ(θ)}.
Thus doing the existence of a fixed point is a obvious consequence of the following.

Proposition 4.1. (i) Λ is a compact multivalued mapping of L2(QT).
(ii) For all θ ∈ L2(QT), Λ(θ) is a nonempty closed convex subset of L2(QT).
(iii) N is bounded in L2(QT).
(iv) Λ is upper semicontinuous on L2(QT).

Proof of Proposition 4.1. (i) We prove the compactness of Λ. Let θ ∈ L2(QT) such that
‖θ‖ ≤ r, r > 0. We have to prove that Λ(θ) is compact in L2(QT). Consider (ρn)n ⊂
Λ(θ). From the definition of Λ, for all n there exists a pair (vn, yn) ∈ L2(q)× L2(Q)

such that ρn =
∫ A

0 βyn da, vn verifies (3.74) and yn, the associated solution of (3.66) with
b = e−λ0tF(eλ0tθ) verifies (2.2).

Using (3.74) we deduce that

∥∥vn∥∥2
L2(q) ≤ 4Cγ

(∥∥e−λ0tF
(
eλ0tθ

)∥∥2
L2(QT ) +

∥∥y0
∥∥2
L2(QA)

)
. (4.1)

Then we get via H3

∥∥vn∥∥2
L2(q) ≤ Cγ

(
C(F,Ω,T ,r) +

∥∥y0
∥∥2
L2(QA)

)
. (4.2)

Multiplying (3.66) with e−λ0tF(eλ0tθ) instead of b by yn and integrating over Q, we obtain

∥∥∇yn∥∥2
L2(Q) +

λ0

2

∥∥yn∥∥2
L2(Q) ≤

2
λ0

∥∥vn∥∥2
L2(q) +

1
2

∥∥y0
∥∥2
L2(QA) +

1
2

∥∥e−λ0tF
(
eλ0tθ)

∥∥2
L2(QT ).

(4.3)

Therefore, for λ0 ≥ 2 we get

‖∇y‖2
L2(Q) +‖y‖2

L2(Q) ≤
(
Cγ + 1

)(
C(F,Ω,r,T) +

∥∥y0
∥∥2
L2(QA)

)
. (4.4)
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Moreover, using H2 we deduce that ρn =
∫ A

0 βynda solves the system

∂ρn
∂t
−Δρn +

∫ A
0
βμyn da= zn(t,x) in QT ,

ρ(t,x)= 0 on (0,T)× ∂Ω,

ρn(0,x)=
∫ A

0
β(0,a,x)y0(a,x)da in Ω,

(4.5)

where zn(t,x)= ∫ A0 βvnda1ω +
∫ A

0 yn(∂β/∂t+ ∂β/∂a−�β)da+
∫ A

0 ∇yn∇βda.
Notice that

∥∥zn∥∥2
L2(QT ) ≤ 3C2

βA
(∥∥vn∥∥2

L2(q) +
∥∥yn∥∥2

L2(Q) +
∥∥∇yn∥∥2

L2(Q)

)
. (4.6)

This implies via (4.2) and (4.4) that

∥∥zn∥∥2
L2(QT ) ≤

(
Cγ + 1

)
C(β,A)

(
C(F,Ω,r,T) +

∥∥y0
∥∥2
L2(QA)

)
. (4.7)

Now let us multiply (4.5) by ρn, we obtain after an integration by parts and minor changes
that

∥∥∇ρn∥∥2
L2(QT ) +

λ0

2

∥∥ρn∥∥2
L2(QT ) ≤

2
λ0

∥∥zn∥∥2
L2(QA). (4.8)

Consequently, ρn is bounded in L2((0,T),H1
0 (Ω)) and standard arguments allow us to

see that ∂ρn∂t is also bounded in L2((0,T),H−1
0 (Ω)). Hence, using Lions-Aubin lemma

we conclude the proof of (i).
We address now the proof of (ii).
First, it is obvious that for all θ ∈ L2(QT), Λ(θ) is a nonempty convex set. Let (ρn)n ⊂

Λ(θ) such that ρn → ρ in L2(QT). We have to prove that ρ ∈ Λ(θ). For all n there exists

vn that verifies (3.74) such that ρn =
∫ A

0 βynda where yn is the corresponding solution
of (3.66) with eλ0tF(eλtθ) instead of b, and yn verifies also (2.2). Then, from (4.2) and
(4.4) we deduce that one can extract subsequences also denoted by vn and yn converging
weakly to v and y, respectively, in L2(q) and L2((0,T)× (0,A),H1

0 (Ω)). Standard device

implies that
∫ A

0 βyda= ρ. In addition, it follows that y is the associated solution of (3.66)
with b = e−λ0tF(eλ0tθ). In addition v verifies (3.74) and y verifies (2.2). Therefore, the
definition of Λ yields that ρ∈Λ(θ).

Let us perform now the proof of (iii). Let θ ∈N , then there exists ζ ∈ (0,1) such that
(1/ζ) θ ∈ Λθ. As a consequence, there exists a pair (v, y) ∈ L2(q)× L2(Q) such that θ =
ζ
∫ A

0 βyda, v verifies (3.74) and y is the associated solution of (3.66) with b = e−λ0tF(eλ0tθ).
This implies on one hand that

‖θ‖2
L2(QT ) ≤ C(β,A)‖y‖2

L2(Q). (4.9)

By (4.1) and H3 we deduce

‖v‖2
L2(q) ≤ 8Cγ

(
C
(
C0,Ω,T

)
+C2

1‖θ‖2
L2(QT ) +

∥∥y0
∥∥2
L2(QA)

)
(4.10)
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and consequently, (4.3) yields

‖y‖2
L2(Q) ≤

16
λ0

(
C
(
T ,Ω,C0

)
+
∥∥y0
∥∥2
L2(QA)

)
+

(
16Cγ + 1

)
C2

1

λ0
‖θ|2L2(QT ). (4.11)

Taking now λ0 >max(2,(16Cγ + 1)C2
1) and combining (4.9) and (4.11) we get

‖θ‖2
L2(QT ) ≤ C

(
A,T ,Ω,F,γ,

∥∥y0
∥∥2
L2(QA)

)
(4.12)

that achieves the proof of (iii).
It remains to check that Λ is upper semicontinuous on L2(QT). This is equivalent to

prove that for any closed subsetG of L2(QT), Λ−1(G) is closed in L2(QT). Let θn ∈Λ−1(G)
such that θn converges towards θ in L2(QT). Then, θn is bounded and for all n there ex-
ists ρn ∈ G such that ρn ∈ Λ(θn). Therefore, from the definition of Λ there exists a pair

(vn, yn)∈ L2(q)×L2(Q) such that ρn =
∫ A

0 βyn da, vn verifies (3.74), yn the corresponding
solution of (3.66) with e−λ0tF(eλ0tθn) instead of b verifies (2.2), so that vn verifies (4.2)
and yn (4.4). Consequently (vn, yn) is bounded in L2(q)×L2(Q). Thus, there exists a sub-
sequence still denoted by (vn, yn) that converges weakly to (v, y) in L2(q)× L2(Q). Since
F is continuous, it follows that e−λ0tF(eλ0tθn) converges strongly towards e−λ0tF(eλ0tθ).
Now, by standard device we see that v verifies (3.74), ρ = ∫ A0 βyda, y solves (3.66) with
e−λ0tF(eλ0tθ) instead of b and y verifies in addition (2.2). This implies obviously that

ρ∈Λ(θ). (4.13)

On the other hand, thanks to (4.8) and Lions-Aubin lemma once again, one can extract a
subsequence also denoted by ρn that converges strongly towards the function ρ in L2(QT).
Since G is closed we deduce that ρ ∈ G. Finally, from (4.13) we deduce that θ ∈ Λ−1(G).
This completes the proof of Proposition 4.1. �
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