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We establish a null controllability result for a nonlinear population dynamics model. In
our model, the birth term is nonlocal and describes the recruitment process in newborn
individuals population. Using a derivation of Leray-Schauder fixed point theorem and
Carleman inequality for the adjoint system, we show that for all given initial density,
there exists an internal control acting on a small open set of the domain and leading the
population to extinction.
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1. Introduction

For a given positive real function F, we consider in this paper the following nonlinear
population dynamics model:
dy 0 .
87)t/+£ Ay+uy=vl, in(0,T)x(0,A)xQ,
y(t,a,0) =0 on (0,T) X (0,A) X 9Q,

2(0,a,%) = yo@x) in (0,T) x (0,A) X O, (1.1

y(t,0,x) = (J B(t,a,x)y tax)da) on (0,T) x Q,

where Q) is a bounded open subset of RN, N > 1 with a smooth boundary 0Q, 0 € 0Q),
T is a positive real and w an open subset such that @ C Q. Here y(t,a,x) is the dis-
tribution of individuals of age a at time ¢ and location x € Q, 1,, is the characteristic
function of w, A is the maximal live expectancy, A the Laplacian with respect to the
spatial variable, 3(t,a,x) and u(t,a,x) denote, respectively, the natural fertility and the
natural death rate of individuals of age a at time ¢ and location x. Thus, the formula
fo B(t,a,x)y(t,a,x)da denotes the distribution of newborn individuals at time ¢ and loca-
tion x. In an oviparus species it denotes the total eggs at time ¢ and position x. Therefore,
the quantity F (f(;d‘ B(t,a,x)y(t,a,x)da) is the distribution of eggs that hatches at time ¢
and position x.
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2 Controllability of a nonlinear population model

System (1.1) describes the evolution of an internal controlled age and space structured
population under inhospitable boundary conditions in the case that the flux of individu-
als has the form —V y(t,a,x).

The purpose of this paper is to prove a null controllability result for (1.1) at any time
T. This means more precisely that there exists a control v € L*((0,T) x (0,A) X w) such
that the associated solution of (1.1) verifies

y(T,a,x) =0 a.e.in (0,A) X Q. (1.2)

In our knowledge the first controllability result for an age and space structured popu-
lation dynamics model was established by Ainseba and Langlais in [4]: they proved that
a set of profiles is approximately reachable. In [2] a local exact controllability result was
proved for a linear population dynamics. More precisely, in [2] the authors proved that if
the initial distribution is small enough, one can find a control that leads the population to
extinction. The method used there is different from ours. In fact in [2] the adjoint system
was taken as a collection of parabolic equations along characteristic lines. This allowed
the authors to use Carleman inequality for parabolic equation. Ainseba and Iannelli in
[3] proved a null controllability result for a nonlinear population dynamics model. In
[3] the natural rates depend on the total population P = fOA y(t,a,x)da. The method in
[3] used Kakutani fixed point theorem. Therefore, crucial assumptions were made: first,
the natural rates were supposed to be globally Lipschitz with respect to the variable P,
secondly in order to perform key estimates, the death rate y verified the following growth
condition: 0 < [/texp(f(;Z u(s)ds) < { where  is a positive constant.

In the case we study here, the above results cannot be applied. Indeed, since the birth
process is not globally Lipschitz with respect to the variable P and, without the previous
growth condition on ¢ one cannot use the method of [3]. On the other hand, the nonlin-
earity excludes the use of the result of [2]. In what follows, using a Carleman inequality
for an adjoint system we establish a null controllability result for the nonlinear popula-
tion dynamics models stated in (1.1) when the initial distribution is in L?((0,A) X Q).
Roughly, in our method we first study a null controllability result for a population in
which the birth process is given by a fixed function. Afterwards, we prove the null con-
trollability result for the system (1.1) by means of a derivation of Leray-Shauder theorem.

The remainder of this paper is as follows: in Section 2, we state assumptions and we
provide the main result. In Section 3 we study a null controllability result for some asso-
ciated model. Section 4 is devoted to the proof of the main result.

2. Assumptions and main result

For the sequel we assume that the following assumptions hold:

u(t,a,x) = po(a) +ui(t,a,x) a.e. in (0,T) X (0,A) X Q,
=0 ae. in(0,T) X (0,A) xQ,
Hy e 12(0,T) x (0,A)x Q); un(ta,x) =0 ae.in (0,T) x (0,A) x Q,

po € L, (0,A), limaaAJ' po(s)ds = +oo,
0
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B e C?([0,T] x [0,A] x Q),
H,1B(t,a,x) =0 in[0,T] X [0,A] X Q,
F0<ag<a;<A  such that f(t,a,x)=01n [0,T] X ((0,a0) U (a1,4) x Q).

(2.1)

Hj F defined on R is a positive continuous function and there exist positive constants Cy
and C; such that F(t) < Cy+ C;|t|, forall t € R.

Remark 2.1. Since y and f3 are natural rates, the second assumptions of H, and H,
are natural. The third assumption of H, is also natural, since it means that older and
younger individuals are not fertile. The fourth assumption in H; is also a standard one,
it means that all individual dies before the age A. In [3] the model did not take explic-
itly into account the death of newborns. Indeed the birth process there has the form
y(t,0,x) = fOAﬂ(t,a,x,P(t,x))y(t,a,x)da where P(t,x) = fOAy(t,a,x)da. We present here a
quite different model. In fact our model addresses both supply and death of newborns.
Moreover in the case F(t) = kt with k a fixed positive constant, one obtains from (1.1) a
linear population dynamics problem.

Assume now that the function F is a globally Lipschitz one and verifies F(0) = 0. Then,
one can rewrite F as F(t) = t®(t) for a.e. t € R. Therefore, the fourth equation of (1.1)
becomes y(t,0,x) = f(;‘ By daCD(f(;A‘ Byda). Hence, one obtains the system considered with
Neumann boundary conditions in [8, 10] where existence of solution was studied.

From now we set Q = (0,T) X (0,A) X Q; g = (0,T) x (0,A) X w; Qa = (0,A) X Q;
Qr=(0,T)x ;X =(0,T) x (0,A) x 0Q and Cs = [|Bll2(q)-

For a > 0 we set Sy(t,a) = exp(—at + [y pio(s)ds), Xo = {2€ L*(Qa); Su(t,a)z€ L*(Qa)},
and Y, = {v € L*(q); Sa(t,a)v € L*(g)}. It is obvious that a; > a, implies Xy, C X, and
Yo CYy,.

In the sequel, v will denote the unit outward normal vector to Q2 and C(Q,T,A,...)
will denote positive constant that depends only on Q, T, A,....

We are now ready to state the main result of this paper.

THEOREM 2.2. For any y > 0 assumed to be small enough, there exists a control v € Yy such
that the associated solution of (1.1) satisfies

y(T,a,x) =0 a.e in(y,A)xQ (2.2)

for all yy € X,.

Remark 2.3. In the proof, it will appear clearly that such a control depends essentially
on y.

Let us denote by A a positive constant which will be fixed later. We make the following
standard changes: y = Sy, (t,a)y, v = Sy, (t,a)v, B = S,{OI(O,a)[S and g = S),(t,a) yo. Then
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it follows that ¥ solves the following system:

y(t,a,0) =0 onZ, (2.3)
j)\(oya)x) = ?O(Q,X) in QA) '

A ~
y(£,0,x) = e M (eWJ’ B(t,a,x)y(t, a,x)da) in Qr.
0

The null controllability problem of Theorem 2.2 is now reduced to find ¥ in L?(q) such
that y verifies (2.2). In fact after the previous change we obtain a system involving bound-
ed coefficients and this allows one to establish a global Carleman inequality. In the sequel
for the sake of simplicity, we will consider only the previous system without hats and in
addition we will write y instead of y; + Ao.

3. Null controllability for some linearized model

3.1. An observability inequality result. We recall here that there exists a function ¥ €

C2(Q) such that ¥(x) = 0, for all x € 9Q; ¥(x) >0, for all x € Q and V¥(x) # 0, for all

x € Q — @ where @ is an open set such that @ C w C Q. (See [6] for the existence of ¥.)
Let us consider the following system:

w(t,a,0) =0 onZX, (3.1)

w(T,a,x) = g(a,x) in Qa,
w(t,A,x) =0 in Qr.

Setting for all positive real A, (¢, a,x) = (e?I¥ll> — 2@)/at(T — t) and ¢(t,a,x) = YX)/
at(T — t) one can prove easily by adapting the method of [6] or [9] the following.

ProposiTiON 3.1. There exist positive constants sy = 1 and Ay > 1 and there exists a pos-
itive constant C such that for all s = s,, A = Ay, and for all solution of (3.1), the following
inequality holds:

J e 21’ M w? dtdadx < C(J e ™ f2dtdadx + J e 12 9’ M w? dtdadx). (3.2)
Q Q q

Remark 3.2. The proof of Proposition 3.1 is absolutely similar to those of global Carleman
inequality for the linear heat equation proposed in [9] or in [6]. Roughly, for the proof of
(3.2), one makes the change of variable: u = e™*"w in order to get from the definition of
n the following:

u(0,a,x) = u(T,a,x) = u(t,0,x) = 0. (3.3)

Subsequently, one derives estimates on u and after return to w. We will prove first (3.2) for
a function w € C?(Q) and after the result for w € L?(Q) will follow by density arguments.
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Proof of Proposition 3.1. We suppose that the function w € C*(Q) and verifies (3.1) and
we make the following change of variables u = e™*w. Then immediately it follows by
using the definition of 7 and (3.1) that

u(0,a,x) =u(T,a,x) =0 in (0,A) x Q, (3.4)
u(t,0,x) =u(t,A,x) =0 in(0,T)xQ, (3.5)
u(t,a,0) =0 1in (0,T) % (0,A) X 0. (3.6)
Notice that
Vi =-1pVY, (3.7)
Vo =21pVVY. (3.8)

Using once again the definitions of # and ¢, we deduce that there exist positive constants
denoted by C such that |95/0a| < C¢?, |0n/dt| < C¢?, |0°n/dadt| < C¢?, and |dy/0a*| <
Co’.

Similarly we get

¢ ¢

dg ¢
s 2 i 2 i & 3 ha e 3
oa =Co ‘at‘SC(P’ aaat‘ﬁcq)’ 'aaz =Cy. (3.9)
We have
ou ou __ (Jn aﬂ) fsn<<LW al)
ot | oa __S<8t+8a ute "\ or taa ) (3.10)

From (3.7) and (3.8) we get

Au = sAA¥Ypu + sA? V‘I’Iz(pu —$2A?] V\I’Izgozu +25ApVVY - Vu+e 1Aw. (3.11)

Therefore
ou Ju
- (§+%) —Au+tpuu
-5 2 2 292 2 2 on  odn
=e M f —sAup|VY|* - 2s0pVVY - Vu+s°17¢° | VY| u+s<§+$)u—s)tq)uA‘I/.
(3.12)
This equation can be rewritten as
Piu+Pu=g, (3.13)
where
Piu= _a_u - %+2$A VY- Vu+2sAup| VY|?
M=% T 90 T PIVED
Pyu = —Au—s<%+%>u—szkz¢2w‘{’|2u (3.14)
ot da ’

g = e 1 f+5A%ug|VY|? — uu — shupAY.
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Taking the square of (3.13) and integrating the result over Q yield

J |P1u|2dtdadx+J |P2u|2dtdadx+2j quPludtdadx:J gidtdadx. (3.15)
Q Q Q Q

Let us compute K = [, P,uP\udtdadx.
We obtain

K= J (—a—u——a+2$l(pV‘P Vu+25/\2ug0|V‘{’|2>(—Au—s(aa

Ju Ju

—J (————+25)L(pV‘I’ Vu+2s/\2u<p|V‘I’|2> SNV Q? | VY |*udtdadx.
Q

ot 0

This computation gives twelve terms denoted by I; ;, i = 1,...,4, j =

We have by integration by parts

ou du

zl,l_J ?9 Audtdadx = | 2 dtdado _,J 2 |Vuldtdads
Q

s Ot v

Hence using (3.4) and (3.6) it follows that

111:0)
Ju (on 811)
L, = I 8t<8a 3 udtdadx.

An integration by parts leads to

112_—{ L <%+%>dtdadx,
ot
113:sz)tzj %gozuIV‘I’lzdtdadx.
’ Q ot

This gives

£ [ olul’

2 2
2 o ot o |VV¥|*dtdadx.

Li;=

Keeping in mind (3.4), an integration by parts with respect to the variable ¢ yields

d
L= _SZAZJ \ulz—(PqJIV‘I’Izdtdadx.
Q ot

at> )dtdadx

(3.16)

(3.17)

(3.18)

(3.19)

(3.20)

(3.21)
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Similarly, one gets easily that
I =0,

__S zi(a_” 8_17>
L, = 2JQIMI 5 8a+8a dtdadx,

b= —SZAZJ (plulza—(PIV\Plzdtdadx.
Q da

Now, we are concerned by the term I ;.
We have

L= —ZSAJ oVVY - VulAudtdadx.
Q

Then we have by an integration by parts

du

I =—-2sA L(pV\P- Vuav

dnhda+2d}‘Vu-V%¢VW-Vuﬁ#dadx
Q

(3.22)

(3.23)

(3.24)

From the definition of ¥ and since (3.6) is fulfilled we see that for all o € 0Q) we have

Vu(t,a,o) = (Vu(t,a,o) - v(o))v(o) and V¥ (o) = (V¥ (0) - v(0))v(0).
Therefore it follows, using also (3.8), that

L = —ZS)LJ P(VY¥ -9)|Vu- vlzdtdad0+2$/12j |Vu- VY¥|*pdtdadx
> Q

ou *u oY ou *Y Ju
N s el it i)
* ZSAEi’j:1 ( Q (Pax,» ax,»axj ax]' dtdadx+ JQ¢axi axian ax]' dtdﬂdX).
We have
2
253N du_ou a—‘{/ dtdadx

b=l Q¢a_JQ ax,‘an an

=s)LJ (p(V\I’-n)qu-nIzdtdado—sAZJ |Vul?| VY |*pdtdadx
> Q
—SAJ @|Vul*AY dtdadx.
Q

Therefore

Ly = —s/lj P(VY¥ - n)|Vu- v|2dtdad0+25/12J |Vu- V¥|*pdtdadx
3 Q

—s/lzj |Vu|2|V‘I’|2godtdadx—5/\zj IVul?| VY |*pdtdadx
Q Q

*Y ou Jdu
ngaxiaxj gja—xidtdadx

*SAI ¢|Vul*AY dtdadx + 25)&2%-:1
Q

on 9ﬂ)
—_ _932 .
Ly=-2s AJQ¢VW Vu( 5 + e udtdadx.

(3.25)

(3.26)

(3.27)
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Classical computations give

=—52A2f ol VYl |u|2( 1 a”)dtdadxﬂaj olul2V - (w(a—ﬂ@

)

i) ot

L= —253A3J @’VV¥ - Vu|VY¥|*udtdadx.
Q

Equality (3.8) and an integration by part give

Iz = 3s°M JQ¢3u2|V‘P|4dtdadx+s3A3 JQ(p3|u\2V - (VY| VY|?)dtdadx.
Now we compute the terms I ;

Iy, = —2s)? JquIV\I’IzAudtdadx = 25\? JQ V(ou|VY¥|?) - Vudtdadx.

Therefore

Ly = ZS)PJ QUvVY - VuIV‘PlzdtdadanZsAZJ 0| VUl VY2V udt dadx
Q Q

+ ZSAZJ ouVu - V(|VY|?)dtdadx.
Q
Directly, we have

I = —ZSZAzj ¢|W|2(— n —) \ul? dtdadx,

Iz = —253A4J @’ |VY|*u? dtdadx.
Q

(3.28)

(3.29)

(3.30)

(3.31)

(3.32)

(3.33)

Grouping all the terms I; ; and using the boundeness of the derivatives of ¢ and # one

can write

zj PiuPoudtdads = X, + X, - zsaj oV - v|Vu - v dtdado
Q >

+45/\2J olVu - VVY|?dtdadx
Q

+25/\2J q)IVu|2|V‘I’\2dtdadx+253)L4J @’ | VY |* dtdadx,
Q Q

where X; and X, verify

X, < C(5A+A2)J 0| Vul2didadx,
Q

X, = C(52A4+53A3)J o*lul2dtdadsx.
Q

(3.34)

(3.35)
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Note that v is the outward normal vector to d€). So, using the fact that ¥(x) > 0 for all
x € Qand ¥Y(0) = 0 for all o € dQ we infer that V¥ - v < 0. Therefore, (3.34) yields

zj Plupzudtdadx2X1+X2+25A2J 0| Vul2| VY2 dt dadx
Q Q
(3.36)
+2s3/\4j P> u*|VY|*dtdadx.
Q

Note also that ¥ € C>(Q) and | V¥| # 0in Q — @. Consequently, there exists a positive
constant § such that |[V¥| > 8 in Q — @. Therefore (3.36) gives

ZJ Pluqudtdadx+251252J ¢|Vu|2dtdadx+253)t454J q)3u2dtdadx
Q q q

(3.37)
> X, + X, + 25428 J ¢|Vu|*dtdadx + 253/\484j ¢’u*dtdadx,
Q Q
where § = (0, T) X (0,A) X @. Furthermore, we have
J gzdtdadx<J 291 2 dtdadx+ X, + X (3.38)

Then, it follows from (3.15) and (3.37) that
J e 2 dtdadx + X, +x2+2s3a454j <p3|u|2dtdadx+2saza2j 0| Vul2dtdadx
Q q q
ZJ |P1u|2dtdadx+J |P2u|2dtdadx+25A282J @|Vul*dtdadx
Q Q Q

+253)46% J @’ |ul*dtdadx.
Q
(3.39)

We can choose s and A sufficiently large so that
262 J o Vul? dtdadx+s3)t484j o lul2dtdads = X, + X, (3.40)
Q Q

This means more precisely that there exists positive constants s; > 1 and A; > 1 such that
fors = s; and A = A (3.39) yields

J e’zs”fzdtdadx+2s3)t484j <p3|u|2dtdadx+zsmzj o|Vul dtdadx
Q q q
zj |P1u|2dtdadx+J |P2u|2dtdadx+s)L282J o|Vuldtdadx  (3.41)
Q Q Q

+s3/1464j @’ |ul*dtdadx.
Q
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We want now to eliminate the term

206" | gl Vuldrdadx (3.42)
q

in (3.41). For this aim, we introduce a cut-off function « such that a € C’(w); 0 < a < 1
and a =1 on w.
Multiplying P,u by pa’u and integrating the result over Q leads to

J pa*uPyudtdadx
Q
- _ o, o\ 5 2| 2030212 _ 2
=-s + ueadtdadx —s°A* | w ¢ o |¥|*dtdad uAuga” dtdadx.
Q ot da Q Q
(3.43)
Note that
I ulugpa® dtdadx
Q

= —J IVulzgoazdtdadx—/\J uVu - V‘I’goazdtdadx—Z[ uVu - Vagadtdadx.
Q Q Q
(3.44)

Therefore
J gooczuqudtdadx:—sJ (%+%)u2<p{x2dtdadx
Q Q
—szlzj u2q)3(x2|‘I’|2dtdadx+J |Vul?pa® dtdadx (3.45)
Q Q

+/\J uVu - V‘Pgooczdtdadx+2J uVu - Vapadtdadx.
Q Q

This gives
2.2 2 o o\ 5,
[Vul“pa“dtdadx = | @a uPrudtdadx+s| (= + =5 |upa”dtdadx
Q Q Q\ot oda
+52/\2J u2g1)3oc2|‘}’|2dtdadx—/lj uVu - V¥oa? dtdadx
Q Q
—ZJ uVu - Vagadtdadx.
Q
(3.46)
Note that

—AJ uVu - V¥oa’dtdadx < C)sz lul*pa’ dtdadx+%J |Vul?pa® dt dadx,
Q Q Q
(3.47)
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where C is a positive constant. As ¢ < C¢® with C a positive constant, using now the
properties of @ and ¥ we deduce

JNIVuIzgooc2 dtdadx
q

SCJ (poczuqudtdadx+Csz/12J uz(p30c2dtdadx+CJ up"?|Vulg*adtdadx.
Q Q Q

(3.48)
Therefore we deduce from the previous estimate that
250262 J |Vul?’pdtdadx < % I | Pu? |dtdadx + Cs*A? J u*Q’ dtdadx, (3.49)
q Q q

where C is a positive constant.
Combining (3.41) and (3.49) we get

c(f e 2 fzdtcladx+53)t4j ¢3u2dtdadx>
Q q
zj |P1u|2dtdadx+J |P2u|2dtdadx+sA2J o|Vuldtdadx  (3.50)
Q Q Q

+53A4J o’ u’ dtdadx.
Q

We want now to turn back to the variable w.
Note that u = e *"w. Then, we have

J ¢3|u|2dtdadx=J e 21¢% |w|? dt dadx,
Q Q

(3.51)
J ¢’ |lul*dtdadx = J e *1¢p® |w|? dtdadx.
q q
Therefore one gets from (3.50)
53A4J e My’ dtdadx < CJ e > f2dtdadx + Cs3)t4j e Mp>w? dtdadx.
Q Q q

(3.52)
This ends the proof. O

Remark 3.3. (i) Indeed one can prove that there exist positive constants s; > 1 and A; > 1
and there exists a positive constant C > 0 such that for all s > s;, A > A, and for all solution
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of (3.1) the following inequality holds:

—2sn 2
J ¢ (‘ 8_w+8_w + IAwlz)dxdadt+J 6_25’753q)3/\4w2dtdadx
Q ¢ ot oda Q
+ J e XMs\p|Vw|>dtdadx < C(J e > f2dtdadx + J e 212 w2 dtdadx).
Q Q 9

(3.53)
It is sufficient to use (3.50) and to turn back to the variable w by using the explicit expres-
sion of Pyu and Pu.

(ii) In [1] the author tried to prove a Carleman inequality for the system (3.1) with
Bw(t,0,x) instead of f. The problem there is more complex: after the change of vari-
able u = e 2w the right term becomes e~ w(t,0,x) and cannot be written in terms of
the variable u. Unfortunately, see [1, system (6) page 566], this term was ignored in the

computations.
In the sequel we take f = 0 in order to avoid this situation.

Our observability inequality is as follows.

PROPOSITION 3.4. Assume that
f=0 (3.54)
and that there exists a real y = 0 such that
gla,x)=0 a.e in (0,y) X Q. (3.55)

Then, there exists a positive constant C,, such that the following inequality holds:

J wz(O,a,x)dadx+I wz(t,O,x)dtdstyI w?(t,a,x)dtdadx (3.56)
q

A T

for all solution w of (3.1).
Let y be small enough so that y < min(T,A). We define now two subsets of (0,T) X
(0,A):

Ny = {(t,a) € (0,T) x (0,A); t = a+ T -y},
(3.57)
N, = {(t,a) € (0,T)x (0,A); t <a+y— A},

and we formulate a lernma which will be used in the proof of Proposition 3.4.

Lemma 3.5. If (3.54) and (3.55) hold, then all solutions of (3.1) verify

w(t,a,x) =0 a.e. in (N; UN,) X Q. (3.58)
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Proof of Lemma 3.5. We will prove that w = 0 on almost every characteristic line in Ny U
N,.

Let (ty,a0) € Ni. Then we have t) = a9+ T — y +d with 0 < d < y. Therefore, ay <
y—d.

Let S(d) = {(to +s,a0+5), s € (0,y —d —ap)} be a characteristic line of (3.1). Setting
z(s,x) = w(ty +s,a0 + s,x) and p(s,x) = u(ty +s,a0 + s,x) from (3.1), we deduce that z
solves

—% —Az+paz=0 in(0,y—d—ap) xXQ,
z(s,x) =0 on (0,y —d —ag) X 0Q, (3.59)

z(y—d—ap,x) =w(T,y—d,x) =g(y—d,x) inQ.

Then from (3.55) for almost all d € (0,y), standard results on heat equation imply that
z = 0. Thus, for almost all d € (0,y), w = 0 on S(d). Therefore, w = 0 in N; X Q. The
same argument and the fact that w(t,A,x) = 0in (0, T) x Q allow us to prove that w = 0
in N X Q. O

Now, let us prove Proposition 3.4.

Proof of Proposition 3.4. We set

T— 2
D, = {(t,a) CO.T) % (0,A), t<—=V2 1 X},

A—y/2 2
_ AR 24
Dz—{(t,a)E(O,T)X(O,A),aZ T—y/2t+A 20T—p) ) (3.60)

D; = (O>T) X (O)A) - (Dl UDZ):
Dy = {(t,a) € Ds;(t,a) € (NJUN,)}, (cf. Figure 3.1).

Consider now 0 € C{(R?) a cut-off function such that # =1 on D;; 6 =0 on Ds.
Setting w = 6w, it follows that w solves

ow  ow ~ 00 00 .
—E—E—Aw+‘uw——<§+$)w in Q,

w(t,a,x) =0 onZX, (3.61)
W(T)a)x) =0 in QA)
w(t,A,x) =0 in Q.
Multiplying (3.61) by w and integrating over Q yield after minor majoration

T—y/2 A-y/2 00 00
j J wz(t,O,x)dxdtJrJ J w2(0,a,x)dxda < —zj (— + —)szdtdadx.
0 Q 0 Q Q ot Oda (3 62)
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t

y A-y A a
Figure 3.1

Using Lemma 3.5 and the definition of 8, we deduce that (96/9t + 00/0a)0w = 0 almost
every where outside of D, X ). Note that 7 and ¢ are bounded on D4 x Q by strictly
positive reals. Hence there exists a positive constant C, > 0 such that

_2I (@ + %) Ow? dtdadx < CVI @*e *Mw? dtdadx. (3.63)
Q

Therefore (3.62) yields

(y/2) A=(y/2) _
J J wz(t,O,x)dxdt+J J wz(O,a,x)dxdasCyJ (pze_z”’wzdtdadx,
0 Q 0 Q Q
(3.64)

where C, is a positive constant depending on y. Using now (3.2), (3.58) and the fact that
@*e > < 1 for A and s sufficiently large we deduce (3.56). O

Remark 3.6. A careful calculation for s > s; and A > A, leads to the following estimate of
Cy:

(3.65)

C, = C(T)yzexp <M>>

P3AT

where C(¥,s,1) and C(T) are positive constants.
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3.2. A null controllability result. In this section, for a given function b € L?>(Qr) we
consider the following system:

dy 9y B .
at+aa—Ay+yy—v1w in Q,
y(t,a,0) =0 onZ, (3.66)
y(0,a,x) = yo(a,x) in Qq,
y(£,0,x) =b(t,x) in Qr.
For all € > 0 we introduce the functional
1 2 1 2
Je(v) = — vy (T,a,x)dxda+ = | v*(t,a,x)dxdadt. (3.67)

It follows easily that Jc is continuous, convex, and coercive. Hence, Jc admits a unique
minimizer ve and we have

ve(t,a,x) = —we(t,a,x)1,(x) inQ, (3.68)

where we is the solution of the following system:

oWe  Owe _ .
"5 9a —Awet+uwe =0 1in Q,
we(t,a,0) =0 onZ,
) (3.69)
we(T,a,x) = E)’e(T,a>x)1(y,A)(a) in Qg,
WE(t)A)x) =0 in QT)
and y. is the solution of (3.66) associated to ve.
Multiplying (3.69) by y. and integrating on Q give
1 (A A
- —J J yg(T,a,x)dxda+J J we(0,a,x) yo(a,x)dxda
€ y JQ 0 JQ
i} (3.70)
+I I we(t,O,x)b(t,x)dxdt+I vewedtdadx = 0.
0 JQ q
Using (3.68) we obtain
A T
J J we(0,a,%) yo(a,x)dxda-kj J we (1,0, )b (6, x)dx dt
0 Ja 0 Ja
(3.71)

A
= lj J yé(T,a,x)dxda+J vidtdadx.
€Jy Ja q
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On the other hand, Young inequality gives

A T
J J wE(O,a,x)yo(a,x)dxda-kJ J we(£,0,5)b(t, x)dx dt
0 JQ 0 JQ
1 A T
< —(J J W?_(O,a,x)dxda+J J wg(t,O,x)dtdx) (3.72)
2C, \Jo Ja 0 Ja

A T
+2Cy(J J yé(a,x)dxdﬁj J bz(t,x)dxdt).
0 JQ 0 JQ

Therefore Proposition 3.4 and inequality (3.72) imply

A
lJ J yé(T,a,x)ddeljvgdtdadx
€Jy Ja 2y
(3.73)

A T
<26,( || @xdxda+ | | v vaxar)
0 JQ 0 JQ

Consequently

2 2
el l72iq) = 4Cy (18132 01, +1130l[F2100)-
5 (3.74)
Llyg(T,a,x)dxda < 2€Cy<||b||%2(QT) + ||J/0||L2(QA))'

Then, one can extract subsequences also denoted by v¢ and y, such that vc — v weakly in
L%(q) and ye — y weakly in L?((0, T) x (0,A), H} (Q)).

Moreover y is the unique solution of (3.66) and verifies (2.2). Notice also that v verifies
(2.2).

Therefore, we have proved the following null controllability result.

ProPOSITION 3.7. For any given positive real y small enough, there exists a control v € L*(q)
that verifies (3.74), such that the associated solution y of (3.66) verifies (2.2).

Remark 3.8. (i) This result is quite similar to what was proved in [7] for a so-called “lin-
earized crocco-type equation.” More precisely, it was proved in [7] that there exists a
control v acting on (xo,%1) X w, with 0 < xo < x; < A such that the corresponding solution
of (3.66) with Q C R verifies

y(T,a,x) =0 in (xo+8,L) x Q, (3.75)

where

(3.76)

X1+T—6 ifO<T<A—X1+6,
A if T>A—x;+6.
See [7, page 710].
The method in [7] uses the fact that 0 < xp < A, energy estimates, and Carleman es-

timates for parabolic equation along characteristic lines of (3.66). Therefore one cannot
use the result of [7] for the case xo = 0 and x; = A which is studied here.
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(ii) System (3.13) describes in fact the evolution of a controlled age and space struc-
tured population in which the birth process is given by a function regardless of the dis-
tribution of individuals of age a > 0. That explains why it seems impossible to eradicate
individuals of age close to 0.

4, Proof of the main result

For 0 € L*(Qr), letting b = e "!F(eM*6), we derive from Proposition 3.7 that there exists
a control v that verifies (3.74) so that the corresponding solution of (3.66) verifies (2.2).
Then for all 6 € L2(Qr) we define by A(6) the nonempty set of all IOA Byda where y
verifies (2.2), solves (3.66) with v € L?(q) that verifies (3.74). The problem is now reduced
to find a fixed point for A. In order to apply a generalization of the Leray-Schauder fixed
point theorem stated in [5], we define the set N = {6 € L*(Qr), (3){ € (0,1), 6 € {A(6)}.
Thus doing the existence of a fixed point is a obvious consequence of the following.

ProposiTION 4.1. (i) A is a compact multivalued mapping of L*(Qr).
(ii) For all 8 € L*(Qr), A(6) is a nonempty closed convex subset of L*(Qr).
(iii) N is bounded in L*>(Qr).
(iv) A is upper semicontinuous on L*(Qr).

Proof of Proposition 4.1. (i) We prove the compactness of A. Let 6 € L?(Qr) such that
10l <7, r>0. We have to prove that A(6) is compact in L*(Qr). Consider (p,), C
A(6). From the definition of A, for all n there exists a pair (v4,y,) € L?(q) X L*(Q)
such that p, = f(? Bynda, v, verifies (3.74) and y,, the associated solution of (3.66) with
b = e M!F(eb!) verifies (2.2).

Using (3.74) we deduce that

2 - 2 2
[[valliziq) = 4Gy (Ile™F (0) 112y + 130ll2ca0))- (4.1)
Then we get via H3
2 2
vl T2y = Gy (CE QT + ol lF2())- (4.2)

Multiplying (3.66) with e %!F(e!!0) instead of b by y, and integrating over Q, we obtain

2 A 2 2 2 1 2 1, _ 2
||V)’n||L2(Q) + 50||)’n||L2(Q) = TO”VﬂHLZ(q) + 5||}’0||L2(QA) + E”e AOtF(eAOIQ)||L2(QT)-
(4.3)

Therefore, for Ao = 2 we get

IV y 11320y + 1y 130y < (Cy+ 1) (CE, Q1. T) + |30l 12(0,))- (4.4)
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Moreover, using H, we deduce that p,, = f(? Bynda solves the system

opn A .
5 At L Buynda = z,(t,x) in Qr,

p(t,x) =0 on(0,T) x 09, (4.5)
A
pu(0,%) = L B(0,a,%)y0(a,x)da in Q,

where z,(t,x) = [{ Bvadal, + i yu(9p/dt +3p/0a — AP)da+ [; Vy,Vpda.
Notice that

2 2 2 2
zallz2qp) < 3C/23A(||Vn||L2(q) +yallp ) + ||vyﬂ||L2(Q))' (4.6)

This implies via (4.2) and (4.4) that

lzull72(gy) = (Cy+ 1) C(B,A) (CE Q1 T) + |0l [, )- (4.7)

Now let us multiply (4.5) by p,,, we obtain after an integration by parts and minor changes
that

2 A 2 2 2
||VPn||L2(QT) + ?OHPYIHLZ(QT) = /TOHZnHLZ(QAy (4.8)

Consequently, p, is bounded in L?((0,T),H;(Q)) and standard arguments allow us to
see that dp,dt is also bounded in L?((0,T),H; '(Q)). Hence, using Lions-Aubin lemma
we conclude the proof of (i).

We address now the proof of (ii).

First, it is obvious that for all 6 € L?(Qr), A(0) is a nonempty convex set. Let (p,), C
A(6) such that p, — p in L?(Qr). We have to prove that p € A(6). For all n there exists
v, that verifies (3.74) such that p, = fOA Bynda where y, is the corresponding solution
of (3.66) with e*!F(e}0) instead of b, and y, verifies also (2.2). Then, from (4.2) and
(4.4) we deduce that one can extract subsequences also denoted by v, and y, converging
weakly to v and y, respectively, in L?(g) and L*((0,T) x (0,A), H}(Q)). Standard device
implies that f(;‘ Byda = p. In addition, it follows that y is the associated solution of (3.66)
with b = e M!F(e!'0). In addition v verifies (3.74) and y verifies (2.2). Therefore, the
definition of A yields that p € A(6).

Let us perform now the proof of (iii). Let 6 € N, then there exists { € (0,1) such that
(1/¢) 6 € A6. As a consequence, there exists a pair (v,y) € L?(q) X L*(Q) such that 6 =
Cf(f‘ By da, v verifies (3.74) and y is the associated solution of (3.66) with b = e~%!F(eh0).
This implies on one hand that

16113:(0,) = CB-AY12:(g- (4.9)

By (4.1) and H3 we deduce

V12, < 8Cy (C(Co, 0, T) + CE1IOI: o, + 130ll12(0)) (4.10)
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and consequently, (4.3) yields

16 (16C, +1)C?
71120 < )L—()(C(T,Q,Co) +50llz20,) + aiolnmiw. (4.11)

Taking now Ay > max(2,(16C, + 1)C?) and combining (4.9) and (4.11) we get

1611320 = C(A Ty, Iyl 0,y ) (4.12)

that achieves the proof of (iii).

It remains to check that A is upper semicontinuous on L?(Qr). This is equivalent to
prove that for any closed subset G of L2(Qr), A™'(G) is closed in L?(Qr). Let 8, € A™1(G)
such that 6, converges towards 0 in L>(Qr). Then, 6, is bounded and for all n there ex-
ists p, € G such that p, € A(68,). Therefore, from the definition of A there exists a pair
(V> yn) € L*(q) X L*(Q) such that p,, = f(? Bynda, v, verifies (3.74), y, the corresponding
solution of (3.66) with e !F(e*!0,) instead of b verifies (2.2), so that v, verifies (4.2)
and y, (4.4). Consequently (v,, ,) is bounded in L?(q) X L*(Q). Thus, there exists a sub-
sequence still denoted by (v, y,) that converges weakly to (v, y) in L?(q) x L*(Q). Since
F is continuous, it follows that e %!F(e%*f,) converges strongly towards e %!F(e*0).
Now, by standard device we see that v verifies (3.74), p = fOA Byda, y solves (3.66) with
e M!F(eM'0) instead of b and y verifies in addition (2.2). This implies obviously that

peAd). (4.13)

On the other hand, thanks to (4.8) and Lions-Aubin lemma once again, one can extract a
subsequence also denoted by p, that converges strongly towards the function p in L?(Qr).
Since G is closed we deduce that p € G. Finally, from (4.13) we deduce that 0 € A~1(G).
This completes the proof of Proposition 4.1. O
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